1
|
Evolution acting on the same target, but at multiple levels: Proteins as the test case. J Biosci 2017; 42:1-3. [DOI: 10.1007/s12038-017-9672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Gouran H, Chakraborty S, Rao BJ, Asgeirsson B, Dandekar A. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template. F1000Res 2014; 3:215. [PMID: 25717364 PMCID: PMC4329599 DOI: 10.12688/f1000research.5147.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 01/22/2023] Open
Abstract
Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction.
Collapse
Affiliation(s)
- Hossein Gouran
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - Bjarni Asgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| | - Abhaya Dandekar
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Chakraborty S, Venkatramani R, Rao BJ, Asgeirsson B, Dandekar AM. The electrostatic profile of consecutive Cβ atoms applied to protein structure quality assessment. F1000Res 2013; 2:243. [PMID: 25506420 PMCID: PMC4257144 DOI: 10.12688/f1000research.2-243.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 02/10/2024] Open
Abstract
The structure of a protein provides insight into its physiological interactions with other components of the cellular soup. Methods that predict putative structures from sequences typically yield multiple, closely-ranked possibilities. A critical component in the process is the model quality assessing program (MQAP), which selects the best candidate from this pool of structures. Here, we present a novel MQAP based on the physical properties of sidechain atoms. We propose a method for assessing the quality of protein structures based on the electrostatic potential difference (EPD) of Cβ atoms in consecutive residues. We demonstrate that the EPDs of Cβ atoms on consecutive residues provide unique signatures of the amino acid types. The EPD of Cβ atoms are learnt from a set of 1000 non-homologous protein structures with a resolution cuto of 1.6 Å obtained from the PISCES database. Based on the Boltzmann hypothesis that lower energy conformations are proportionately sampled more, and on Annsen's thermodynamic hypothesis that the native structure of a protein is the minimum free energy state, we hypothesize that the deviation of observed EPD values from the mean values obtained in the learning phase is minimized in the native structure. We achieved an average specificity of 0.91, 0.94 and 0.93 on hg_structal, 4state_reduced and ig_structal decoy sets, respectively, taken from the Decoys `R' Us database. The source code and manual is made available at https://github.com/sanchak/mqap and permanently available on 10.5281/zenodo.7134.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Bjarni Asgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, IS-107 Reykjavik, Iceland
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California,, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Rendón-Ramírez A, Shukla M, Oda M, Chakraborty S, Minda R, Dandekar AM, Ásgeirsson B, Goñi FM, Rao BJ. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold. PLoS One 2013; 8:e70923. [PMID: 23940667 PMCID: PMC3733634 DOI: 10.1371/journal.pone.0070923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.
Collapse
Affiliation(s)
- Adela Rendón-Ramírez
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Manish Shukla
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India
| | - Masataka Oda
- Department of Microbiology, Faculty of Pharmaceutical Science, Tokushima Bunri University, Tokushima, Japan
| | - Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- * E-mail:
| | - Renu Minda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California, Davis, Davis, California, United States of America
| | - Bjarni Ásgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, Dunhaga, Reykjavik, Iceland
| | - Félix M. Goñi
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
5
|
Chakraborty S, Venkatramani R, Rao BJ, Asgeirsson B, Dandekar AM. The electrostatic profile of consecutive Cβ atoms applied to protein structure quality assessment. F1000Res 2013; 2:243. [PMID: 25506420 PMCID: PMC4257144 DOI: 10.12688/f1000research.2-243.v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
The structure of a protein provides insight into its physiological interactions with other components of the cellular soup. Methods that predict putative structures from sequences typically yield multiple, closely-ranked possibilities. A critical component in the process is the model quality assessing program (MQAP), which selects the best candidate from this pool of structures. Here, we present a novel MQAP based on the physical properties of sidechain atoms. We propose a method for assessing the quality of protein structures based on the electrostatic potential difference (EPD) of Cβ atoms in consecutive residues. We demonstrate that the EPDs of Cβ atoms on consecutive residues provide unique signatures of the amino acid types. The EPD of Cβ atoms are learnt from a set of 1000 non-homologous protein structures with a resolution cuto of 1.6 Å obtained from the PISCES database. Based on the Boltzmann hypothesis that lower energy conformations are proportionately sampled more, and on Annsen's thermodynamic hypothesis that the native structure of a protein is the minimum free energy state, we hypothesize that the deviation of observed EPD values from the mean values obtained in the learning phase is minimized in the native structure. We achieved an average specificity of 0.91, 0.94 and 0.93 on hg_structal, 4state_reduced and ig_structal decoy sets, respectively, taken from the Decoys `R' Us database. The source code and manual is made available at
https://github.com/sanchak/mqap and permanently available on 10.5281/zenodo.7134.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Bjarni Asgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, IS-107 Reykjavik, Iceland
| | - Abhaya M Dandekar
- Plant Sciences Department, University of California,, Davis, CA, 95616, USA
| |
Collapse
|