1
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
2
|
He P, Jiang F, Guo W, Guo YF, Lei SF, Deng FY. PhosSNPs-Regulated Gene Network and Pathway Significant for Rheumatoid Arthritis. Hum Hered 2021; 86:10-20. [PMID: 34569543 DOI: 10.1159/000518608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Peripheral blood mononuclear cells (PBMCs) are critical for immunity and participate in multiple human diseases, including rheumatoid arthritis (RA). PhosSNPs are nonsynonymous SNPs influencing protein phosphorylation, thus probably modulate cell signaling and gene expression. We aimed to identify phosSNPs-regulated gene network/pathway potentially significant for RA. METHODS We collected genome-wide phosSNP genotyping data and transcriptome-wide mRNA expression data from PBMCs of a Chinese sample. We discovered and verified with public datasets differentially expressed genes (DEGs) associated with RA, and replicated RA-associated SNPs in our study sample. We performed a targeted expression quantitative trait locus (eQTL) study on significant phosSNPs and DEGs. RESULTS We identified 29 nominally significant eQTL phosSNPs and 83 target genes, and constructed comprehensive regulatory/interaction networks, highlighting the vital effects of two eQTL phosSNPs (rs371513 and rs4824675, FDR <0.05) and four critical node genes (HSPA4, NDUFA2, MRPL15, and ATP5O). Besides, two node/key genes NDUFA2 and ATP5O, regulated by rs371513, were significantly enriched in mitochondrial oxidative phosphorylation pathway. Besides, four pairs of eQTL effects were replicated independently in whole blood and/or transformed fibroblasts. CONCLUSIONS The findings delineated a potential role of protein phosphorylation and genetic variations in RA and warranted the significant roles of phosSNPs in regulating RA-associated genes expression in PBMCs. The results pointed out the relevance and significance of oxidative phosphorylation pathway to RA.
Collapse
Affiliation(s)
- Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Fei Jiang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Wei Guo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yu-Fan Guo
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Hua T, Ding J, Xu J, Fan Y, Liu Z, Lian J. Coiled-coil domain-containing 68 promotes non-small cell lung cancer cell proliferation in vitro. Oncol Lett 2020; 20:356. [PMID: 33133256 PMCID: PMC7590430 DOI: 10.3892/ol.2020.12220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
Coiled-coil domain-containing 68 (CCDC68) is a novel secretory protein that acts as a tumor suppressor gene in several types of malignant tumors. However, the role of CCDC68 in the development of lung cancer has not been extensively studied. In the present study, to explore the biological functions of CCDC68 in NSCLC, we performed cell proliferation, viability and apoptosis assays on human lung cancer cell lines upon CCDC68 gene silencing with short hairpin RNA. The results demonstrated that following knockdown of CCDC68 expression, cell proliferation was decreased and the apoptotic rates were increased in A549 and H1299 cells. The role and mechanism of CCDC68 in malignant tumors, particularly in lung cancer, should be further explored, and CCDC68 may serve as a novel target for treatment of lung cancer.
Collapse
Affiliation(s)
- Tao Hua
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jie Ding
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jialing Xu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Yu Fan
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Zejie Liu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Juanwen Lian
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| |
Collapse
|
4
|
Wang T, Yin Q, Ma X, Tong MH, Zhou Y. Ccdc87 is critical for sperm function and male fertility. Biol Reprod 2019; 99:817-827. [PMID: 29733332 DOI: 10.1093/biolre/ioy106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/01/2018] [Indexed: 12/19/2022] Open
Abstract
Male infertility has become an increasingly common health concern in recent years. Apart from environmental factors, nutrition, lifestyle, and sexually transmitted diseases, genetic defects are important causes of male infertility. Many genes have been demonstrated to be associated with male infertility. However, the roles of some functional genes in infertility, especially those that are specifically expressed in the reproductive system, remain to be elucidated. Here, we demonstrated that the testis-specific gene coiled-coil domain-containing 87 (Ccdc87) is critical for male fertility. Reverse-transcriptase polymerase chain reaction and western blot analyses revealed that the Ccdc87 mRNA and protein were only expressed in mouse testis. Ccdc87 expression first appeared at postnatal day 14 and remained at a relatively high level until adulthood. Male mice lacking Ccdc87 gene (Ccdc87-/-) were found to be subfertile. Approximately 20% of Ccdc87-null sperm from the testis and epididymis displayed severe abnormity of acrosome and cell nucleus. Sperm isolated from the cauda epididymides of Ccdc87-/- mice exhibited decreased initial motility but did not show any change in capacitation. Additionally, Ccdc87 disruption led to the impotency of sperm spontaneous and progesterone-induced acrosome reaction. Moreover, in vitro fertilization assays indicated that the fertilizing capacity of Ccdc87-/- sperm was significantly reduced. Taken together, these findings provide a new clue to understand the genetic causes of male infertility.
Collapse
Affiliation(s)
- Tongtong Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Yin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xuehao Ma
- Shanghai Foreign Language School, Shanghai, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuchuan Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Jia M, Shi Y, Li Z, Lu X, Wang J. MicroRNA-146b-5p as an oncomiR promotes papillary thyroid carcinoma development by targeting CCDC6. Cancer Lett 2018; 443:145-156. [PMID: 30503553 DOI: 10.1016/j.canlet.2018.11.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022]
Abstract
The microRNA-146b-5p (miR-146b-5p) is known to be involved in the development of papillary thyroid cancer (PTC); however, the underlying mechanism is unclear. Here we have investigated the biological functions and underlying molecular mechanisms of miR-146b-5p in PTC. The expression of miR-146b-5p was assessed in 92 pairs of PTC and adjacent normal tissues and showed correlation with the clinicopathological status such as the tumour size. Effects of miR-146b-5p and its direct target, coiled-coil domain containing 6 (CCDC6), on cell proliferation, migration, invasion, and cell cycle were evaluated through gain- and loss-of-function studies in vitro and in vivo. The expression of CCDC6 was further examined in 187 PTC cases and was found to be correlated with the clinicopathological status. Overexpression of miR-146b-5p was observed in PTC tissues that correlated with advanced PTC. miR-146b-5p promoted cell proliferation, migration, invasion, and cell cycle progression in vitro, whereas CCDC6 reversed this effect. miR-146b-5p promoted PTC growth in a subcutaneous mouse model in vivo, whereas overexpression of CCDC6 exerted the opposite effect. In conclusion, miR-146b-5p expression correlated with advanced PTC and promoted PTC development by targeting CCDC6 in vitro and in vivo; it could, therefore, serve as a promising target for PTC treatment.
Collapse
Affiliation(s)
- Meng Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Faculty of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yang Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhuyao Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiubo Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Faculty of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jiaxiang Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Faculty of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
6
|
Chicken CCDC152 shares an NFYB-regulated bidirectional promoter with a growth hormone receptor antisense transcript and inhibits cells proliferation and migration. Oncotarget 2017; 8:84039-84053. [PMID: 29137403 PMCID: PMC5663575 DOI: 10.18632/oncotarget.21091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
The chicken coiled-coil domain-containing protein 152 (CCDC152) recently has been identified as a novel one implicated in cell cycle regulation, cellular proliferation and migration by us. Here we demonstrate that CCDC152 is oriented in a head-to-head configuration with the antisense transcript of growth hormone receptor (GHR) gene. Through serial luciferase reporter assays, we firstly identified a minimal 102 bp intergenic region as a core bidirectional promoter to drive basal transcription in divergent orientations. And site mutation and transient transfected assays showed that nuclear transcription factor Y subunit beta (NFYB) could bind to the CCAAT box and directly transactivate this bidirectional promoter. SiRNA-mediated NFYB depletion could significantly down-regulate the expression of both GHR-AS-I6 and CCDC152. Additionally, the expression of GHR-AS-I6 was significantly up-regulated after CCDC152 overexpression. Overexpression of CCDC152 remarkably reduced cell proliferation and migration through JAK2/STAT signaling pathway. Thus, the GHR-AS-I6-CCDC152 bidirectional transcription unit, as a novel direct target of NFYB, is possibly essential for the accelerated proliferation and motility of different cells.
Collapse
|
7
|
Yin DT, Xu J, Lei M, Li H, Wang Y, Liu Z, Zhou Y, Xing M. Characterization of the novel tumor-suppressor gene CCDC67 in papillary thyroid carcinoma. Oncotarget 2016; 7:5830-41. [PMID: 26716505 PMCID: PMC4868724 DOI: 10.18632/oncotarget.6709] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Background Some studies showed an association of coiled-coil domain-containing (CCDC) genes with cancers. Our previous limited data specifically suggested a possible pathogenic role of CCDC67 in papillary thyroid cancer (PTC), but this has not been firmly established. The present study was to further investigate and establish this role of CCDC67 in PTC. Results The expression of CCDC67, both at mRNA and protein levels, was sharply down-regulated in PTC compared with normal thyroid tissues. Lower CCDC67 expression was significantly associated with aggressive tumor behaviors, such as advanced tumor stages and lymph node metastasis, as well as BRAF mutation. Introduced expression of CCDC67 in TPC-1 cells robustly inhibited cell proliferation, colony formation and migration, induced G1 phase cell cycle arrest, and increased cell apoptosis. Methods Primary PTC tumors and matched normal thyroid tissues were obtained from 200 unselected patients at the initial surgery for detection of CCDC67 mRNA and protein by RT-PCR and Western blotting analyses, respectively. Genomic DNA sequencing was performed to detect BRAF mutation in PTC tumors. Clinicopathological data were retrospectively reviewed for correlation analyses. PTC cell line TPC-1 with stable transfection of CCDC67 was used to investigate the functions of CCDC67. Conclusions This large study demonstrates down-regulation of CCDC67 in PTC, an inverse relationship between CCDC67 expression and PTC aggressiveness and BRAF mutation, and a robust inhibitory effect of CCDC67 on PTC cellular activities. These results are consistent with CCDC67 being a novel and impaired tumor suppressor gene in PTC, providing important prognostic and therapeutic implications for this cancer.
Collapse
Affiliation(s)
- De Tao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou 450052, P. R. China
| | - Jianhui Xu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou 450052, P. R. China
| | - Mengyuan Lei
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou 450052, P. R. China
| | - Hongqiang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou 450052, P. R. China
| | - Yongfei Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou 450052, P. R. China
| | - Zhen Liu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.,Key Discipline Laboratory of Clinical Medicine Henan, Zhengzhou 450052, P. R. China
| | - Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Mingzhao Xing
- Division of Endocrinology and Metabolism, the Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, Lin J, Li X, Guo Y. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget 2016; 6:25856-67. [PMID: 26312564 PMCID: PMC4694871 DOI: 10.18632/oncotarget.4624] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/03/2015] [Indexed: 12/28/2022] Open
Abstract
The coiled coil is a superhelical structural protein motif involved in a diverse array of biological functions, and the abnormal expression of the coiled-coil domain containing proteins has a direct link with the phenotype of tumor cell migration, invasion and metastasis. The aim of this study was to investigate the critical role of Coiled-coil domain-containing protein 34 (CCDC34) in bladder carcinogenesis, which has never been reported to date. Here, we found CCDC34 expression was elevated in bladder cancer tissues and cell lines. The knockdown of CCDC34 via lentivirus-mediated siRNA significantly suppressed bladder cancer cells proliferation and migration, and induced cell cycle arrest at G2/M phase and increased apoptosis in vitro. In addition, CCDC34 knockdown suppressed bladder tumor growth in nude mice. Moreover, CCDC34 silencing decreased the phosphorylation of MEK, ERK1/2, JNK, p38 and Akt, and the expressions of c-Raf and c-Jun, indicating MAPK and AKT pathways (ERK/MAPK, p38/MAPK, JNK/MAPK and PI3K/Akt) might be involved in CCDC34 regulation of bladder cancer cell proliferation and migration. Our findings revealed for the first time a potential oncogenic role for CCDC34 in bladder carcinoma pathogenesis and it may serve as a biomarker or even a therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,National Urological Cancer Center, Beijing 100034, China
| | - Wei Qiu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xianghui Ning
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China
| | - Xinyu Yang
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,National Urological Cancer Center, Beijing 100034, China
| | - Libo Liu
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,National Urological Cancer Center, Beijing 100034, China
| | - Zicheng Wang
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,National Urological Cancer Center, Beijing 100034, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,National Urological Cancer Center, Beijing 100034, China
| | - Yinglu Guo
- Department of Urology, Peking University First Hospital, Beijing 100034, China.,Institute of Urology, Peking University, Beijing 100034, China.,National Urological Cancer Center, Beijing 100034, China
| |
Collapse
|