1
|
Chaturvedi S, Bawake S, Sharma N. Recent advancements in disulfide bridge characterization: Insights from mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9713. [PMID: 38361473 DOI: 10.1002/rcm.9713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024]
Abstract
RATIONALE Disulfide bridges (DSB) play an important role in stabilizing three-dimensional structures of biopharmaceuticals, single purified proteins, and various cyclic peptide drugs that contain disulfide in their structures. Incorrect cross-linking known as DSB scrambling results in misfolded structures that can be inactive, immunogenic, and susceptible to aggregation. Very few articles have been published on the experimental annotation of DSBs in proteins and cyclic peptide drugs. Accurate characterization of the disulfide bond is essential for understanding protein confirmation. METHODS Characterizing DSBs using mass spectrometry (MS) involves the chemical and enzymatic digestion of samples to obtain smaller peptide fragments, in both reduced and nonreduced forms. Subsequently, these samples are analyzed using MS to locate the DSB, either through interpretation or by employing various software tools. RESULTS The main challenge in DSB analysis methods using sample preparation is to obtain a sample solution in which nonnative DSBs are not formed due to high pH, temperature, and presence of free sulfhydryl groups. Formation of nonnative DSBs can lead to erroneous annotation of disulfide bond. Sample preparation techniques, fragmentation methods for DSB analysis, and contemporary approaches for DSB mapping using this fragmentation were discussed. CONCLUSIONS This review presents the latest advancement in MS-based characterization; also a critical perspective is presented for further annotation of DSBs using MS, primarily for single purified proteins or peptides that are densely connected and rich in cysteine. Despite significant breakthroughs resulting from advancements in MS, the analysis of disulfide bonds is not straightforward; it necessitates expertise in sample preparation and interpretation.
Collapse
Affiliation(s)
- Sachin Chaturvedi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), NIPER Ahmedabad Opposite Air force Station Palaj, Gandhinagar, Gujarat, India
| | - Sanket Bawake
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), NIPER Ahmedabad Opposite Air force Station Palaj, Gandhinagar, Gujarat, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), NIPER Ahmedabad Opposite Air force Station Palaj, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Nupur N, Rathore AS. Elucidating chemical and disulfide heterogeneities in rituximab using reduced and non-reduced peptide mapping. J Sep Sci 2022; 45:2887-2900. [PMID: 35670633 DOI: 10.1002/jssc.202200290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/07/2022]
Abstract
Peptide mapping by liquid chromatography-mass spectrometry is the gold standard to characterize post-translational modifications and disulfide bonds. The structural integrity, heterogeneity, and quality of biotherapeutic proteins are evaluated via reduced and non-reduced peptide mapping methods. However, non-enzymatic artifacts are often induced during sample preparation when alkaline pH conditions are used. To minimize these artifacts, methods using various acidic pH conditions have been developed by multiple researchers. However, these may lead to missed and non-specific cleavages during the analysis. In this study, improved reduced and non-reduced peptide mapping method has been proposed to characterize endogenous chemical modifications and native disulfide bonds of monoclonal antibody -based products. Solubilization has been carried out at acidic pH conditions under high temperature, followed by the addition of tris (2-carboxyethyl) phosphine as a reducing agent and a low alkylating agent. It was observed that the non-enzymatic post-translational modifications and non-native disulfide scrambled peptides significantly reduced under trypsin plus Lys-C digestion conditions at acidic pH as compared to the traditional methods. The results demonstrate that the proposed peptide mapping method using trypsin plus Lys-C could identify and quantify various chemical and disulfide heterogeneities with minimal artifacts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Neh Nupur
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, 110016, India.,DBT Center of Excellence for Biopharmaceutical Technology, IIT Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, 110016, India.,DBT Center of Excellence for Biopharmaceutical Technology, IIT Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
3
|
Glinšek K, Kramer L, Krajnc A, Kranjc E, Pirher N, Marušič J, Hellmann L, Podobnik B, Štrukelj B, Ausländer D, Gaber R. Coupling CRISPR interference with FACS enrichment: New approach in glycoengineering of CHO cell lines for therapeutic glycoprotein production. Biotechnol J 2022; 17:e2100499. [PMID: 35481906 DOI: 10.1002/biot.202100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/10/2022] [Accepted: 04/23/2022] [Indexed: 11/05/2022]
Abstract
Difficulties in obtaining and maintaining the desired level of the critical quality attributes (CQAs) of therapeutic proteins as well as the pace of the development are major challenges of current biopharmaceutical development. Therapeutic proteins, both innovative and biosimilars, are mostly glycosylated. Glycans directly influence the stability, potency, plasma half-life, immunogenicity, and effector functions of the therapeutic. Hence, glycosylation is widely recognized as a process-dependent CQA of therapeutic glycoproteins. Due to the typically high heterogeneity of glycoforms attached to the proteins, control of glycosylation represents one of the most challenging aspects of biopharmaceutical development. Here, we explored a new glycoengineering approach in therapeutic glycoproteins development, which enabled us to achieve the targeted glycoprofile of the Fc-fusion protein in a fast manner. Coupling CRISPRi technology with lectin-FACS sorting enabled downregulation of the endogenous gene involved in fucosylation and further enrichment of CHO cells producing Fc-fusion proteins with reduced fucosylation levels. Enrichment of cells with targeted glycoprofile can lead to time-optimized clone screening and speed up cell line development. Moreover, the presented approach allows isolation of clones with varying levels of fucosylation, which makes it applicable to a broad range of glycoproteins differing in target fucosylation level. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Katja Glinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, SI-1000, Slovenia
| | - Lovro Kramer
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| | - Aleksander Krajnc
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| | - Eva Kranjc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, SI-1000, Slovenia
| | - Nina Pirher
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| | - Jaka Marušič
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| | - Leon Hellmann
- Novartis Institutes for Biomedical Research, Klybeckstrasse 141, Basel, CH-4057, Switzerland
| | - Barbara Podobnik
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, SI-1000, Slovenia
| | - David Ausländer
- Novartis Institutes for Biomedical Research, Klybeckstrasse 141, Basel, CH-4057, Switzerland
| | - Rok Gaber
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| |
Collapse
|
4
|
Nupur N, Joshi S, Gulliarme D, Rathore AS. Analytical Similarity Assessment of Biosimilars: Global Regulatory Landscape, Recent Studies and Major Advancements in Orthogonal Platforms. Front Bioeng Biotechnol 2022; 10:832059. [PMID: 35223794 PMCID: PMC8865741 DOI: 10.3389/fbioe.2022.832059] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Biopharmaceuticals are one of the fastest-growing sectors in the biotechnology industry. Within the umbrella of biopharmaceuticals, the biosimilar segment is expanding with currently over 200 approved biosimilars, globally. The key step towards achieving a successful biosimilar approval is to establish analytical and clinical biosimilarity with the innovator. The objective of an analytical biosimilarity study is to demonstrate a highly similar profile with respect to variations in critical quality attributes (CQAs) of the biosimilar product, and these variations must lie within the range set by the innovator. This comprises a detailed comparative structural and functional characterization using appropriate, validated analytical methods to fingerprint the molecule and helps reduce the economic burden towards regulatory requirement of extensive preclinical/clinical similarity data, thus making biotechnological drugs more affordable. In the last decade, biosimilar manufacturing and associated regulations have become more established, leading to numerous approvals. Biosimilarity assessment exercises conducted towards approval are also published more frequently in the public domain. Consequently, some technical advancements in analytical sciences have also percolated to applications in analytical biosimilarity assessment. Keeping this in mind, this review aims at providing a holistic view of progresses in biosimilar analysis and approval. In this review, we have summarized the major developments in the global regulatory landscape with respect to biosimilar approvals and also catalogued biosimilarity assessment studies for recombinant DNA products available in the public domain. We have also covered recent advancements in analytical methods, orthogonal techniques, and platforms for biosimilar characterization, since 2015. The review specifically aims to serve as a comprehensive catalog for published biosimilarity assessment studies with details on analytical platform used and critical quality attributes (CQAs) covered for multiple biotherapeutic products. Through this compilation, the emergent evolution of techniques with respect to each CQA has also been charted and discussed. Lastly, the information resource of published biosimilarity assessment studies, created during literature search is anticipated to serve as a helpful reference for biopharmaceutical scientists and biosimilar developers.
Collapse
Affiliation(s)
- Neh Nupur
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| | - Srishti Joshi
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| | - Davy Gulliarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
5
|
Rathore A, Malani H. Need for a risk-based control strategy for managing glycosylation profile for biosimilar products. Expert Opin Biol Ther 2021; 22:123-131. [PMID: 34431439 DOI: 10.1080/14712598.2021.1973425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Monoclonal antibodies, though a popular class of therapeutics, are complex molecules that are manufactured using complex processes, making it nontrivial to maintain high level of batch-to-batch consistency in product quality. Glycosylation is a posttranslation modification that is widely considered a critical quality attribute (CQA) as its variations are known to impact the Fc effector functions of mAbs. With continuing rise of biosimilars, comparability of these products to the reference product with respect to glycosylation is a topic of immense interest. AREAS COVERED In this article, we focus on the various aspects related to this topic including criticality of the various glycosylated forms, as well as comparability of biosimilars with respect to glycosylation. EXPERT OPINION We propose that manufacturers should focus on those glycoforms that are present in larger amounts and are known to be critical with respect to the biotherapeutic's safety and efficacy. Such risk-based evaluation of glycoforms and their control would offer an optimal route to biosimilar manufacturers for a cost-effective approach toward product development without compromising on the safety and efficacy characteristics of the therapeutic. For mAbs lacking Fc effector function, devising stringent glycosylation control strategies can be bypassed, thereby simplifying process and product development.
Collapse
Affiliation(s)
- Anurag Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
6
|
Biobetters in patients with immune-mediated inflammatory disorders: An international Delphi consensus. Autoimmun Rev 2021; 20:102849. [PMID: 33974946 DOI: 10.1016/j.autrev.2021.102849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022]
Abstract
Several efforts have been made to improve the available therapeutic armamentarium of patients with immune-mediated inflammatory disorders (IMIDs) leading to the development of biobetters. To date, there is no commonly accepted definition of biobetters. Sixteen physicians with expertise in the field of IMIDs from eleven countries attended a virtual international consensus meeting to provide for the first time a definition of biobetter and to identify unmet needs on this topic. Improvements in clinical outcomes and drug pharmacology were considered crucial for the definition of biobetters, while safety profile and patient acceptability were not. In addition, an appropriate balance between clinical outcomes and costs and a shared decision between physicians and patients should guide the decision to use a biobetter. Clinical studies are required to validate the biobetter definition and to investigate their role in the management of patients with IMIDs.
Collapse
|
7
|
Baker JJ, McDaniel D, Cain D, Lee Tao P, Li C, Huang Y, Liu H, Zhu-Shimoni J, Niñonuevo M. Rapid Identification of Disulfide Bonds and Cysteine-Related Variants in an IgG1 Knob-into-Hole Bispecific Antibody Enhanced by Machine Learning. Anal Chem 2018; 91:965-976. [DOI: 10.1021/acs.analchem.8b04071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jordan J. Baker
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Dana McDaniel
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - David Cain
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Paula Lee Tao
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Charlene Li
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Yuting Huang
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Hongbin Liu
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Judith Zhu-Shimoni
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Milady Niñonuevo
- Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
9
|
Trastoy B, Klontz E, Orwenyo J, Marina A, Wang LX, Sundberg EJ, Guerin ME. Structural basis for the recognition of complex-type N-glycans by Endoglycosidase S. Nat Commun 2018; 9:1874. [PMID: 29760474 PMCID: PMC5951799 DOI: 10.1038/s41467-018-04300-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/18/2018] [Indexed: 11/09/2022] Open
Abstract
Endoglycosidase S (EndoS) is a bacterial endo-β-N-acetylglucosaminidase that specifically catalyzes the hydrolysis of the β-1,4 linkage between the first two N-acetylglucosamine residues of the biantennary complex-type N-linked glycans of IgG Fc regions. It is used for the chemoenzymatic synthesis of homogeneously glycosylated antibodies with improved therapeutic properties, but the molecular basis for its substrate specificity is unknown. Here, we report the crystal structure of the full-length EndoS in complex with its oligosaccharide G2 product. The glycoside hydrolase domain contains two well-defined asymmetric grooves that accommodate the complex-type N-linked glycan antennae near the active site. Several loops shape the glycan binding site, thereby governing the strict substrate specificity of EndoS. Comparing the arrangement of these loops within EndoS and related endoglycosidases, reveals distinct-binding site architectures that correlate with the respective glycan specificities, providing a basis for the bioengineering of endoglycosidases to tailor the chemoenzymatic synthesis of monoclonal antibodies. Endoglycosidase S only recognizes one particular type of glycan within IgG antibodies but the molecular basis for this high specificity is not fully understood. Here, the authors present the crystal structure of product-bound Endoglycosidase S, revealing the determinants for its glycan specificity.
Collapse
Affiliation(s)
- Beatriz Trastoy
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - Erik Klontz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jared Orwenyo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Alberto Marina
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Marcelo E Guerin
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160, Derio, Spain. .,Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n Leioa, Bizkaia, 48940, Spain. .,Departamento de Bioquímica, Universidad del País Vasco, Leioa, 48940, Spain. .,IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
10
|
Nupur N, Chhabra N, Dash R, Rathore AS. Assessment of structural and functional similarity of biosimilar products: Rituximab as a case study. MAbs 2017; 10:143-158. [PMID: 29200314 DOI: 10.1080/19420862.2017.1402996] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Biosimilars are products that are similar in terms of quality, safety, and efficacy to an already licensed reference/ innovator product and are expected to offer improved affordability. The most significant source of reduction in the cost of development of a biosimilar is the reduced clinical examination that it is expected to undergo as compared to the innovator product. However, this clinical relief is predicated on the assumption that there is analytical similarity between the biosimilar and the innovator product. As a result, establishing analytical similarity is arguably the most important step towards successful development of a biosimilar. Here, we present results from an analytical similarity exercise that was performed with five biosimilars of rituximab (Ristova®, Roche), a chimeric mouse/ human monoclonal antibody biotherapeutic, that are available on the Indian market. The results show that, while the biosimilars exhibited similarity with respect to protein structure and function, there were significant differences with respect to size heterogeneity, charge heterogeneity and glycosylation pattern.
Collapse
Affiliation(s)
- Neh Nupur
- a Department of Chemical Engineering , Indian Institute of Technology , Hauz Khas, New Delhi , India
| | - Nidhi Chhabra
- a Department of Chemical Engineering , Indian Institute of Technology , Hauz Khas, New Delhi , India
| | - Rozaleen Dash
- a Department of Chemical Engineering , Indian Institute of Technology , Hauz Khas, New Delhi , India
| | - Anurag S Rathore
- a Department of Chemical Engineering , Indian Institute of Technology , Hauz Khas, New Delhi , India
| |
Collapse
|
11
|
Tsukimura W, Kurogochi M, Mori M, Osumi K, Matsuda A, Takegawa K, Furukawa K, Shirai T. Preparation and biological activities of anti-HER2 monoclonal antibodies with fully core-fucosylated homogeneous bi-antennary complex-type glycans. Biosci Biotechnol Biochem 2017; 81:2353-2359. [PMID: 29090617 DOI: 10.1080/09168451.2017.1394813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, the absence of a core-fucose residue in the N-glycan has been implicated to be important for enhancing antibody-dependent cellular cytotoxicity (ADCC) activity of immunoglobulin G monoclonal antibodies (mAbs). Here, we first prepared anti-HER2 mAbs having two core-fucosylated N-glycan chains with the single G2F, G1aF, G1bF, or G0F structure, together with those having two N-glycan chains with a single non-core-fucosylated corresponding structure for comparison, and determined their biological activities. Dissociation constants of mAbs with core-fucosylated N-glycans bound to recombinant Fcγ-receptor type IIIa variant were 10 times higher than those with the non-core-fucosylated N-glycans, regardless of core glycan structures. mAbs with the core-fucosylated N-glycans had markedly reduced ADCC activities, while those with the non-core-fucosylated N-glycans had high activities. These results indicate that the presence of a core-fucose residue in the N-glycan suppresses the binding to the Fc-receptor and the induction of ADCC of anti-HER2 mAbs.
Collapse
Affiliation(s)
- Wataru Tsukimura
- a Laboratory of Glyco-Bioengineering , The Noguchi Institute , Tokyo , Japan
| | - Masaki Kurogochi
- b Laboratory of Glyco-Organic Chemistry , The Noguchi Institute , Tokyo , Japan
| | - Masako Mori
- a Laboratory of Glyco-Bioengineering , The Noguchi Institute , Tokyo , Japan
| | - Kenji Osumi
- b Laboratory of Glyco-Organic Chemistry , The Noguchi Institute , Tokyo , Japan
| | - Akio Matsuda
- a Laboratory of Glyco-Bioengineering , The Noguchi Institute , Tokyo , Japan.,b Laboratory of Glyco-Organic Chemistry , The Noguchi Institute , Tokyo , Japan
| | - Kaoru Takegawa
- c Department of Bioscience and Biotechnology, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | - Kiyoshi Furukawa
- a Laboratory of Glyco-Bioengineering , The Noguchi Institute , Tokyo , Japan
| | - Takashi Shirai
- a Laboratory of Glyco-Bioengineering , The Noguchi Institute , Tokyo , Japan.,b Laboratory of Glyco-Organic Chemistry , The Noguchi Institute , Tokyo , Japan
| |
Collapse
|
12
|
Griaud F, Winter A, Denefeld B, Lang M, Hensinger H, Straube F, Sackewitz M, Berg M. Identification of multiple serine to asparagine sequence variation sites in an intended copy product of LUCENTIS® by mass spectrometry. MAbs 2017; 9:1337-1348. [PMID: 28846476 PMCID: PMC5680803 DOI: 10.1080/19420862.2017.1366395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patent expiration of first-generation biologics and the high cost of innovative biologics are 2 drivers for the development of biosimilar products. There are, however, technical challenges to the production of exact copies of such large molecules. In this study, we performed a head-to-head comparison between the originator anti-VEGF-A Fab product LUCENTIS® (ranibizumab) and an intended copy product using an integrated analytical approach. While no differences could be observed using size-exclusion chromatography, capillary electrophoresis-sodium dodecyl sulfate and potency assays, different acidic peaks were identified with cation ion exchange chromatography and capillary zone electrophoresis. Further investigation of the intact Fab, subunits and primary sequence with mass spectrometry demonstrated the presence of a modified light chain variant in the intended copy product batches. This variant was characterized with a mass increase of 27.01 Da compared to the originator sequence and its abundance was estimated in the range of 6–9% of the intended copy product light chain. MS/MS spectra interrogation confirmed that this modification relates to a serine to asparagine sequence variant found in the intended copy product light chain. We demonstrated that the integration of high-resolution and sensitive orthogonal technologies was beneficial to assess the similarity of an originator and an intended copy product.
Collapse
Affiliation(s)
- François Griaud
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Andrej Winter
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Blandine Denefeld
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Manuel Lang
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Héloïse Hensinger
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Frank Straube
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Mirko Sackewitz
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Matthias Berg
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| |
Collapse
|
13
|
Otani Y, Yonezawa A, Tsuda M, Imai S, Ikemi Y, Nakagawa S, Omura T, Nakagawa T, Yano I, Matsubara K. Time-Dependent Structural Alteration of Rituximab Analyzed by LC/TOF-MS after a Systemic Administration to Rats. PLoS One 2017; 12:e0169588. [PMID: 28052138 PMCID: PMC5215255 DOI: 10.1371/journal.pone.0169588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) have heterogeneities in their structures. Multiple studies have reported that the variety of post-translational modifications could affect the pharmacokinetic profiles or pharmacological potencies of therapeutic mAbs. Taking into the account that the structural modification of mAbs would affect the efficacy, it is worth investigating the structural alteration of therapeutic mAbs in the blood and the relationship between their structures and pharmacological effects. Herein, we have developed the method to isolate rituximab from plasma in which endogenous IgGs interfere the detection of rituximab, and successfully developed the analytical method with a liquid chromatograph time-of-flight mass spectrometer to detect the structure of rituximab in plasma with errors less than 30 parts per millions. Eight types of carbohydrate chains in rituximab were detected by this method. Interestingly, time-dependent changes in carbohydrate chains such as AAF (G2F) and GnGn (G0) were observed in rats, although the amino acids were stable. Additionally, these structural changes were observed via incubation in plasma as in the rat experiment, suggesting that a certain type of enzyme in plasma caused the alterations of the carbohydrate chains. The present analytical methods could clarify the actual pharmacokinetics of therapeutic mAbs, and help to evaluate the interindividual variations in pharmacokinetics and efficacy.
Collapse
Affiliation(s)
- Yuki Otani
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Atushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Masahiro Tsuda
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Yasuaki Ikemi
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Ikuko Yano
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
14
|
Kleinpeter P, Fend L, Thioudellet C, Geist M, Sfrontato N, Koerper V, Fahrner C, Schmitt D, Gantzer M, Remy-Ziller C, Brandely R, Villeval D, Rittner K, Silvestre N, Erbs P, Zitvogel L, Quéméneur E, Préville X, Marchand JB. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunology 2016; 5:e1220467. [PMID: 27853644 PMCID: PMC5087307 DOI: 10.1080/2162402x.2016.1220467] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 07/18/2016] [Accepted: 07/30/2016] [Indexed: 10/31/2022] Open
Abstract
We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro. Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8+ and CD4+). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs.
Collapse
Affiliation(s)
| | - Laetitia Fend
- Transgene S.A., Illkirch-Graffenstaden, France; Institut Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Laurence Zitvogel
- Institut Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM U1015, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1418, GRCC, Villejuif, France; University of Paris Sud XI, Kremlin Bicêtre, France; Department of Immuno-Oncology, GRCC, Villejuif, France
| | | | | | | |
Collapse
|
15
|
Wang Y, Li X, Liu YH, Richardson D, Li H, Shameem M, Yang X. Simultaneous monitoring of oxidation, deamidation, isomerization, and glycosylation of monoclonal antibodies by liquid chromatography-mass spectrometry method with ultrafast tryptic digestion. MAbs 2016; 8:1477-1486. [PMID: 27598507 DOI: 10.1080/19420862.2016.1226715] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibodies are subjected to a wide variety of post-translational modifications (PTMs) that cause structural heterogeneity. Characterization and control of these modifications or quality attributes are critical to ensure antibody quality and to define any potential effects on the ultimate safety and potency of antibody therapeutics. The biopharmaceutical industry currently uses numerous tools to analyze these quality attributes individually, which requires substantial time and resources. Here, we report a simple and ultrafast bottom-up liquid chromatography-mass spectrometry (uLC-MS) method with 5 min tryptic digestion to simultaneously analyze multiple modifications, including oxidation, deamidation, isomerization, glycation, glycosylation, and N-terminal pyro-glutamate formation, which can occur during antibody production in mammalian cell culture, during purification and/or on storage. Compared to commonly used preparation procedures, this uLC-MS method eliminates assay artifacts of falsely-increased Met oxidation, Asp isomerization, and Asn deamidation, a problem associated with long digestion times in conventional LC-MS methods. This simple, low artifact multi-attribute uLC-MS method can be used to quickly and accurately analyze samples at any stage of antibody drug development, in particular for clone and media selection during cell culture development.
Collapse
Affiliation(s)
- Yi Wang
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Xiaojuan Li
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Yan-Hui Liu
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Daisy Richardson
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Huijuan Li
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Mohammed Shameem
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Xiaoyu Yang
- a Bioprocess Development, Merck Research Laboratories, Merck & Co., Inc. , Kenilworth , NJ , USA
| |
Collapse
|
16
|
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal Chem 2015; 88:480-507. [DOI: 10.1021/acs.analchem.5b04561] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Szabolcs Fekete
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| |
Collapse
|
17
|
Liu R, Giddens J, McClung CM, Magnelli PE, Wang LX, Guthrie EP. Evaluation of a glycoengineered monoclonal antibody via LC-MS analysis in combination with multiple enzymatic digestion. MAbs 2015; 8:340-6. [PMID: 26514686 PMCID: PMC4966608 DOI: 10.1080/19420862.2015.1113361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glycosylation affects the efficacy, safety and pharmacokinetics/pharmacodynamics properties of therapeutic monoclonal antibodies (mAbs), and glycoengineering is now being used to produce mAbs with improved efficacy. In this work, a glycoengineered version of rituximab was produced by chemoenzymatic modification to generate human-like N-glycosylation with α 2,6 linked sialic acid. This modified rituximab was comprehensively characterized by liquid chromatography-mass spectrometry and compared to commercially available rituximab. As anticipated, the majority of N-glycans were converted to α 2,6 linked sialic acid, in contrast to CHO-produced rituximab, which only contains α 2,3 linked sialic acid. Typical posttranslational modifications, such as pyro-glutamic acid formation at the N-terminus, oxidation at methionine, deamidation at asparagine, and disulfide linkages were also characterized in both the commercial and glycoengineered mAbs using multiple enzymatic digestion and mass spectrometric analysis. The comparative study reveals that the glycoengineering approach does not cause any additional posttranslational modifications in the antibody except the specific transformation of the glycoforms, demonstrating the mildness and efficiency of the chemoenzymatic approach for glycoengineering of therapeutic antibodies.
Collapse
Affiliation(s)
- Renpeng Liu
- a New England Biolabs Inc. , Ipswich , MA 01938
| | - John Giddens
- b Department of Chemistry & Biochemistry ; University of Maryland , College Park , MD 20742
| | | | | | - Lai-Xi Wang
- b Department of Chemistry & Biochemistry ; University of Maryland , College Park , MD 20742
| | | |
Collapse
|
18
|
Wiesner J, Resemann A, Evans C, Suckau D, Jabs W. Advanced mass spectrometry workflows for analyzing disulfide bonds in biologics. Expert Rev Proteomics 2015; 12:115-23. [DOI: 10.1586/14789450.2015.1018896] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Beck A, Debaene F, Diemer H, Wagner-Rousset E, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:285-297. [PMID: 25800010 DOI: 10.1002/jms.3554] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
The approval process for antibody biosimilars relies primarily on comprehensive analytical data to establish comparability and high similarity with the originator. Mass spectrometry (MS) in combination with liquid chromatography (LC) and electrophoretic methods are the corner stone for comparability and biosimilarity evaluation. In this special feature we report head-to-head comparison of trastuzumab and cetuximab with corresponding biosimilar and biobetter candidates based on cutting-edge mass spectrometry techniques such as native MS and ion-mobility MS at different levels (top, middle and bottom). In addition, we discuss the advantages and the limitations of sample preparation and enzymatic digestion, middle-up and -down strategies and the use of hydrogen/deuterium exchange followed by MS (HDX-MS). Last but not least, emerging separation methods combined to MS such as capillary zone electrophoresis-tandem MS (CESI-MS/MS), electron transfer dissociation (ETD), top down-sequencing (TDS) and high-resolution MS (HR-MS) that complete the panel of state-of-the-art MS-based options for comparability and biosimilarity evaluation are presented.
Collapse
Affiliation(s)
- Alain Beck
- Centre d'Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Alsenaidy MA, Jain NK, Kim JH, Middaugh CR, Volkin DB. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles. Front Pharmacol 2014; 5:39. [PMID: 24659968 PMCID: PMC3950620 DOI: 10.3389/fphar.2014.00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Abstract
In this review, some of the challenges and opportunities encountered during protein comparability assessments are summarized with an emphasis on developing new analytical approaches to better monitor higher-order protein structures. Several case studies are presented using high throughput biophysical methods to collect protein physical stability data as function of temperature, agitation, ionic strength and/or solution pH. These large data sets were then used to construct empirical phase diagrams (EPDs), radar charts, and comparative signature diagrams (CSDs) for data visualization and structural comparisons between the different proteins. Protein samples with different sizes, post-translational modifications, and inherent stability are presented: acidic fibroblast growth factor (FGF-1) mutants, different glycoforms of an IgG1 mAb prepared by deglycosylation, as well as comparisons of different formulations of an IgG1 mAb and granulocyte colony stimulating factor (GCSF). Using this approach, differences in structural integrity and conformational stability profiles were detected under stress conditions that could not be resolved by using the same techniques under ambient conditions (i.e., no stress). Thus, an evaluation of conformational stability differences may serve as an effective surrogate to monitor differences in higher-order structure between protein samples. These case studies are discussed in the context of potential utility in protein comparability studies.
Collapse
Affiliation(s)
- Mohammad A Alsenaidy
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Nishant K Jain
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - Jae H Kim
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas Lawrence, KS, USA
| |
Collapse
|
21
|
da Silva A, Kronthaler U, Koppenburg V, Fink M, Meyer I, Papandrikopoulou A, Hofmann M, Stangler T, Visser J. Target-directed development and preclinical characterization of the proposed biosimilar rituximab GP2013. Leuk Lymphoma 2014; 55:1609-17. [PMID: 24024472 PMCID: PMC4133973 DOI: 10.3109/10428194.2013.843090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biosimilar development involves a target-directed iterative process to ensure a similar product to the originator. Here we report the preclinical development of the proposed biosimilar rituximab (GP2013). Post-translational modifications and bioactivities of GP2013 versus originator rituximab were engineered and monitored to ensure similar pharmacological profiles. Antibody-dependent cellular cytotoxicity (ADCC) was used to illustrate how different glycosylation patterns and structure–function relationships were controlled during process development. Pharmacological comparability between GP2013 and originator rituximab were confirmed in preclinical studies using clinical scale drug product. Similar in vitro ADCC potency was demonstrated when compared in a dose–response manner against two lymphoma cell lines using freshly purified human natural killer (NK) cells. In vivo efficacy was demonstrated in two well characterized mouse xenograft models, testing at sensitive sub-therapeutic dose levels. Pharmacokinetics and pharmacodynamics (CD20 cell depletion) were likewise comparable in cynomolgus monkeys. This preclinical comparability exercise confirms that GP2013 and originator rituximab are pharmacologically similar.
Collapse
|
22
|
Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells. Glycobiology 2013; 24:325-40. [PMID: 24362443 DOI: 10.1093/glycob/cwt161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5'-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd(+) baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.
Collapse
|