1
|
He B, Chen H, Li N, Huang J. SAROTUP: a suite of tools for finding potential target-unrelated peptides from phage display data. Int J Biol Sci 2019; 15:1452-1459. [PMID: 31337975 PMCID: PMC6643146 DOI: 10.7150/ijbs.31957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/09/2019] [Indexed: 01/13/2023] Open
Abstract
SAROTUP (Scanner And Reporter Of Target-Unrelated Peptides) 3.1 is a significant upgrade to the widely used SAROTUP web server for the rapid identification of target-unrelated peptides (TUPs) in phage display data. At present, SAROTUP has gathered a suite of tools for finding potential TUPs and other purposes. Besides the TUPScan, the motif-based tool, and three tools based on the BDB database, i.e., MimoScan, MimoSearch, and MimoBlast, three predictors based on support vector machine, i.e., PhD7Faster, SABinder and PSBinder, are integrated into SAROTUP. The current version of SAROTUP contains 27 TUP motifs and 823 TUP sequences. We also developed the standalone SAROTUP application with graphical user interface (GUI) and command line versions for processing deep sequencing phage display data and distributed it as an open source package, which can perform perfectly locally on almost all systems that support C++ with little or no modification. The web interfaces of SAROTUP have also been redesigned to be more self-evident and user-friendly. The latest version of SAROTUP is freely available at http://i.uestc.edu.cn/sarotup3.
Collapse
Affiliation(s)
- Bifang He
- School of Medicine, Guizhou University, Guiyang 550025, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Ning Li
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
2
|
Lee NK, Bidlingmaier S, Su Y, Liu B. Modular Construction of Large Non-Immune Human Antibody Phage-Display Libraries from Variable Heavy and Light Chain Gene Cassettes. Methods Mol Biol 2018; 1701:61-82. [PMID: 29116500 DOI: 10.1007/978-1-4939-7447-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.
Collapse
Affiliation(s)
- Nam-Kyung Lee
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | - Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | - Yang Su
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | - Bin Liu
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA.
| |
Collapse
|
3
|
Ryvkin A, Ashkenazy H, Weiss-Ottolenghi Y, Piller C, Pupko T, Gershoni JM. Phage display peptide libraries: deviations from randomness and correctives. Nucleic Acids Res 2018; 46:e52. [PMID: 29420788 PMCID: PMC5961013 DOI: 10.1093/nar/gky077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/25/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022] Open
Abstract
Peptide-expressing phage display libraries are widely used for the interrogation of antibodies. Affinity selected peptides are then analyzed to discover epitope mimetics, or are subjected to computational algorithms for epitope prediction. A critical assumption for these applications is the random representation of amino acids in the initial naïve peptide library. In a previous study, we implemented next generation sequencing to evaluate a naïve library and discovered severe deviations from randomness in UAG codon over-representation as well as in high G phosphoramidite abundance causing amino acid distribution biases. In this study, we demonstrate that the UAG over-representation can be attributed to the burden imposed on the phage upon the assembly of the recombinant Protein 8 subunits. This was corrected by constructing the libraries using supE44-containing bacteria which suppress the UAG driven abortive termination. We also demonstrate that the overabundance of G stems from variant synthesis-efficiency and can be corrected using compensating oligonucleotide-mixtures calibrated by mass spectroscopy. Construction of libraries implementing these correctives results in markedly improved libraries that display random distribution of amino acids, thus ensuring that enriched peptides obtained in biopanning represent a genuine selection event, a fundamental assumption for phage display applications.
Collapse
Affiliation(s)
- Arie Ryvkin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Ashkenazy
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Weiss-Ottolenghi
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Piller
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan M Gershoni
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
4
|
Antibody-Based Protective Immunity against Helminth Infections: Antibody Phage Display Derived Antibodies against BmR1 Antigen. Int J Mol Sci 2017; 18:ijms18112376. [PMID: 29165352 PMCID: PMC5713345 DOI: 10.3390/ijms18112376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Helminth parasite infections are significantly impacting global health, with more than two billion infections worldwide with a high morbidity rate. The complex life cycle of the nematodes has made host immune response studies against these parasites extremely difficult. In this study, we utilized two phage antibody libraries; the immune and naïve library were used to identify single chain fragment variable (scFv) clones against a specific filarial antigen (BmR1). The V-gene analysis of isolated scFv clones will help shed light on preferential VDJ gene segment usage against the filarial BmR1 antigen in healthy and infected states. The immune library showed the usage of both lambda and kappa light chains. However, the naïve library showed preferential use of the lambda family with different amino acid distributions. The binding characteristics of the scFv clones identified from this work were analyzed by immunoassay and immunoaffinity pull down of BmR1. The work highlights the antibody gene usage pattern of a naïve and immune antibody library against the same antigen as well as the robust nature of the enriched antibodies for downstream applications.
Collapse
|
5
|
Chan SK, Lim TS. Immune Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:61-78. [PMID: 29549635 DOI: 10.1007/978-3-319-72077-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
6
|
Glanville J, D'Angelo S, Khan TA, Reddy ST, Naranjo L, Ferrara F, Bradbury ARM. Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol 2016; 33:146-60. [PMID: 26451649 DOI: 10.1016/j.sbi.2015.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/19/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022]
Abstract
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology.
Collapse
Affiliation(s)
- J Glanville
- Program in Computational and Systems Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - S D'Angelo
- University of New Mexico Comprehensive Cancer Center, and Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - T A Khan
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - S T Reddy
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - L Naranjo
- Bioscience division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - F Ferrara
- University of New Mexico Comprehensive Cancer Center, and Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - A R M Bradbury
- Bioscience division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
7
|
Wang B, Lee CH, Johnson EL, Kluwe CA, Cunningham JC, Tanno H, Crooks RM, Georgiou G, Ellington AD. Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals. MAbs 2016; 8:1035-44. [PMID: 27224530 DOI: 10.1080/19420862.2016.1190059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ricin is a toxin that could potentially be used as a bioweapon. We identified anti-ricin A chain antibodies by sequencing the antibody repertoire from immunized mice and by selecting high affinity antibodies using yeast surface display. These methods led to the isolation of multiple antibodies with high (sub-nanomolar) affinity. Interestingly, the antibodies identified by the 2 independent approaches are from the same clonal lineages, indicating for the first time that yeast surface display can identify native antibodies. The new antibodies represent well-characterized reagents for biodefense diagnostics and therapeutics development.
Collapse
Affiliation(s)
- Bo Wang
- a Department of Chemical Engineering , University of Texas at Austin , Austin , TX , USA
| | - Chang-Han Lee
- a Department of Chemical Engineering , University of Texas at Austin , Austin , TX , USA
| | - Erik L Johnson
- a Department of Chemical Engineering , University of Texas at Austin , Austin , TX , USA
| | - Christien A Kluwe
- b Department of Molecular Biosciences , University of Texas at Austin , Austin , TX , USA
| | - Josephine C Cunningham
- b Department of Molecular Biosciences , University of Texas at Austin , Austin , TX , USA
| | - Hidetaka Tanno
- a Department of Chemical Engineering , University of Texas at Austin , Austin , TX , USA
| | - Richard M Crooks
- b Department of Molecular Biosciences , University of Texas at Austin , Austin , TX , USA
| | - George Georgiou
- a Department of Chemical Engineering , University of Texas at Austin , Austin , TX , USA.,b Department of Molecular Biosciences , University of Texas at Austin , Austin , TX , USA.,c Center for Systems and Synthetic Biology , University of Texas at Austin , Austin , TX , USA.,d Institute for Cellular and Molecular Biology , University of Texas at Austin , Austin , TX , USA.,e Department of Biomedical Engineering , University of Texas at Austin , Austin , TX , USA
| | - Andrew D Ellington
- b Department of Molecular Biosciences , University of Texas at Austin , Austin , TX , USA.,c Center for Systems and Synthetic Biology , University of Texas at Austin , Austin , TX , USA.,d Institute for Cellular and Molecular Biology , University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
8
|
Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV, Pogorelyy MV, Nazarov VI, Zvyagin IV, Kirgizova VI, Kirgizov KI, Skorobogatova EV, Chudakov DM. VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires. PLoS Comput Biol 2015; 11:e1004503. [PMID: 26606115 PMCID: PMC4659587 DOI: 10.1371/journal.pcbi.1004503] [Citation(s) in RCA: 411] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
Abstract
Despite the growing number of immune repertoire sequencing studies, the field still lacks software for analysis and comprehension of this high-dimensional data. Here we report VDJtools, a complementary software suite that solves a wide range of T cell receptor (TCR) repertoires post-analysis tasks, provides a detailed tabular output and publication-ready graphics, and is built on top of a flexible API. Using TCR datasets for a large cohort of unrelated healthy donors, twins, and multiple sclerosis patients we demonstrate that VDJtools greatly facilitates the analysis and leads to sound biological conclusions. VDJtools software and documentation are available at https://github.com/mikessh/vdjtools.
Collapse
Affiliation(s)
- Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy V. Bagaev
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
| | - Maria A. Turchaninova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy A. Bolotin
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga V. Britanova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ekaterina V. Putintseva
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Vadim I. Nazarov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- National Research University Higher School of Economics, Moscow, Russia
| | - Ivan V. Zvyagin
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | | | | | - Dmitriy M. Chudakov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
9
|
Christiansen A, Kringelum JV, Hansen CS, Bøgh KL, Sullivan E, Patel J, Rigby NM, Eiwegger T, Szépfalusi Z, de Masi F, Nielsen M, Lund O, Dufva M. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum. Sci Rep 2015; 5:12913. [PMID: 26246327 PMCID: PMC4650709 DOI: 10.1038/srep12913] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
Phage display is a prominent screening technique with a multitude of applications including therapeutic antibody development and mapping of antigen epitopes. In this study, phages were selected based on their interaction with patient serum and exhaustively characterised by high-throughput sequencing. A bioinformatics approach was developed in order to identify peptide motifs of interest based on clustering and contrasting to control samples. Comparison of patient and control samples confirmed a major issue in phage display, namely the selection of unspecific peptides. The potential of the bioinformatic approach was demonstrated by identifying epitopes of a prominent peanut allergen, Ara h 1, in sera from patients with severe peanut allergy. The identified epitopes were confirmed by high-density peptide micro-arrays. The present study demonstrates that high-throughput sequencing can empower phage display by (i) enabling the analysis of complex biological samples, (ii) circumventing the traditional laborious picking and functional testing of individual phage clones and (iii) reducing the number of selection rounds.
Collapse
Affiliation(s)
- Anders Christiansen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jens V Kringelum
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Christian S Hansen
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Katrine L Bøgh
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Eric Sullivan
- Roche NimbleGen, Madison, Wisconsin, the United States of America
| | - Jigar Patel
- Roche NimbleGen, Madison, Wisconsin, the United States of America
| | - Neil M Rigby
- Institute of Food Research, Norwich, United Kingdom
| | - Thomas Eiwegger
- Department of Paediatrics, Medical University of Vienna, Vienna, Austria
| | - Zsolt Szépfalusi
- Department of Paediatrics, Medical University of Vienna, Vienna, Austria
| | - Federico de Masi
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Morten Nielsen
- 1] Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark [2] Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Ole Lund
- Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|