1
|
Sadiki A, Liu S, Vaidya SR, Kercher EM, Lang RT, McIsaac J, Spring BQ, Auclair JR, Zhou ZS. Site-Specific Conjugation of Native Antibody: Transglutaminase-Mediated Modification of a Conserved Glutamine While Maintaining the Primary Sequence and Core Fc Glycan via Trimming with an Endoglycosidase. Bioconjug Chem 2024; 35:465-471. [PMID: 38499390 PMCID: PMC11036358 DOI: 10.1021/acs.bioconjchem.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
A versatile chemo-enzymatic tool to site-specifically modify native (nonengineered) antibodies is using transglutaminase (TGase, E.C. 2.3.2.13). With various amines as cosubstrates, this enzyme converts the unsubstituted side chain amide of glutamine (Gln or Q) in peptides and proteins into substituted amides (i.e., conjugates). A pleasant surprise is that only a single conserved glutamine (Gln295) in the Fc region of IgG is modified by microbial TGase (mTGase, EC 2.3.2.13), thereby providing a highly specific and generally applicable conjugation method. However, prior to the transamidation (access to the glutamine residue by mTGase), the steric hindrance from the nearby conserved N-glycan (Asn297 in IgG1) must be reduced. In previous approaches, amidase (PNGase F, EC 3.5.1.52) was used to completely remove the N-glycan. However, PNGase F also converts a net neutral asparagine (Asn297) to a negatively charged aspartic acid (Asp297). This charge alteration may markedly change the structure, function, and immunogenicity of an IgG antibody. In contrast, in our new method presented herein, the N-glycan is trimmed by an endoglycosidase (EndoS2, EC 3.2.1.96), hence retaining both the core N-acetylglucosamine (GlcNAc) moiety and the neutral asparaginyl amide. The trimmed glycan also reduces or abolishes Fc receptor-mediated functions, which results in better imaging agents by decreasing nonspecific binding to other cells (e.g., immune cells). Moreover, the remaining core glycan allows further derivatization such as glycan remodeling and dual conjugation. Practical and robust, our method generates conjugates in near quantitative yields, and both enzymes are commercially available.
Collapse
Affiliation(s)
- Amissi Sadiki
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shanshan Liu
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shefali R. Vaidya
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Eric M. Kercher
- Translational
Biophotonics Cluster, Department of Physics, Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ryan T. Lang
- Translational
Biophotonics Cluster, Department of Physics, Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - James McIsaac
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Bryan Q. Spring
- Translational
Biophotonics Cluster, Department of Physics, Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jared R. Auclair
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhaohui Sunny Zhou
- Department
of Chemistry and Chemical Biology, Barnett Institute of Chemical and
Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Sadiki A, Kercher EM, Lu H, Lang RT, Spring BQ, Zhou ZS. Site-specific Bioconjugation and Convergent Click Chemistry Enhances Antibody-Chromophore Conjugate Binding Efficiency. Photochem Photobiol 2020; 96:596-603. [PMID: 32080860 DOI: 10.1111/php.13231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022]
Abstract
Photosensitizer (PS)-antibody conjugates (photoimmunoconjugates, PICs) enable cancer cell-targeted photodynamic therapy (PDT). Nonspecific chemical bioconjugation is widely used to synthesize PICs but gives rise to several shortcomings. The conjugates are heterogeneous, and the process is not easily reproducible. Moreover, modifications at or near the binding sites alter both binding affinity and specificity. To overcome these limitations, we introduce convergent assembly of PICs via a chemo-enzymatic site-specific approach. First, an antibody is conjugated to a clickable handle via site-specific modification of glutamine (Gln) residues catalyzed by transglutaminase (TGase, EC 2.3.2.13). Second, the modified antibody intermediate is conjugated to a compatible chromophore via click chemistry. Utilizing cetuximab, we compared this site-specific conjugation protocol to the nonspecific chemical acylation of amines using N-hydroxysuccinimide (NHS) chemistry. Both the heavy and light chains were modified via the chemical route, whereas, only a glutamine 295 in the heavy chain was modified via chemo-enzymatic conjugation. Furthermore, a 2.3-fold increase in the number of bound antibodies per cell was observed for the site-specific compared with nonspecific method, suggesting that multiple stochastic sites of modification perturb the antibody-antigen binding. Altogether, site-specific bioconjugation leads to homogenous, reproducible and well-defined PICs, conferring higher binding efficiency and probability of clinical success.
Collapse
Affiliation(s)
- Amissi Sadiki
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA
| | - Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA
| | - Haibin Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA.,College of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Ryan T Lang
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA.,Department of Bioengineering, Northeastern University, Boston, MA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Reddy PT, Brinson RG, Hoopes JT, McClung C, Ke N, Kashi L, Berkmen M, Kelman Z. Platform development for expression and purification of stable isotope labeled monoclonal antibodies in Escherichia coli. MAbs 2018; 10:992-1002. [PMID: 30060704 PMCID: PMC6204800 DOI: 10.1080/19420862.2018.1496879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The widespread use of monoclonal antibodies (mAbs) as a platform for therapeutic drug development in the pharmaceutical industry has led to an increased interest in robust experimental approaches for assessment of mAb structure, stability and dynamics. The ability to enrich proteins with stable isotopes is a prerequisite for the in-depth application of many structural and biophysical methods, including nuclear magnetic resonance (NMR), small angle neutron scattering, neutron reflectometry, and quantitative mass spectrometry. While mAbs can typically be produced with very high yields using mammalian cell expression, stable isotope labeling using cell culture is expensive and often impractical. The most common and cost-efficient approach to label proteins is to express proteins in Escherichia coli grown in minimal media; however, such methods for mAbs have not been reported to date. Here we present, for the first time, the expression and purification of a stable isotope labeled mAb from a genetically engineered E. coli strain capable of forming disulfide bonds in its cytoplasm. It is shown using two-dimensional NMR spectral fingerprinting that the unlabeled mAb and the mAb singly or triply labeled with 13C, 15N, 2H are well folded, with only minor structural differences relative to the mammalian cell-produced mAb that are attributed to the lack of glycosylation in the Fc domain. This advancement of an E. coli-based mAb expression platform will facilitate the production of mAbs for in-depth structural characterization, including the high resolution investigation of mechanisms of action.
Collapse
Affiliation(s)
- Prasad T Reddy
- a Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research , National Institute of Standards and Technology and the University of Maryland , Rockville , MD , USA
| | - Robert G Brinson
- b Institute for Bioscience and Biotechnology Research , National Institute of Standards and Technology and the University of Maryland , Rockville , MD , USA
| | - J Todd Hoopes
- a Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research , National Institute of Standards and Technology and the University of Maryland , Rockville , MD , USA
| | | | - Na Ke
- c New England Biolabs , Ipswich , MA , USA
| | - Lila Kashi
- a Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research , National Institute of Standards and Technology and the University of Maryland , Rockville , MD , USA
| | | | - Zvi Kelman
- a Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research , National Institute of Standards and Technology and the University of Maryland , Rockville , MD , USA
| |
Collapse
|
4
|
Hao P, Adav SS, Gallart-Palau X, Sze SK. Recent advances in mass spectrometric analysis of protein deamidation. MASS SPECTROMETRY REVIEWS 2017; 36:677-692. [PMID: 26763661 DOI: 10.1002/mas.21491] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Protein deamidation has been proposed to represent a "molecular clock" that progressively disrupts protein structure and function in human degenerative diseases and natural aging. Importantly, this spontaneous process can also modify therapeutic proteins by altering their purity, stability, bioactivity, and antigenicity during drug synthesis and storage. Deamidation occurs non-enzymatically in vivo, but can also take place spontaneously in vitro, hence artificial deamidation during proteomic sample preparation can hamper efforts to identify and quantify endogenous deamidation of complex proteomes. To overcome this, mass spectrometry (MS) can be used to conduct rigorous site-specific characterization of protein deamidation due to the high sensitivity, speed, and specificity offered by this technique. This article reviews recent progress in MS analysis of protein deamidation and discusses the strengths and limitations of common "top-down" and "bottom-up" approaches. Recent advances in sample preparation methods, chromatographic separation, MS technology, and data processing have for the first time enabled the accurate and reliable characterization of protein modifications in complex biological samples, yielding important new data on how deamidation occurs across the entire proteome of human cells and tissues. These technological advances will lead to a better understanding of how deamidation contributes to the pathology of biological aging and major degenerative diseases. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:677-692, 2017.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
5
|
Grebe SK, Singh RJ. Clinical peptide and protein quantification by mass spectrometry (MS). Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Gasilova N, Srzentić K, Qiao L, Liu B, Beck A, Tsybin YO, Girault HH. On-Chip Mesoporous Functionalized Magnetic Microspheres for Protein Sequencing by Extended Bottom-up Mass Spectrometry. Anal Chem 2016; 88:1775-84. [DOI: 10.1021/acs.analchem.5b04045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Natalia Gasilova
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais, Ecole Polytechnique Fédérale de Lausanne, 1951 Sion, Valais, Switzerland
| | - Kristina Srzentić
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Vaud, Switzerland
| | - Liang Qiao
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais, Ecole Polytechnique Fédérale de Lausanne, 1951 Sion, Valais, Switzerland
| | - Baohong Liu
- Department
of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, PR China
| | - Alain Beck
- Centre d’Immunologie
Pierre Fabre, 74160 St. Julien-en-Genevois, France
| | - Yury O. Tsybin
- Spectroswiss Sàrl, EPFL Innovation Park, 1015 Lausanne, Vaud, Switzerland
| | - Hubert H. Girault
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais, Ecole Polytechnique Fédérale de Lausanne, 1951 Sion, Valais, Switzerland
| |
Collapse
|
7
|
Zhang S, Bartkowiak L, Nabiswa B, Mishra P, Fann J, Ouellette D, Correia I, Regier D, Liu J. Identifying low-level sequence variants via next generation sequencing to aid stable CHO cell line screening. Biotechnol Prog 2015; 31:1077-85. [DOI: 10.1002/btpr.2119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/04/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Sheng Zhang
- Process Sciences Cell Culture, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Lisa Bartkowiak
- Process Sciences Cell Culture, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Bernard Nabiswa
- Process Sciences Cell Culture, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Pratibha Mishra
- Process Sciences Cell Culture, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - John Fann
- Process Sciences Cell Culture, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - David Ouellette
- Process Sciences Analytics, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Ivan Correia
- Process Sciences Analytics, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Dean Regier
- Protein Science, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| | - Junjian Liu
- Protein Science, Abbvie Bioresearch Center; 100 Research Drive Worcester MA 01605
| |
Collapse
|
8
|
Jenkins R, Duggan JX, Aubry AF, Zeng J, Lee JW, Cojocaru L, Dufield D, Garofolo F, Kaur S, Schultz GA, Xu K, Yang Z, Yu J, Zhang YJ, Vazvaei F. Recommendations for validation of LC-MS/MS bioanalytical methods for protein biotherapeutics. AAPS J 2015; 17:1-16. [PMID: 25392238 PMCID: PMC4287296 DOI: 10.1208/s12248-014-9685-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/07/2014] [Indexed: 01/07/2023] Open
Abstract
This paper represents the consensus views of a cross-section of companies and organizations from the USA and Canada regarding the validation and application of liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for bioanalysis of protein biotherapeutics in regulated studies. It was prepared under the auspices of the AAPS Bioanalytical Focus Group's Protein LC-MS Bioanalysis Subteam and is intended to serve as a guide to drive harmonization of best practices within the bioanalytical community and provide regulators with an overview of current industry thinking on applying LC-MS/MS technology for protein bioanalysis. For simplicity, the scope was limited to the most common current approach in which the protein is indirectly quantified using LC-MS/MS measurement of one or more of its surrogate peptide(s) produced by proteolytic digestion. Within this context, we considered a range of sample preparation approaches from simple in-matrix protein denaturation and digestion to complex procedures involving affinity capture enrichment. Consideration was given to the method validation experiments normally associated with traditional LC-MS/MS and ligand-binding assays. Our collective experience, thus far, is that LC-MS/MS methods for protein bioanalysis require different development and validation considerations than those used for small molecules. The method development and validation plans need to be tailored to the particular assay format being established, taking into account a number of important factors: the intended use of the assay, the test species or study population, the characteristics of the protein biotherapeutic and its similarity to endogenous proteins, potential interferences, as well as the nature, quality, and availability of reference and internal standard materials.
Collapse
Affiliation(s)
- Rand Jenkins
- />Chromatographic Sciences, PPD Bioanalytical Laboratories, 2244 Dabney Road, Richmond, Virginia 23230 USA
| | - Jeffrey X. Duggan
- />Drug Metabolism and Pharmacokinetics, Boehringer-Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut USA
| | - Anne-Françoise Aubry
- />Analytical and Bioanalytical Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543 USA
| | - Jianing Zeng
- />Analytical and Bioanalytical Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543 USA
| | - Jean W. Lee
- />BioQualQuan, LLC, 370 Spring Park Road, Camarillo, California 93012 USA
| | - Laura Cojocaru
- />Bioanalytical Division, Tandem Labs, 115 Silvia Street, West Trenton, New Jersey 08628 USA
| | - Dawn Dufield
- />Pharmacokinetics Dynamics and Metabolism Department, Pfizer Worldwide Research and Development, Andover, Massachusetts 01810 USA
| | - Fabio Garofolo
- />Bioanalytical Services, Algorithme Pharma, 575, Armand-Frappier Blvd, Laval, Quebec H7V 4B3 Canada
| | - Surinder Kaur
- />BioAnalytical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080 USA
| | - Gary A. Schultz
- />Quintiles Bioanalytical and ADME Labs, 19 Brown Road, Ithaca, New York 14850 USA
| | - Keyang Xu
- />BioAnalytical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080 USA
| | - Ziping Yang
- />Drug Metabolism and Pharmacokinetics, Novartis Institutes of Biomedical Research, One Health Plaza, 435/3131, East Hanover, New Jersey 07936 USA
| | - John Yu
- />Drug Metabolism and Pharmacokinetics, Boehringer-Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut USA
| | - Yan J. Zhang
- />Analytical and Bioanalytical Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543 USA
| | - Faye Vazvaei
- />Roche Pharma Research and Early Development, Pharmaceutical Sciences, Global DMPK and Bioanalytical R&D, Roche Innovation Center New York, 430 East 29th Street, New York, New York 10016 USA
| |
Collapse
|
9
|
Walmsley SJ, Rudnick PA, Liang Y, Dong Q, Stein SE, Nesvizhskii AI. Comprehensive analysis of protein digestion using six trypsins reveals the origin of trypsin as a significant source of variability in proteomics. J Proteome Res 2013; 12:5666-80. [PMID: 24116745 DOI: 10.1021/pr400611h] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Trypsin is an endoprotease commonly used for sample preparation in proteomics experiments. Importantly, protein digestion is dependent on multiple factors, including the trypsin origin and digestion conditions. In-depth characterization of trypsin activity could lead to improved reliability of peptide detection and quantitation in both targeted and discovery proteomics studies. To this end, we assembled a data analysis pipeline and suite of visualization tools for quality control and comprehensive characterization of preanalytical variability in proteomics experiments. Using these tools, we evaluated six available proteomics-grade trypsins and their digestion of a single purified protein, human serum albumin (HSA). HSA was aliquoted and then digested for 2 or 18 h for each trypsin, and the resulting digests were desalted and analyzed in triplicate by reversed-phase liquid chromatography-tandem mass spectrometry. Peptides were identified and quantified using the NIST MSQC pipeline and a comprehensive HSA mass spectral library. We performed a statistical analysis of peptide abundances from different digests and further visualized the data using the principal component analysis and quantitative protein "sequence maps". While the performance of individual trypsins across repeat digests was reproducible, significant differences were observed depending on the origin of the trypsin (i.e., bovine vs porcine). Bovine trypsins produced a higher number of peptides containing missed cleavages, whereas porcine trypsins produced more semitryptic peptides. In addition, many cleavage sites showed variable digestion kinetics patterns, evident from the comparison of peptide abundances in 2 h vs 18 h digests. Overall, this work illustrates effects of an often neglected source of variability in proteomics experiments: the origin of the trypsin.
Collapse
Affiliation(s)
- Scott J Walmsley
- Department of Pathology, University of Michigan , 4237 Medical Science I, 1301 Catherine Road, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | |
Collapse
|
10
|
Li C, Rossomando A, Wu SL, Karger BL. Comparability analysis of anti-CD20 commercial (rituximab) and RNAi-mediated fucosylated antibodies by two LC-MS approaches. MAbs 2013; 5:565-75. [PMID: 23751726 DOI: 10.4161/mabs.24814] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In developing biosimilar or biobetter products, comparability to the reference product is required to claim similar integrity or intended purpose. In this work, an anti-CD20 monoclonal antibody developed using RNA interference to decrease core fucosylation (RNAi-mediated) was comprehensively characterized by LC-MS and compared with the commercially-available anti-CD20 rituximab (MabThera (®) ). As anticipated, < 30% core fucose was found within the RNAi-produced molecule (compared with > 90% in rituximab), and the reduction in fucose resulting in a significant improvement in FcγRΙΙΙa binding and antibody-dependent cell-mediated cytotoxicity. Two mutations, S258Y (fully mutated) and F174I/L (partially mutated), however, were detected in the production of the RNAi-mediated molecule. An alternative LC-MS approach using dimethyl labeling (i.e., 2CH 2 for rituximab and 2CD 2 for the RNAi-mediated molecule) was developed to additionally compare the two mAbs and confirm the full sequence with the two mutation sites. Furthermore, disulfide linkages were found to be the same for the two antibodies, with a small portion of unpaired cysteines in both products. Disulfides were correctly linked if the samples were prepared at low pH (i.e., enzymatic digestion by pepsin at pH 2); however, trace amounts of scrambling were found by trypsin digestion at pH 6.8, and this scrambling increased significantly at pH 8. Typical modifications, such as pyro-Glu formation at the N-terminus, K clipping at the C-terminus, oxidation at Met, and deamidation at Asn, were also detected with no significant differences between the two products. Using the LC-MS approaches for the comparability study, product integrity with critical structure information was revealed for confirmation of intended purpose (core fucosylation), identification of critical parameters (e.g., sample pH), and correction as needed (amino acid mutation).
Collapse
Affiliation(s)
- Chen Li
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA USA
| | | | | | | |
Collapse
|
11
|
Zhang X, Luo Q, Apostol I, Luo S, Jerums M, Huang G, Jiang XG, Gastwirt J, Savjani N, Lewis J, Keener R, Wypych J. Assessment of stable isotope incorporation into recombinant proteins. Anal Biochem 2013; 433:137-49. [DOI: 10.1016/j.ab.2012.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/03/2012] [Accepted: 10/08/2012] [Indexed: 11/16/2022]
|
12
|
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of Therapeutic Antibodies and Related Products. Anal Chem 2012; 85:715-36. [DOI: 10.1021/ac3032355] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| |
Collapse
|
13
|
Picard G, Lebert D, Louwagie M, Adrait A, Huillet C, Vandenesch F, Bruley C, Garin J, Jaquinod M, Brun V. PSAQ™ standards for accurate MS-based quantification of proteins: from the concept to biomedical applications. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1353-63. [PMID: 23019168 DOI: 10.1002/jms.3106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Absolute protein quantification, i.e. determining protein concentrations in biological samples, is essential to our understanding of biological and physiopathological phenomena. Protein quantification methods based on the use of antibodies are very effective and widely used. However, over the last ten years, absolute protein quantification by mass spectrometry has attracted considerable interest, particularly for the study of systems biology and as part of biomarker development. This interest is mainly linked to the high multiplexing capacity of MS analysis, and to the availability of stable-isotope-labelled standards for quantification. This article describes the details of how to produce, control the quality and use a specific type of standard: Protein Standard Absolute Quantification (PSAQ™) standards. These standards are whole isotopically labelled proteins, analogues of the proteins to be assayed. PSAQ standards can be added early during sample treatment, thus they can correct for protein losses during sample prefractionation and for incomplete sample digestion. Because of this, quantification of target proteins is very accurate and precise using these standards. To illustrate the advantages of the PSAQ method, and to contribute to the increase in its use, selected applications in the biomedical field are detailed here.
Collapse
Affiliation(s)
- Guillaume Picard
- CEA, IRTSV, Biologie à Grande Echelle, F-38054, Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lugovskoy AA, Reichert JM, Beck A. 7th annual European Antibody Congress 2011: November 29-December 1, 2011, Geneva, Switzerland. MAbs 2012; 4:134-52. [PMID: 22453093 DOI: 10.4161/mabs.4.2.19426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 7th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The 2011 version of the EAC was attended by nearly 250 delegates who learned of the latest advances and trends in the global development of antibody-based therapeutics. The first day focused on advances in understanding structure-function relationships, choosing the best format, glycoengineering biobetter antibodies, improving the efficacy and drugability of mAbs and epitope mapping. On the second day, the discovery of novel targets for mAb therapy, clinical pipeline updates, use of antibody combinations to address resistance, generation and identification of mAbs against new targets and biosimilar mAb development were discussed. Antibody-drug conjugates, domain antibodies and new scaffolds and bispecific antibodies were the topics of the third day. In total, nearly 50 speakers provided updates of programs related to antibody research and development on-going in the academic, government and commercial sectors.
Collapse
Affiliation(s)
| | | | - Alain Beck
- Centre d'Immunologie Pierre Fabre; Saint-Julien en Genevois, France
| |
Collapse
|