1
|
Laframboise SJ, Deneault LF, Denoncourt A, Downey M, Baetz K. Uncovering the Role of the Yeast Lysine Acetyltransferase NuA4 in the Regulation of Nuclear Shape and Lipid Metabolism. Mol Cell Biol 2024; 44:273-288. [PMID: 38961766 PMCID: PMC11253884 DOI: 10.1080/10985549.2024.2366206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/19/2024] [Indexed: 07/05/2024] Open
Abstract
Here, we report a novel role for the yeast lysine acetyltransferase NuA4 in regulating phospholipid availability for organelle morphology. Disruption of the NuA4 complex results in 70% of cells displaying nuclear deformations and nearly 50% of cells exhibiting vacuolar fragmentation. Cells deficient in NuA4 also show severe defects in the formation of nuclear-vacuole junctions (NJV), as well as a decrease in piecemeal microautophagy of the nucleus (PMN). To determine the cause of these defects we focused on Pah1, an enzyme that converts phosphatidic acid into diacylglycerol, favoring accumulation of lipid droplets over phospholipids that are used for membrane expansion. NuA4 subunit Eaf1 was required for Pah1 localization to the inner nuclear membrane and artificially tethering of Pah1 to the nuclear membrane rescued nuclear deformation and vacuole fragmentation defects, but not defects related to the formation of NVJs. Mutation of a NuA4-dependent acetylation site on Pah1 also resulted in aberrant Pah1 localization and defects in nuclear morphology and NVJ. Our work suggests a critical role for NuA4 in organelle morphology that is partially mediated through the regulation of Pah1 subcellular localization.
Collapse
Affiliation(s)
- Sarah Jane Laframboise
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Lauren F. Deneault
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Alix Denoncourt
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin Baetz
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Wang L, Klionsky DJ, Shen HM. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol 2023; 24:186-203. [PMID: 36097284 DOI: 10.1038/s41580-022-00529-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.
Collapse
Affiliation(s)
- Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Konstantinidis G, Tavernarakis N. Autophagy of the Nucleus in Health and Disease. Front Cell Dev Biol 2022; 9:814955. [PMID: 35047516 PMCID: PMC8762222 DOI: 10.3389/fcell.2021.814955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Nucleophagy is an organelle-selective subtype of autophagy that targets nuclear material for degradation. The macroautophagic delivery of micronuclei to the vacuole, together with the nucleus-vacuole junction-dependent microautophagic degradation of nuclear material, were first observed in yeast. Nuclear pore complexes and ribosomal DNA are typically excluded during conventional macronucleophagy and micronucleophagy, indicating that degradation of nuclear cargo is tightly regulated. In mammals, similarly to other autophagy subtypes, nucleophagy is crucial for cellular differentiation and development, in addition to enabling cells to respond to various nuclear insults and cell cycle perturbations. A common denominator of all nucleophagic processes characterized in diverse organisms is the dependence on the core autophagic machinery. Here, we survey recent studies investigating the autophagic processing of nuclear components. We discuss nucleophagic events in the context of pathology, such as neurodegeneration, cancer, DNA damage, and ageing.
Collapse
Affiliation(s)
- Georgios Konstantinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.,Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
4
|
Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5595652. [PMID: 34306311 PMCID: PMC8279859 DOI: 10.1155/2021/5595652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/26/2021] [Accepted: 06/20/2021] [Indexed: 01/10/2023]
Abstract
Autophagy plays a double-edged sword for cancer; particularly, mitophagy plays important roles in the selective degradation of damaged mitochondria. However, whether mitophagy is involved in killing effects of tumor cells by ionizing radiation (IR) and its underlying mechanism remain elusive. The purpose is to evaluate the effects of mitochondrial ROS (mROS) on autophagy after IR; furthermore, we hypothesized that KillerRed (KR) targeting mitochondria could induce mROS generation, subsequent mitochondrial depolarization, accumulation of Pink1, and recruitment of PARK2 to promote the mitophagy. Thereby, we would achieve a new strategy to enhance mROS accumulation and clarify the roles and mechanisms of radiosensitization by KR and IR. Our data demonstrated that IR might cause autophagy of both MCF-7 and HeLa cells, which is related to mitochondria and mROS, and the ROS scavenger N-acetylcysteine (NAC) could reduce the effects. Based on the theory, mitochondrial targeting vector sterile α- and HEAT/armadillo motif-containing protein 1- (Sarm1-) mtKR has been successfully constructed, and we found that ROS levels have significantly increased after light exposure. Furthermore, mitochondrial depolarization of HeLa cells was triggered, such as the decrease of Na+K+ ATPase, Ca2+Mg2+ ATPase, and mitochondrial respiratory complex I and III activities, and mitochondrial membrane potential (MMP) has significantly decreased, and voltage-dependent anion channel 1 (VDAC1) protein has significantly increased in the mitochondria. Additionally, HeLa cell proliferation was obviously inhibited, and the cell autophagic rates dramatically increased, which referred to the regulation of the Pink1/PARK2 pathway. These results indicated that mitophagy induced by mROS can initiate the sensitization of cancer cells to IR and might be regulated by the Pink1/PARK2 pathway.
Collapse
|
5
|
Lee CP, Chen MR. Conquering the Nuclear Envelope Barriers by EBV Lytic Replication. Viruses 2021; 13:702. [PMID: 33919628 PMCID: PMC8073350 DOI: 10.3390/v13040702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The nuclear envelope (NE) of eukaryotic cells has a highly structural architecture, comprising double lipid-bilayer membranes, nuclear pore complexes, and an underlying nuclear lamina network. The NE structure is held in place through the membrane-bound LINC (linker of nucleoskeleton and cytoskeleton) complex, spanning the inner and outer nuclear membranes. The NE functions as a barrier between the nucleus and cytoplasm and as a transverse scaffold for various cellular processes. Epstein-Barr virus (EBV) is a human pathogen that infects most of the world's population and is associated with several well-known malignancies. Within the nucleus, the replicated viral DNA is packaged into capsids, which subsequently egress from the nucleus into the cytoplasm for tegumentation and final envelopment. There is increasing evidence that viral lytic gene expression or replication contributes to the pathogenesis of EBV. Various EBV lytic proteins regulate and modulate the nuclear envelope structure in different ways, especially the viral BGLF4 kinase and the nuclear egress complex BFRF1/BFRF2. From the aspects of nuclear membrane structure, viral components, and fundamental nucleocytoplasmic transport controls, this review summarizes our findings and recently updated information on NE structure modification and NE-related cellular processes mediated by EBV.
Collapse
Affiliation(s)
- Chung-Pei Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
6
|
Almendáriz-Palacios C, Gillespie ZE, Janzen M, Martinez V, Bridger JM, Harkness TAA, Mousseau DD, Eskiw CH. The Nuclear Lamina: Protein Accumulation and Disease. Biomedicines 2020; 8:E188. [PMID: 32630170 PMCID: PMC7400325 DOI: 10.3390/biomedicines8070188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular health is reliant on proteostasis-the maintenance of protein levels regulated through multiple pathways modulating protein synthesis, degradation and clearance. Loss of proteostasis results in serious disease and is associated with aging. One proteinaceous structure underlying the nuclear envelope-the nuclear lamina-coordinates essential processes including DNA repair, genome organization and epigenetic and transcriptional regulation. Loss of proteostasis within the nuclear lamina results in the accumulation of proteins, disrupting these essential functions, either via direct interactions of protein aggregates within the lamina or by altering systems that maintain lamina structure. Here we discuss the links between proteostasis and disease of the nuclear lamina, as well as how manipulating specific proteostatic pathways involved in protein clearance could improve cellular health and prevent/reverse disease.
Collapse
Affiliation(s)
- Carla Almendáriz-Palacios
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Zoe E. Gillespie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Matthew Janzen
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Valeria Martinez
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Joanna M. Bridger
- Centre for Genome Engineering and Maintenance, College of Health, Life and Medical Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Troy A. A. Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Darrell D. Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada;
| | - Christopher H. Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| |
Collapse
|
7
|
Kohler V, Aufschnaiter A, Büttner S. Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy. Cells 2020; 9:E1184. [PMID: 32397538 PMCID: PMC7290522 DOI: 10.3390/cells9051184] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
In all eukaryotic cells, intracellular organization and spatial separation of incompatible biochemical processes is established by individual cellular subcompartments in form of membrane-bound organelles. Virtually all of these organelles are physically connected via membrane contact sites (MCS), allowing interorganellar communication and a functional integration of cellular processes. These MCS coordinate the exchange of diverse metabolites and serve as hubs for lipid synthesis and trafficking. While this of course indirectly impacts on a plethora of biological functions, including autophagy, accumulating evidence shows that MCS can also directly regulate autophagic processes. Here, we focus on the nexus between interorganellar contacts and autophagy in yeast and mammalian cells, highlighting similarities and differences. We discuss MCS connecting the ER to mitochondria or the plasma membrane, crucial for early steps of both selective and non-selective autophagy, the yeast-specific nuclear-vacuolar tethering system and its role in microautophagy, the emerging function of distinct autophagy-related proteins in organellar tethering as well as novel MCS transiently emanating from the growing phagophore and mature autophagosome.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
| | - Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
8
|
Capitanchik C, Dixon CR, Swanson SK, Florens L, Kerr ARW, Schirmer EC. Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins. Nucleus 2019; 9:410-430. [PMID: 29912636 PMCID: PMC7000147 DOI: 10.1080/19491034.2018.1469351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Laminopathies yield tissue-specific pathologies, yet arise from mutation of ubiquitously-expressed genes. A little investigated hypothesis to explain this is that the mutated proteins or their partners have tissue-specific splice variants. To test this, we analyzed RNA-Seq datasets, finding novel isoforms or isoform tissue-specificity for: Lap2, linked to cardiomyopathy; Nesprin 2, linked to Emery-Dreifuss muscular dystrophy and Lmo7, that regulates the Emery-Dreifuss muscular dystrophy linked emerin gene. Interestingly, the muscle-specific Lmo7 exon is rich in serine phosphorylation motifs, suggesting regulatory function. Muscle-specific splice variants in non-nuclear envelope proteins linked to other muscular dystrophies were also found. Nucleoporins tissue-specific variants were found for Nup54, Nup133, Nup153 and Nup358/RanBP2. RT-PCR confirmed novel Lmo7 and RanBP2 variants and specific knockdown of the Lmo7 variantreduced myogenic index. Nuclear envelope proteins were enriched for tissue-specific splice variants compared to the rest of the genome, suggesting that splice variants contribute to its tissue-specific functions.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Charles R Dixon
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Selene K Swanson
- b Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Laurence Florens
- b Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Alastair R W Kerr
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Eric C Schirmer
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
9
|
Li Y, Jiang X, Zhang Y, Gao Z, Liu Y, Hu J, Hu X, Li L, Shi J, Gao N. Nuclear accumulation of UBC9 contributes to SUMOylation of lamin A/C and nucleophagy in response to DNA damage. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:67. [PMID: 30744690 PMCID: PMC6371487 DOI: 10.1186/s13046-019-1048-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular mechanism for lysosomal degradation of damaged cellular components. The specific degradation of nuclear components by the autophagy pathway is called nucleophagy. Most studies have focused on autophagic turnover of cytoplasmic materials, and little is known about the role of autophagy in the degradation of nuclear components. METHODS Human MDA-MB-231 and MCF-7 breast cancer cell lines were used as model systems in vitro. Induction of nucleophagy by nuclear DNA leakage was determined by western blot and immunofluorescence analyses. The interaction and colocalization of LC3 and lamin A/C was determined by immunoprecipitation and immunofluorescence. The role of the SUMO E2 ligase, UBC9, on the regulation of SUMOylation of lamin A/C and nucleophagy was determined by siRNA silencing of UBC9, and analyzed by immunoprecipitation and immunofluorescence. RESULTS DNA damage induced nuclear accumulation of UBC9 ligase which resulted in SUMOylation of lamin A/C and that SUMOylation of this protein was required for the interaction between the autophagy protein LC3 and lamin A/C, which was required for nucleophagy. Knockdown of UBC9 prevented SUMOylation of lamin A/C and LC3-lamin A/C interaction. This attenuated nucleophagy which degraded nuclear components lamin A/C and leaked nuclear DNA mediated by DNA damage. CONCLUSIONS Our findings suggest that nuclear DNA leakage activates nucleophagy through UBC9-mediated SUMOylation of lamin A/C, leading to degradation of nuclear components including lamin A/C and leaked nuclear DNA.
Collapse
Affiliation(s)
- Yunong Li
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yanhao Zhang
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Ziyi Gao
- Greater Philadelphia Pharmacy, Philadelphia, USA
| | - Yanxia Liu
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Jinjiao Hu
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Xiaoye Hu
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Lirong Li
- College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Ning Gao
- College of Pharmacy, Army Medical University, Chongqing, 400038, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
10
|
Randolph ME, Phillips BL, Choo HJ, Vest KE, Vera Y, Pavlath GK. Pharyngeal Satellite Cells Undergo Myogenesis Under Basal Conditions and Are Required for Pharyngeal Muscle Maintenance. Stem Cells 2016; 33:3581-95. [PMID: 26178867 DOI: 10.1002/stem.2098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022]
Abstract
The pharyngeal muscles of the nasal, oral, and laryngeal pharynxes are required for swallowing. Pharyngeal muscles are preferentially affected in some muscular dystrophies yet spared in others. Muscle stem cells, called satellite cells, may be critical factors in the development of pharyngeal muscle disorders; however, very little is known about pharyngeal satellite cells (PSC) and their role in pharyngeal muscles. We show that PSC are distinct from the commonly studied hindlimb satellite cells both transcriptionally and biologically. Under basal conditions PSC proliferate, progress through myogenesis, and fuse with pharyngeal myofibers. Furthermore, PSC exhibit biologic differences dependent on anatomic location in the pharynx. Importantly, PSC are required to maintain myofiber size and myonuclear number in pharyngeal myofibers. Together, these results demonstrate that PSC are critical for pharyngeal muscle maintenance and suggest that satellite cell impairment could contribute to pharyngeal muscle pathology associated with various muscular dystrophies and aging.
Collapse
Affiliation(s)
| | | | - Hyo-Jung Choo
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| | - Katherine E Vest
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| | - Yandery Vera
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Luo M, Zhao X, Song Y, Cheng H, Zhou R. Nuclear autophagy: An evolutionarily conserved mechanism of nuclear degradation in the cytoplasm. Autophagy 2016; 12:1973-1983. [PMID: 27541589 DOI: 10.1080/15548627.2016.1217381] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is a catabolic process that is essential for cellular homeostasis. Studies on autophagic degradation of cytoplasmic components have generated interest in nuclear autophagy. Although its mechanisms and roles have remained elusive, tremendous progress has been made toward understanding nuclear autophagy. Nuclear autophagy is evolutionarily conserved in eukaryotes that may target various nuclear components through a series of processes, including nuclear sensing, nuclear export, autophagic substrate encapsulation and autophagic degradation in the cytoplasm. However, the molecular processes and regulatory mechanisms involved in nuclear autophagy remain largely unknown. Numerous studies have highlighted the importance of nuclear autophagy in physiological and pathological processes such as cancer. This review focuses on current advances in nuclear autophagy and provides a summary of its research history and landmark discoveries to offer new perspectives.
Collapse
Affiliation(s)
- Majing Luo
- a Hubei Key Laboratory of Cell Homeostasis, Laboratory of Molecular and Developmental Genetics, College of Life Sciences , Wuhan University , Wuhan , China
| | - Xueya Zhao
- a Hubei Key Laboratory of Cell Homeostasis, Laboratory of Molecular and Developmental Genetics, College of Life Sciences , Wuhan University , Wuhan , China
| | - Ying Song
- a Hubei Key Laboratory of Cell Homeostasis, Laboratory of Molecular and Developmental Genetics, College of Life Sciences , Wuhan University , Wuhan , China
| | - Hanhua Cheng
- a Hubei Key Laboratory of Cell Homeostasis, Laboratory of Molecular and Developmental Genetics, College of Life Sciences , Wuhan University , Wuhan , China
| | - Rongjia Zhou
- a Hubei Key Laboratory of Cell Homeostasis, Laboratory of Molecular and Developmental Genetics, College of Life Sciences , Wuhan University , Wuhan , China
| |
Collapse
|
12
|
Meseroll RA, Cohen-Fix O. The Malleable Nature of the Budding Yeast Nuclear Envelope: Flares, Fusion, and Fenestrations. J Cell Physiol 2016; 231:2353-60. [PMID: 26909870 DOI: 10.1002/jcp.25355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 11/10/2022]
Abstract
In eukaryotes, the nuclear envelope (NE) physically separates nuclear components and activities from rest of the cell. The NE also provides rigidity to the nucleus and contributes to chromosome organization. At the same time, the NE is highly dynamic; it must change shape and rearrange its components during development and throughout the cell cycle, and its morphology can be altered in response to mutation and disease. Here we focus on the NE of budding yeast, Saccharomyces cerevisiae, which has several unique features: it remains intact throughout the cell cycle, expands symmetrically during interphase, elongates during mitosis and, expands asymmetrically during mitotic delay. Moreover, its NE is safely breached during mating and when large structures, such as nuclear pore complexes and the spindle pole body, are embedded into its double membrane. The budding yeast NE lacks lamins and yet the nucleus is capable of maintaining a spherical shape throughout interphase. Despite these eccentricities, studies of the budding yeast NE have uncovered interesting, and likely conserved, processes that contribute to NE dynamics. In particular, we discuss the processes that drive and enable NE expansion and the dramatic changes in the NE that lead to extensions and fenestrations. J. Cell. Physiol. 231: 2353-2360, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Rebecca A Meseroll
- The Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Orna Cohen-Fix
- The Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Cenni V, Capanni C, Mattioli E, Columbaro M, Wehnert M, Ortolani M, Fini M, Novelli G, Bertacchini J, Maraldi NM, Marmiroli S, D'Apice MR, Prencipe S, Squarzoni S, Lattanzi G. Rapamycin treatment of Mandibuloacral dysplasia cells rescues localization of chromatin-associated proteins and cell cycle dynamics. Aging (Albany NY) 2015; 6:755-70. [PMID: 25324471 PMCID: PMC4233654 DOI: 10.18632/aging.100680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lamin A is a key component of the nuclear lamina produced through post-translational processing of its precursor known as prelamin A. LMNA mutations leading to farnesylated prelamin A accumulation are known to cause lipodystrophy, progeroid and developmental diseases, including Mandibuloacral dysplasia, a mild progeroid syndrome with partial lipodystrophy and altered bone turnover. Thus, degradation of prelamin A is expected to improve the disease phenotype. Here, we show different susceptibilities of prelamin A forms to proteolysis and further demonstrate that treatment with rapamycin efficiently and selectively triggers lysosomal degradation of farnesylated prelamin A, the most toxic processing intermediate. Importantly, rapamycin treatment of Mandibuloacral dysplasia cells, which feature very low levels of the NAD-dependent sirtuin SIRT-1 in the nuclear matrix, restores SIRT-1 localization and distribution of chromatin markers, elicits release of the transcription factor Oct-1 and determines shortening of the prolonged S-phase. These findings indicate the drug as a possible treatment for Mandibuloacral dysplasia.
Collapse
Affiliation(s)
- Vittoria Cenni
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Cristina Capanni
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Elisabetta Mattioli
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Marta Columbaro
- Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Manfred Wehnert
- Institute of Human Genetics, University of Greifswald, Germany
| | - Michela Ortolani
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy
| | - Milena Fini
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies and BITTA, RIT, Bologna, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Jessika Bertacchini
- Department of Laboratory, CEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Nadir M Maraldi
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy
| | - Sandra Marmiroli
- Department of Laboratory, CEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Rosaria D'Apice
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy. Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Sabino Prencipe
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Stefano Squarzoni
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Giovanna Lattanzi
- National Research Council of Italy, Institute of Molecular Genetics, IGM-CNR-IOR, Bologna, Italy. Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| |
Collapse
|
14
|
Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. Autophagy 2015; 10:1692-701. [PMID: 25207555 PMCID: PMC4198355 DOI: 10.4161/auto.36076] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.
Collapse
|
15
|
Lan YY, Londoño D, Bouley R, Rooney MS, Hacohen N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep 2014; 9:180-192. [PMID: 25284779 DOI: 10.1016/j.celrep.2014.08.074] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/30/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022] Open
Abstract
Deficiencies in DNA-degrading nucleases lead to accumulation of self DNA and induction of autoimmunity in mice and in monogenic and polygenic human diseases. However, the sources of DNA and the mechanisms that trigger immunity remain unclear. We analyzed mice deficient for the lysosomal nuclease Dnase2a and observed elevated levels of undegraded DNA in both phagocytic and nonphagocytic cells. In nonphagocytic cells, the excess DNA originated from damaged DNA in the nucleus based on colocalization studies, live-cell imaging, and exacerbation by DNA-damaging agents. Removal of damaged DNA by Dnase2a required nuclear export and autophagy-mediated delivery of the DNA to lysosomes. Finally, DNA was found to accumulate in Dnase2a(-/-) or autophagy-deficient cells and induce inflammation via the Sting cytosolic DNA-sensing pathway. Our results reveal a cell-autonomous process for removal of damaged nuclear DNA with implications for conditions with elevated DNA damage, such as inflammation, cancer, and chemotherapy.
Collapse
Affiliation(s)
- Yuk Yuen Lan
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, 149 13(th) Street, Charlestown, MA 02129, USA; Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Londoño
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, 149 13(th) Street, Charlestown, MA 02129, USA
| | - Richard Bouley
- Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Michael S Rooney
- Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Harvard/MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Nir Hacohen
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, 149 13(th) Street, Charlestown, MA 02129, USA; Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Hayat M. Introduction to Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2014:1-36. [DOI: 10.1016/b978-0-12-405877-4.00001-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Hayat M. Introduction to Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2014:1-32. [DOI: 10.1016/b978-0-12-405530-8.00001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Hayat M. Introduction to Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2014:1-46. [DOI: 10.1016/b978-0-12-405528-5.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Hayat M. Introduction to Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2014:1-35. [DOI: 10.1016/b978-0-12-405529-2.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Cervantes S, Bunnik EM, Saraf A, Conner CM, Escalante A, Sardiu ME, Ponts N, Prudhomme J, Florens L, Le Roch KG. The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum. Autophagy 2013; 10:80-92. [PMID: 24275162 PMCID: PMC4028325 DOI: 10.4161/auto.26743] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A 1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Serena Cervantes
- Graduate Program in Cell, Molecular, and Developmental Biology; University of California, Riverside; Riverside, CA USA; Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | - Evelien M Bunnik
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | - Anita Saraf
- Stowers Institute for Medical Research; Kansas City, MO USA
| | - Christopher M Conner
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | - Aster Escalante
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | | | - Nadia Ponts
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| | | | - Karine G Le Roch
- Department of Cell Biology and Neuroscience; University of California, Riverside; Riverside, CA USA
| |
Collapse
|
21
|
Abstract
Under certain circumstances, the removal of damaged or non-essential parts of the nucleus, or even an entire nucleus, is crucial in order to promote cell longevity and enable proper function. A selective form of autophagy, known as nucleophagy, can be used to accomplish the degradation of nucleus-derived material. In this Cell Science at a Glance article and the accompanying poster, we summarize the similarities and differences between the divergent modes of nucleophagy that have been described to date, emphasizing, where possible, the molecular mechanism, the membrane interactions and rearrangements, and the nature of the nucleus-derived material that is degraded. In turn, we will consider nucleophagy processes in the lower eukaryotes, the budding yeast Saccharomyces cerevisiae, filamentous fungi Aspergillus and Magnaporthe oryzae and the ciliated protozoan Tetrahymena thermophila, and finally in mammalian cells. We will also briefly discuss the emerging links between nucleophagy and human disease.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton campus, VIC 3800, Australia
| | | |
Collapse
|
22
|
Murakami A. Modulation of protein quality control systems by food phytochemicals. J Clin Biochem Nutr 2013; 52:215-27. [PMID: 23704811 PMCID: PMC3652296 DOI: 10.3164/jcbn.12-126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022] Open
Abstract
There is compelling evidence showing that dietary phytochemicals have exhibited pronounced bioactivities in a number of experimental models. In addition, a variety of epidemiological surveys have demonstrated that frequent ingestion of vegetables and fruits, which contain abundant phytochemicals, lowers the risk of onset of some diseases. However, the action mechanisms by which dietary phytochemicals show bioactivity remain to be fully elucidated and a fundamental question is why this class of chemicals has great potential for regulating health. Meanwhile, maintenance and repair of biological proteins by molecular chaperones, such as heat shock proteins, and clearance of abnormal proteins by the ubiquitin-proteasome system and autophagy play central roles in health, some disease prevention, and longevity. Interestingly, several recent studies have revealed that phytochemicals, including curcumin (yellow pigment in turmeric), resveratrol (phytoalexin in grapes), quercetin (general flavonol in onions and others), and isothiocyanates (preferentially present in cruciferous vegetables, such as broccoli and cabbage), are remarkable regulators of protein quality control systems, suggesting that their physiological and biological functions are exerted, at least in part, through activation of such unique mechanisms. This review article highlights recent findings regarding the effects of representative phytochemicals on protein quality control systems and their possible molecular mechanisms.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Zhang Q, Kang R, Zeh HJ, Lotze MT, Tang D. DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy 2013; 9:451-8. [PMID: 23388380 DOI: 10.4161/auto.23691] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a lysosome-mediated catabolic process involving the degradation of intracellular contents (e.g., proteins and organelles) as well as invading microbes (e.g., parasites, bacteria and viruses). Multiple forms of cellular stress can stimulate this pathway, including nutritional imbalances, oxygen deprivation, immunological response, genetic defects, chromosomal anomalies and cytotoxic stress. Damage-associated molecular pattern molecules (DAMPs) are released by stressed cells undergoing autophagy or injury, and act as endogenous danger signals to regulate the subsequent inflammatory and immune response. A complex relationship exists between DAMPs and autophagy in cellular adaption to injury and unscheduled cell death. Since both autophagy and DAMPs are important for pathogenesis of human disease, it is crucial to understand how they interplay to sustain homeostasis in stressful or dangerous environments.
Collapse
Affiliation(s)
- Qiuhong Zhang
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
24
|
Palikaras K, Tavernarakis N. Mitophagy in neurodegeneration and aging. Front Genet 2012; 3:297. [PMID: 23267366 PMCID: PMC3525948 DOI: 10.3389/fgene.2012.00297] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/30/2012] [Indexed: 12/02/2022] Open
Abstract
Macroautophagy is a cellular catabolic process that involves the sequestration of cytoplasmic constituents into double-membrane vesicles known as autophagosomes, which subsequently fuse with lysosomes, where they deliver their cargo for degradation. The main physiological role of autophagy is to recycle intracellular components, under conditions of nutrient deprivation, so as to supply cells with vital materials and energy. Selective autophagy also takes place in nutrient-rich conditions to rid the cell of damaged organelles or protein aggregates that would otherwise compromise cell viability. Mitophagy is a selective type of autophagy, whereby damaged or superfluous mitochondria are eliminated to maintain proper mitochondrial numbers and quality control. While mitophagy shares key regulatory factors with the general macroautophagy pathway, it also involves distinct steps, specific for mitochondrial elimination. Recent findings indicate that parkin and the phosphatase and tensin homolog-induced putative kinase protein 1 (PINK1), which have been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease, also regulate mitophagy and function to maintain mitochondrial homeostasis. Here, we survey the molecular mechanisms that govern the process of mitophagy and discuss its involvement in the onset and progression of neurodegenerative diseases during aging.
Collapse
Affiliation(s)
- Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion Crete, Greece
| | | |
Collapse
|
25
|
Serum non-coding RNAs as biomarkers for osteoarthritis progression after ACL injury. Osteoarthritis Cartilage 2012; 20:1631-7. [PMID: 22944527 PMCID: PMC3478481 DOI: 10.1016/j.joca.2012.08.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/09/2012] [Accepted: 08/22/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to examine serum non-coding RNAs as potential biomarkers for cartilage damage associated with anterior cruciate ligament (ACL) injury. METHODS Serum was obtained from 80 patients 1 year after surgery for ACL injury and 60 normal donors without overt skeletal injury. Total serum RNA was isolated, small non-coding RNAs profiled by TaqMan array MicroRNA (miRNA) analysis and individual small RNA assays performed by quantitative TaqMan RT-PCR (qPCR). Semi-quantitative magnetic resonance imaging (MRI) analysis was performed using Whole Organ Magnetic Resonance Knee Score (WORMS) scoring for analysis of cartilage damage. RESULTS Initial TaqMan array miRNA profiling showed an increased serum concentration of a small nucleolar RNA (snoRNA), U48, in five patients with cartilage damage compared with that in five patients without cartilage damage and six normal donors. Independent qPCR analysis of snoRNAs in serum from all patients and normal donors showed a strong association between the serum level of another snoRNA, U38, and cartilage damage in ACL injury patients and together with snoRNA, U48, clear distinction between ACL injury patients and normal donors. CONCLUSION SnoRNAs U38 and U48 are significantly elevated in the serum of patients developing cartilage damage at 1 year after ACL injury. Serum levels of U38 have the potential to facilitate early diagnosis of patients with cartilage damage after ACL injury. This study suggests serum non-coding RNAs may serve as novel noninvasive biomarkers for the detection and assessment of cartilage damage after ACL injury.
Collapse
|
26
|
Coto-Montes A, Boga JA, Rosales-Corral S, Fuentes-Broto L, Tan DX, Reiter RJ. Role of melatonin in the regulation of autophagy and mitophagy: a review. Mol Cell Endocrinol 2012; 361:12-23. [PMID: 22575351 DOI: 10.1016/j.mce.2012.04.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/15/2012] [Indexed: 01/27/2023]
Abstract
Oxidative stress plays an essential role in triggering many cellular processes including programmed cell death. Proving a relationship between apoptosis and reactive oxygen species has been the goal of numerous studies. Accumulating data point to an essential role for oxidative stress in the activation of autophagy. The term autophagy encompasses several processes including not only survival or death mechanisms, but also pexophagy, mitophagy, ER-phagy or ribophagy, depending of which organelles are targeted for specific autophagic degradation. However, whether the outcome of autophagy is survival or death and whether the initiating conditions are starvation, pathogens or death receptors, reactive oxygen species are invariably involved. The role of antioxidants in the regulation of these processes, however, has been sparingly investigated. Among the known antioxidants, melatonin has high efficacy and, in both experimental and clinical situations, its protective actions against oxidative stress are well documented. Beneficial effects against mitochondrial dysfunction have also been described for melatonin; thus, this indoleamine seems to be linked to mitophagy. The present review focuses on data and the most recent advances related to the role of melatonin in health and disease, on autophagy activation in general, and on mitophagy in particular.
Collapse
Affiliation(s)
- Ana Coto-Montes
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
27
|
Williams LR, Taylor GS. Autophagy and immunity - insights from human herpesviruses. Front Immunol 2012; 3:170. [PMID: 22783253 PMCID: PMC3389338 DOI: 10.3389/fimmu.2012.00170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/05/2012] [Indexed: 11/13/2022] Open
Abstract
The herpesviruses are a family of double-stranded DNA viruses that infect a wide variety of organisms. Having co-evolved with their hosts over millennia, herpesviruses have developed a large repertoire of mechanisms to manipulate normal cellular processes for their own benefit. Consequently, studies on these viruses have made important contributions to our understanding of fundamental biological processes. Here we describe recent research on the human herpesviruses that has contributed to our understanding of, and interactions between, viruses, autophagy, and the immune system. The ability of autophagy to degrade proteins located within the nucleus, the site of herpesvirus latency and replication, is also considered.
Collapse
Affiliation(s)
- Luke R Williams
- School of Cancer Sciences, University of Birmingham, Vincent Drive, Birmingham, UK
| | | |
Collapse
|
28
|
Zuleger N, Kerr ARW, Schirmer EC. Many mechanisms, one entrance: membrane protein translocation into the nucleus. Cell Mol Life Sci 2012; 69:2205-16. [PMID: 22327555 PMCID: PMC11114554 DOI: 10.1007/s00018-012-0929-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/08/2012] [Accepted: 01/17/2012] [Indexed: 12/14/2022]
Abstract
The inner nuclear membrane harbors a unique set of membrane proteins, many of which interact with nuclear intermediate filaments and chromatin components and thus play an important role in nuclear organization and gene expression regulation. These membrane proteins have to be constantly transported into the nucleus from their sites of synthesis in the ER to match the growth of the nuclear membrane during interphase. Many mechanisms have evolved to enable translocation of these proteins to the nucleus. The full range of mechanisms goes from rare autophagy events to regulated translocation using the nuclear pore complexes. Though mechanisms involving nuclear pores are predominant, within this group an enormous mechanistic range is observed from free diffusion through the peripheral channels to many distinct mechanisms involving different nucleoporins and other components of the soluble protein transport machinery in the central channels. This review aims to provide a comprehensive insight into this mechanistic diversity.
Collapse
Affiliation(s)
- Nikolaj Zuleger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Alastair R. W. Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| | - Eric C. Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh, EH9 3JR UK
| |
Collapse
|
29
|
Mijaljica D, Prescott M, Devenish RJ. A late form of nucleophagy in Saccharomyces cerevisiae. PLoS One 2012; 7:e40013. [PMID: 22768199 PMCID: PMC3386919 DOI: 10.1371/journal.pone.0040013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 06/04/2012] [Indexed: 12/19/2022] Open
Abstract
Autophagy encompasses several processes by which cytosol and organelles can be delivered to the vacuole/lysosome for breakdown and recycling. We sought to investigate autophagy of the nucleus (nucleophagy) in the yeast Saccharomyces cerevisiae by employing genetically encoded fluorescent reporters. The use of such a nuclear reporter, n-Rosella, proved the basis of robust assays based on either following its accumulation (by confocal microscopy), or degradation (by immunoblotting), within the vacuole. We observed the delivery of n-Rosella to the vacuole only after prolonged periods of nitrogen starvation. Dual labeling of cells with Nvj1p-EYFP, a nuclear membrane reporter of piecemeal micronucleophagy of the nucleus (PMN), and the nucleoplasm-targeted NAB35-DsRed.T3 allowed us to detect PMN soon after the commencement of nitrogen starvation whilst delivery to the vacuole of the nucleoplasm reporter was observed only after prolonged periods of nitrogen starvation. This later delivery of nuclear components to the vacuole has been designated LN (late nucleophagy). Only a very few cells showed simultaneous accumulation of both reporters (Nvj1p-EYFP and NAB35-DsRed.T3) in the vacuole. We determined, therefore, that delivery of the two respective nuclear reporters to the vacuole is temporally and spatially separated. Furthermore, our data suggest that LN is mechanistically distinct from PMN because it can occur in nvj1Δ and vac8Δ cells, and does not require ATG11. Nevertheless, a subset of the components of the core macroautophagic machinery is required for LN as it is efficiently inhibited in null mutants of several autophagy-related genes (ATG) specifying such components. Moreover, the inhibition of LN in some mutants is accompanied by alterations in nuclear morphology.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
- * E-mail:
| |
Collapse
|
30
|
The selectivity and specificity of autophagy in Drosophila. Cells 2012; 1:248-62. [PMID: 24710475 PMCID: PMC3901107 DOI: 10.3390/cells1030248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a process of cellular self-degradation and is a major pathway for elimination of cytoplasmic material by the lysosomes. Autophagy is responsible for the degradation of damaged organelles and protein aggregates and therefore plays a significant role in cellular homeostasis. Despite the initial belief that autophagy is a nonselective bulk process, there is growing evidence during the last years that sequestration and degradation of cellular material by autophagy can be accomplished in a selective and specific manner. Given the role of autophagy and selective autophagy in several disease related processes such as tumorigenesis, neurodegeneration and infections, it is very important to dissect the molecular mechanisms of selective autophagy, in the context of the system and the organism. An excellent genetically tractable model organism to study autophagy is Drosophila, which appears to have a highly conserved autophagic machinery compared with mammals. However, the mechanisms of selective autophagy in Drosophila have been largely unexplored. The aim of this review is to summarize recent discoveries about the selectivity of autophagy in Drosophila.
Collapse
|
31
|
Nezis IP. Selective autophagy in Drosophila. Int J Cell Biol 2012; 2012:146767. [PMID: 22567011 PMCID: PMC3332208 DOI: 10.1155/2012/146767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 11/26/2022] Open
Abstract
Autophagy is an evolutionarily conserved process of cellular self-eating and is a major pathway for degradation of cytoplasmic material by the lysosomal machinery. Autophagy functions as a cellular response in nutrient starvation, but it is also associated with the removal of protein aggregates and damaged organelles and therefore plays an important role in the quality control of proteins and organelles. Although it was initially believed that autophagy occurs randomly in the cell, during the last years, there is growing evidence that sequestration and degradation of cytoplasmic material by autophagy can be selective. Given the important role of autophagy and selective autophagy in several disease-related processes such as neurodegeneration, infections, and tumorigenesis, it is important to understand the molecular mechanisms of selective autophagy, especially at the organismal level. Drosophila is an excellent genetically modifiable model organism exhibiting high conservation in the autophagic machinery. However, the regulation and mechanisms of selective autophagy in Drosophila have been largely unexplored. In this paper, I will present an overview of the current knowledge about selective autophagy in Drosophila.
Collapse
Affiliation(s)
- Ioannis P. Nezis
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0310 Oslo, Norway
- Laboratory of Cell Biology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
32
|
The many faces of mitochondrial autophagy: making sense of contrasting observations in recent research. Int J Cell Biol 2012; 2012:431684. [PMID: 22550491 PMCID: PMC3328949 DOI: 10.1155/2012/431684] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/21/2011] [Indexed: 11/17/2022] Open
Abstract
Research into the selective autophagic degradation of mitochondria—mitophagy—has intensified in recent years, yielding significant insights into the function, mechanism, and regulation of this process in the eukaryotic cell. However, while some molecular players in budding yeast, such as Atg32p, Uth1p, and Aup1p, have been identified, studies further interrogating the mechanistic and regulatory features of mitophagy have yielded inconsistent and sometimes conflicting results. In this review, we focus on the current understanding of mitophagy mechanism, induction, and regulation in yeast, and suggest that differences in experimental conditions used in the various studies of mitophagy may contribute to the observed discrepancies. Consideration and understanding of these differences may help place the mechanism and regulation of mitophagy in context, and further indicate the intricate role that this essential process plays in the life and death of eukaryotic cells.
Collapse
|
33
|
Implications of therapy-induced selective autophagy on tumor metabolism and survival. Int J Cell Biol 2012; 2012:872091. [PMID: 22550492 PMCID: PMC3328951 DOI: 10.1155/2012/872091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/14/2012] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence indicates that therapies designed to trigger apoptosis in tumor cells cause mitochondrial depolarization, nuclear damage, and the accumulation of misfolded protein aggregates, resulting in the activation of selective forms of autophagy. These selective forms of autophagy, including mitophagy, nucleophagy, and ubiquitin-mediated autophagy, counteract apoptotic signals by removing damaged cellular structures and by reprogramming cellular energy metabolism to cope with therapeutic stress. As a result, the efficacies of numerous current cancer therapies may be improved by combining them with adjuvant treatments that exploit or disrupt key metabolic processes induced by selective forms of autophagy. Targeting these metabolic irregularities represents a promising approach to improve clinical responsiveness to cancer treatments given the inherently elevated metabolic demands of many tumor types. To what extent anticancer treatments promote selective forms of autophagy and the degree to which they influence metabolism are currently under intense scrutiny. Understanding how the activation of selective forms of autophagy influences cellular metabolism and survival provides an opportunity to target metabolic irregularities induced by these pathways as a means of augmenting current approaches for treating cancer.
Collapse
|
34
|
Mijaljica D, Prescott M, Devenish RJ. The intriguing life of autophagosomes. Int J Mol Sci 2012; 13:3618-3635. [PMID: 22489171 PMCID: PMC3317731 DOI: 10.3390/ijms13033618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/02/2012] [Accepted: 03/07/2012] [Indexed: 12/14/2022] Open
Abstract
Autophagosomes are double-membrane vesicles characteristic of macroautophagy, a degradative pathway for cytoplasmic material and organelles terminating in the lysosomal or vacuole compartment for mammals and yeast, respectively. This highly dynamic, multi-step process requires significant membrane reorganization events at different stages of the macroautophagic process. Such events include exchange and flow of lipids and proteins between membranes and vesicles (e.g., during initiation and growth of the phagophore), vesicular positioning and trafficking within the cell (e.g., autophagosome location and movement) and fusion of autophagosomes with the boundary membranes of the degradative compartment. Here, we review current knowledge on the contribution of different organelles to the formation of autophagosomes, their trafficking and fate within the cell. We will consider some of the unresolved questions related to the molecular mechanisms that regulate the "life and death" of the autophagosome.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton campus, Victoria 3800, Australia; E-Mails: (D.M.); (M.P.)
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton campus, Victoria 3800, Australia; E-Mails: (D.M.); (M.P.)
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton campus, Victoria 3800, Australia; E-Mails: (D.M.); (M.P.)
| |
Collapse
|