1
|
Masson E, Maestri S, Bordeau V, Cooper DN, Férec C, Chen JM. Alu insertion-mediated dsRNA structure formation with pre-existing Alu elements as a disease-causing mechanism. Am J Hum Genet 2024; 111:2176-2189. [PMID: 39265574 PMCID: PMC11480803 DOI: 10.1016/j.ajhg.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
We previously identified a homozygous Alu insertion variant (Alu_Ins) in the 3'-untranslated region (3'-UTR) of SPINK1 as the cause of severe infantile isolated exocrine pancreatic insufficiency. Although we established that Alu_Ins leads to the complete loss of SPINK1 mRNA expression, the precise mechanisms remained elusive. Here, we aimed to elucidate these mechanisms through a hypothesis-driven approach. Initially, we speculated that, owing to its particular location, Alu_Ins could independently disrupt mRNA 3' end formation and/or affect other post-transcriptional processes such as nuclear export and translation. However, employing a 3'-UTR luciferase reporter assay, Alu_Ins was found to result in only an ∼50% reduction in luciferase activity compared to wild type, which is insufficient to account for the severe pancreatic deficiency in the Alu_Ins homozygote. We then postulated that double-stranded RNA (dsRNA) structures formed between Alu elements, an upstream mechanism regulating gene expression, might be responsible. Using RepeatMasker, we identified two Alu elements within SPINK1's third intron, both oriented oppositely to Alu_Ins. Through RNAfold predictions and full-length gene expression assays, we investigated orientation-dependent interactions between these Alu repeats. We provide compelling evidence to link the detrimental effect of Alu_Ins to extensive dsRNA structures formed between Alu_Ins and pre-existing intronic Alu sequences, including the restoration of SPINK1 mRNA expression by aligning all three Alu elements in the same orientation. Given the widespread presence of Alu elements in the human genome and the potential for new Alu insertions at almost any locus, our findings have important implications for detecting and interpreting Alu insertions in disease genes.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France
| | - Sandrine Maestri
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; CHRU Brest, 29200 Brest, France
| | - Valérie Bordeau
- Inserm U1230 BRM (Bacterial RNAs and Medicine), Université de Rennes, 35043 Rennes, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France.
| |
Collapse
|
2
|
Nesta A, Veiga DFT, Banchereau J, Anczukow O, Beck CR. Alternative splicing of transposable elements in human breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615242. [PMID: 39386569 PMCID: PMC11463404 DOI: 10.1101/2024.09.26.615242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transposable elements (TEs) drive genome evolution and can affect gene expression through diverse mechanisms. In breast cancer, disrupted regulation of TE sequences may facilitate tumor-specific transcriptomic alterations. We examine 142,514 full-length isoforms derived from long-read RNA sequencing (LR-seq) of 30 breast samples to investigate the effects of TEs on the breast cancer transcriptome. Approximately half of these isoforms contain TE sequences, and these contribute to half of the novel annotated splice junctions. We quantify splicing of these LR-seq derived isoforms in 1,135 breast tumors from The Cancer Genome Atlas (TCGA) and 1,329 healthy tissue samples from the Genotype-Tissue Expression (GTEx), and find 300 TE-overlapping tumor-specific splicing events. Some splicing events are enriched in specific breast cancer subtypes - for example, a TE-driven transcription start site upstream of ERBB2 in HER2+ tumors, and several TE-mediated splicing events are associated with patient survival and poor prognosis. The full-length sequences we capture with LR-seq reveal thousands of isoforms with signatures of RNA editing, including a novel isoform belonging to RHOA; a gene previously implicated in tumor progression. We utilize our full-length isoforms to discover polymorphic TE insertions that alter splicing and validate one of these events in breast cancer cell lines. Together, our results demonstrate the widespread effects of dysregulated TEs on breast cancer transcriptomes and highlight the advantages of long-read isoform sequencing for understanding TE biology. TE-derived isoforms may alter the expression of genes important in cancer and can potentially be used as novel, disease-specific therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Alex Nesta
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Diogo F. T. Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083, Brazil
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Immunoledge LLC, Montclair, NJ, 07042, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Christine R. Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Gubaev R, Karzhaev D, Grigoreva E, Lytkin K, Safronycheva E, Volkov V, Nesterchuk V, Vetchinnikova L, Zhigunov A, Potokina E. Dissection of figured wood trait in curly birch (Betula pendula Roth var. carelica (Mercklin) Hämet-Ahti) using high-throughput genotyping. Sci Rep 2024; 14:5058. [PMID: 38424163 PMCID: PMC10904815 DOI: 10.1038/s41598-024-55404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Curly (Karelian) birch is a special variety of Betula pendula Roth distributed in the northwestern part of Europe. Karelian birch is well-known for its valuable figured curly wood also known as "wooden marble". The genetic basis underlying curly wood formation has been debated since last century, however, there was no data about loci responsible for the curly wood trait. In the present study, we analyzed two full-sibs populations derived from experimental crosses of curly birches and segregating for the trait. RADseq genotyping was applied to reveal how many loci are involved in 'curliness' formation and to search for genetic variants associated with this trait. One single interval on chromosome 10 was detected containing possible candidate genes. InDel marker BpCW1 was suggested for the first time for marker-assisted selection of trees with curly wood at their earliest stages of development.
Collapse
Affiliation(s)
- Rim Gubaev
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
| | - Dmitry Karzhaev
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
- Research Laboratory, Saint Petersburg Forest Research Institute, St. Petersburg, Russia
| | - Elizaveta Grigoreva
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
- Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria
| | - Kirill Lytkin
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
| | - Elizaveta Safronycheva
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
- Research Laboratory, Saint Petersburg Forest Research Institute, St. Petersburg, Russia
| | - Vladimir Volkov
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
- Research Laboratory, Saint Petersburg Forest Research Institute, St. Petersburg, Russia
| | - Veronika Nesterchuk
- Research Laboratory, Saint Petersburg Forest Research Institute, St. Petersburg, Russia
| | - Lidiia Vetchinnikova
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
- Forest Research Institute of Karelian Research Centre Russian Academy of Sciences, Petrozavodsk, Russia
| | - Anatoly Zhigunov
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
| | - Elena Potokina
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia.
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
4
|
Wang Z, Ying Y, Wang M, Chen Q, Wang Y, Yu X, He W, Li J, Zeng S, Xu C. Comprehensive identification of onco-exaptation events in bladder cancer cell lines revealed L1PA2-SYT1 as a prognosis-relevant event. iScience 2023; 26:108482. [PMID: 38058305 PMCID: PMC10696462 DOI: 10.1016/j.isci.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Transposable elements (TEs) can provide ectopic promoters to drive the expression of oncogenes in cancer, a mechanism known as onco-exaptation. Onco-exaptation events have been extensively identified in various cancers, with bladder cancer showing a high frequency of onco-exaptation events (77%). However, the effect of most of these events in bladder cancer remains unclear. This study identified 44 onco-exaptation events in 44 bladder cancer cell lines in 137 RNA-seq datasets from six publicly available cohorts, with L1PA2 contributing the most events. L1PA2-SYT1, L1PA2-MET, and L1PA2-XCL1 had the highest frequency not only in cell lines but also in TCGA-BLCA samples. L1PA2-SYT1 showed significant tumor specificity and was found to be activated by CpG island demethylation in its promoter. The upregulation of L1PA2-SYT1 enhances the in vitro invasion of bladder cancer and is an independent risk factor for patient's overall survival, suggesting L1PA2-SYT1 being an important event that promotes the development of bladder cancer.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yidie Ying
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Maoyu Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qing Chen
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yi Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xufeng Yu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei He
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing Li
- Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Moon S, Namkoong S. Ribonucleoprotein Granules: Between Stress and Transposable Elements. Biomolecules 2023; 13:1027. [PMID: 37509063 PMCID: PMC10377603 DOI: 10.3390/biom13071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Transposable elements (TEs) are DNA sequences that can transpose and replicate within the genome, leading to genetic changes that affect various aspects of host biology. Evolutionarily, hosts have also developed molecular mechanisms to suppress TEs at the transcriptional and post-transcriptional levels. Recent studies suggest that stress-induced formation of ribonucleoprotein (RNP) granules, including stress granule (SG) and processing body (P-body), can play a role in the sequestration of TEs to prevent transposition, suggesting an additional layer of the regulatory mechanism for TEs. RNP granules have been shown to contain factors involved in RNA regulation, including mRNA decay enzymes, RNA-binding proteins, and noncoding RNAs, which could potentially contribute to the regulation of TEs. Therefore, understanding the interplay between TEs and RNP granules is crucial for elucidating the mechanisms for maintaining genomic stability and controlling gene expression. In this review, we provide a brief overview of the current knowledge regarding the interplay between TEs and RNP granules, proposing RNP granules as a novel layer of the regulatory mechanism for TEs during stress.
Collapse
Affiliation(s)
- Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
6
|
Singhal K, Dhamija S, Mukerji M. Exonized Alu repeats in the 3'UTR of a CYP20A1_Alu-LT transcript act as a miRNA sponge. BMC Res Notes 2023; 16:32. [PMID: 36895043 PMCID: PMC9996890 DOI: 10.1186/s13104-023-06289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE Alu repeats have gained huge importance in the creation and modification of regulatory networks. We previously reported a unique isoform of human CYP20A1 i.e. CYP20A1_Alu-LT with 23 Alu repeats exonized in its 9 kb long 3'UTR with 4742 potential binding sites for 994 miRNAs. The role of this transcript was hypothesized as a potential miRNA sponge in primary neurons as its expression correlated with that of 380 genes having shared miRNA sites and enriched in neuro-coagulopathy. This study provides experimental evidence for the miRNA sponge activity of CYP20A1_Alu-LT in neuronal cell lines. RESULTS We studied the Alu-rich fragment of the CYP20A1_Alu-LT extended 3'UTR with > 10 binding sites for miR-619-5p and miR-3677-3p. Enrichment of the Alu-rich fragment with Ago2 confirmed miRNA association of this transcript. Cloning the fragment downstream of a reporter gene led to a 90% decrease in luciferase activity. Overexpression and knockdown studies revealed a positive correlation between the expression of CYP20A1_Alu-LT and miR-619-5p / miR-3677-3p target genes. GAP43, one of the key modulators of nerve regeneration, was significantly altered by the expression of CYP20A1_Alu-LT. This study, for the first time, provides evidence for a unique regulatory function of exonized Alu repeats as miRNA sponges.
Collapse
Affiliation(s)
- Khushboo Singhal
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, 110025, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, Uttar Pradesh, India
| | - Sonam Dhamija
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, 110025, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, Uttar Pradesh, India
| | - Mitali Mukerji
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, 110025, New Delhi, India. .,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, Uttar Pradesh, India. .,Department of Bioscience and Bioengineering, Indian Institute of Technology, 342037, Jodhpur, Rajasthan, India.
| |
Collapse
|
7
|
Zingone A, Sinha S, Ante M, Nguyen C, Daujotyte D, Bowman ED, Sinha N, Mitchell KA, Chen Q, Yan C, Loher P, Meerzaman D, Ruppin E, Ryan BM. A comprehensive map of alternative polyadenylation in African American and European American lung cancer patients. Nat Commun 2021; 12:5605. [PMID: 34556645 PMCID: PMC8460807 DOI: 10.1038/s41467-021-25763-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Deciphering the post-transcriptional mechanisms (PTM) regulating gene expression is critical to understand the dynamics underlying transcriptomic regulation in cancer. Alternative polyadenylation (APA)-regulation of mRNA 3'UTR length by alternating poly(A) site usage-is a key PTM mechanism whose comprehensive analysis in cancer remains an important open challenge. Here we use a method and analysis pipeline that sequences 3'end-enriched RNA directly to overcome the saturation limitation of traditional 5'-3' based sequencing. We comprehensively map the APA landscape in lung cancer in a cohort of 98 tumor/non-involved tissues derived from European American and African American patients. We identify a global shortening of 3'UTR transcripts in lung cancer, with notable functional implications on the expression of both coding and noncoding genes. We find that APA of non-coding RNA transcripts (long non-coding RNAs and microRNAs) is a recurrent event in lung cancer and discover that the selection of alternative polyA sites is a form of non-coding RNA expression control. Our results indicate that mRNA transcripts from EAs are two times more likely than AAs to undergo APA in lung cancer. Taken together, our findings comprehensively map and identify the important functional role of alternative polyadenylation in determining transcriptomic heterogeneity in lung cancer.
Collapse
Affiliation(s)
- Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Sanju Sinha
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Michael Ante
- Lexogen GmbH, Campus Vienna Biocenter 5, 1030, Vienna, Austria
- Ares Genetics GmbH, Karl-Farkas-Gasse 18, 1030, Vienna, Austria
| | - Cu Nguyen
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Dalia Daujotyte
- Lexogen GmbH, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Neelam Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Khadijah A Mitchell
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Qingrong Chen
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Chunhua Yan
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19017, US
| | - Daoud Meerzaman
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US.
| |
Collapse
|
8
|
Alluri RK, Li Z, McCrae KR. Stress Granule-Mediated Oxidized RNA Decay in P-Body: Hypothetical Role of ADAR1, Tudor-SN, and STAU1. Front Mol Biosci 2021; 8:672988. [PMID: 34150849 PMCID: PMC8211916 DOI: 10.3389/fmolb.2021.672988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative damage to RNA. Recent studies have suggested a role for oxidized RNA in several human disorders. Under the conditions of oxidative stress, mRNAs released from polysome dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched in mRNAs, containing inverted repeat (IR) Alus in 3′ UTRs, AU-rich elements, and RNA-binding proteins. SGs and processing bodies (P-bodies) transiently interact through a docking mechanism to allow the exchange of RNA species. However, the types of RNA species exchanged, and the mechanisms and outcomes of exchange are still unknown. Specialized RNA-binding proteins, including adenosine deaminase acting on RNA (ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and SG/P-body docking are uncertain. Here, we critically review relevant literature and propose a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.
Collapse
Affiliation(s)
- Ravi Kumar Alluri
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Zhongwei Li
- Biomedical Science Department, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Keith R McCrae
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
9
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
10
|
Herbert A. ALU non-B-DNA conformations, flipons, binary codes and evolution. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200222. [PMID: 32742689 PMCID: PMC7353975 DOI: 10.1098/rsos.200222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
ALUs contribute to genetic diversity by altering DNA's linear sequence through retrotransposition, recombination and repair. ALUs also have the potential to form alternative non-B-DNA conformations such as Z-DNA, triplexes and quadruplexes that alter the read-out of information from the genome. I suggest here these structures enable the rapid reprogramming of cellular pathways to offset DNA damage and regulate inflammation. The experimental data supporting this form of genetic encoding is presented. ALU sequence motifs that form non-B-DNA conformations under physiological conditions are called flipons. Flipons are binary switches. They are dissipative structures that trade energy for information. By efficiently targeting cellular machines to active genes, flipons expand the repertoire of RNAs compiled from a gene. Their action greatly increases the informational capacity of linearly encoded genomes. Flipons are programmable by epigenetic modification, synchronizing cellular events by altering both chromatin state and nucleosome phasing. Different classes of flipon exist. Z-flipons are based on Z-DNA and modify the transcripts compiled from a gene. T-flipons are based on triplexes and localize non-coding RNAs that direct the assembly of cellular machines. G-flipons are based on G-quadruplexes and sense DNA damage, then trigger the appropriate protective responses. Flipon conformation is dynamic, changing with context. When frozen in one state, flipons often cause disease. The propagation of flipons throughout the genome by ALU elements represents a novel evolutionary innovation that allows for rapid change. Each ALU insertion creates variability by extracting a different set of information from the neighbourhood in which it lands. By elaborating on already successful adaptations, the newly compiled transcripts work with the old to enhance survival. Systems that optimize flipon settings through learning can adapt faster than with other forms of evolution. They avoid the risk of relying on random and irreversible codon rewrites.
Collapse
|
11
|
Emmerich AC, Wellstein J, Ossipova E, Baumann I, Lengqvist J, Kultima K, Jakobsson PJ, Steinhilber D, Saul MJ. Proteomics-Based Characterization of miR-574-5p Decoy to CUGBP1 Suggests Specificity for mPGES-1 Regulation in Human Lung Cancer Cells. Front Pharmacol 2020; 11:196. [PMID: 32231562 PMCID: PMC7082395 DOI: 10.3389/fphar.2020.00196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) are one of the most important post-transcriptional repressors of gene expression. However, miR-574-5p has recently been shown to positively regulate the expression of microsomal prostaglandin E-synthase-1 (mPGES-1), a key enzyme in the prostaglandin E2 (PGE2) biosynthesis, by acting as decoy to the RNA-binding protein CUG-RNA binding protein 1 (CUGBP1) in human lung cancer. miR-574-5p exhibits oncogenic properties and promotes lung tumor growth in vivo via induction of mPGES-1-derived PGE2 synthesis. In a mass spectrometry-based proteomics study, we now attempted to characterize this decoy mechanism in A549 lung cancer cells at a cellular level. Besides the identification of novel CUGBP1 targets, we identified that the interaction between miR-574-5p and CUGBP1 specifically regulates mPGES-1 expression. This is supported by the fact that CUGBP1 and miR-574-5p are located in the nucleus, where CUGBP1 regulates alternative splicing. Further, in a bioinformatical approach we showed that the decoy-dependent mPGES-1 splicing pattern is unique. The specificity of miR-574-5p/CUGBP1 regulation on mPGES-1 expression supports the therapeutic strategy of pharmacological inhibition of PGE2 formation, which may provide significant therapeutic value for NSCLC patients with high miR-574-5p levels.
Collapse
Affiliation(s)
- Anne C Emmerich
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Julia Wellstein
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Elena Ossipova
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Isabell Baumann
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Johan Lengqvist
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Meike J Saul
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Pharmaceutical Chemistry, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
12
|
Saul MJ, Baumann I, Bruno A, Emmerich AC, Wellstein J, Ottinger SM, Contursi A, Dovizio M, Donnini S, Tacconelli S, Raouf J, Idborg H, Stein S, Korotkova M, Savai R, Terzuoli E, Sala G, Seeger W, Jakobsson PJ, Patrignani P, Suess B, Steinhilber D. miR-574-5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGES-1 induction. FASEB J 2019; 33:6933-6947. [PMID: 30922080 DOI: 10.1096/fj.201802547r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRs) are important posttranscriptional regulators of gene expression. Besides their well-characterized inhibitory effects on mRNA stability and translation, miRs can also activate gene expression. In this study, we identified a novel noncanonical function of miR-574-5p. We found that miR-574-5p acts as an RNA decoy to CUG RNA-binding protein 1 (CUGBP1) and antagonizes its function. MiR-574-5p induces microsomal prostaglandin E synthase-1 (mPGES-1) expression by preventing CUGBP1 binding to its 3'UTR, leading to an enhanced alternative splicing and generation of an mPGES-1 3'UTR isoform, increased mPGES-1 protein expression, PGE2 formation, and tumor growth in vivo. miR-574-5p-induced tumor growth in mice could be completely inhibited with the mPGES-1 inhibitor CIII. Moreover, miR-574-5p is induced by IL-1β and is strongly overexpressed in human nonsmall cell lung cancer where high mPGES-1 expression correlates with a low survival rate. The discovered function of miR-574-5p as a CUGBP1 decoy opens up new therapeutic opportunities. It might serve as a stratification marker to select lung tumor patients who respond to the pharmacological inhibition of PGE2 formation.-Saul, M. J., Baumann, I., Bruno, A., Emmerich, A. C., Wellstein, J., Ottinger, S. M., Contursi, A., Dovizio, M., Donnini, S., Tacconelli, S., Raouf, J., Idborg, H., Stein, S., Korotkova, M., Savai, R., Terzuoli, E., Sala, G., Seeger, W., Jakobsson, P.-J., Patrignani, P., Suess, B., Steinhilber, D. miR-574-5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGES-1 induction.
Collapse
Affiliation(s)
- Meike J Saul
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Isabell Baumann
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annalisa Bruno
- Department of Neuroscience, Imaging, and Clinical Science, Section of Cardiovascular and Pharmacological Sciences, School of Medicine, G. d'Annunzio University, Chieti, Italy.,Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Anne C Emmerich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julia Wellstein
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sarah M Ottinger
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annalisa Contursi
- Department of Neuroscience, Imaging, and Clinical Science, Section of Cardiovascular and Pharmacological Sciences, School of Medicine, G. d'Annunzio University, Chieti, Italy.,Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Melania Dovizio
- Department of Neuroscience, Imaging, and Clinical Science, Section of Cardiovascular and Pharmacological Sciences, School of Medicine, G. d'Annunzio University, Chieti, Italy.,Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging, and Clinical Science, Section of Cardiovascular and Pharmacological Sciences, School of Medicine, G. d'Annunzio University, Chieti, Italy.,Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Joan Raouf
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Idborg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, German Center for Lung Research (DZL), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Erika Terzuoli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Gianluca Sala
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy.,Department of Medical and Oral Sciences and Biotechnologies, G. d'Annunzio University, Chieti, Italy; and
| | - Werner Seeger
- Department of Lung Development and Remodeling, German Center for Lung Research (DZL), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine II, Marburg Lung Center (UGMLC), University of Giessen, Giessen, Germany
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Paola Patrignani
- Department of Neuroscience, Imaging, and Clinical Science, Section of Cardiovascular and Pharmacological Sciences, School of Medicine, G. d'Annunzio University, Chieti, Italy.,Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
13
|
Guio L, González J. New Insights on the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods Mol Biol 2019; 1910:505-530. [PMID: 31278675 DOI: 10.1007/978-1-4939-9074-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the abundance, diversity, and distribution of TEs in genomes is crucial to understand genome structure, function, and evolution. Advances in whole-genome sequencing techniques, as well as in bioinformatics tools, have increased our ability to detect and analyze the transposable element content in genomes. In addition to reference genomes, we now have access to population datasets in which multiple individuals within a species are sequenced. In this chapter, we highlight the recent advances in the study of TE population dynamics focusing on fruit flies and humans, which represent two extremes in terms of TE abundance, diversity, and activity. We review the most recent methodological approaches applied to the study of TE dynamics as well as the new knowledge on host factors involved in the regulation of TE activity. In addition to transposition rates, we also focus on TE deletion rates and on the selective forces that affect the dynamics of TEs in genomes.
Collapse
Affiliation(s)
- Lain Guio
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| |
Collapse
|
14
|
Transposable element dysregulation in systemic lupus erythematosus and regulation by histone conformation and Hsp90. Clin Immunol 2018; 197:6-18. [PMID: 30149120 DOI: 10.1016/j.clim.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/27/2023]
Abstract
Systemic lupus erythematosus (SLE) represents an autoimmune disease in which activation of the type I interferon pathway leads to dysregulation of tolerance and the generation of autoantibodies directed against nuclear constituents. The mechanisms driving the activation of the interferon pathway in SLE have been the subject of intense investigation but are still incompletely understood. Transposable elements represent an enormous source of RNA that could potentially stimulate the cell intrinsic RNA-recognition pathway, leading to upregulation of interferons. We used RNA-seq to define transposable element families and subfamilies in three cell types in SLE and found diverse effects on transposable element expression in the three cell types and even within a given family of transposable elements. When potential mechanisms were examined, we found that Hsp90 inhibition could drive increased expression of multiple type of transposable elements. Both direct inhibition and the delivery of a heat shock itself, which redirects heat shock regulators (including Hsp90) off of basal expression promoters and onto heat shock-responsive promoters, led to increased transposable element expression. This effect was amplified by the concurrent delivery of a histone deacetylase inhibitor. We conclude that transposable elements are dysregulated in SLE and there are tissue-specific effects and locus-specific effects. The magnitude of RNAs attributable to transposable elements makes their dysregulation of critical interest in SLE where transposable element RNA complexed with proteins has been shown to drive interferon expression.
Collapse
|
15
|
Sheinberger J, Shav-Tal Y. mRNPs meet stress granules. FEBS Lett 2017; 591:2534-2542. [DOI: 10.1002/1873-3468.12765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan Sheinberger
- The Mina & Everard Goodman Faculty of Life Sciences; Institute of Nanotechnology; Bar-Ilan University; Ramat Gan Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences; Institute of Nanotechnology; Bar-Ilan University; Ramat Gan Israel
| |
Collapse
|
16
|
Anwar SL, Wulaningsih W, Lehmann U. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation. Int J Mol Sci 2017; 18:E974. [PMID: 28471386 PMCID: PMC5454887 DOI: 10.3390/ijms18050974] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 01/04/2023] Open
Abstract
Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic diversity. TEs are therefore firmly regulated from early embryonic development and during the entire course of human life by epigenetic mechanisms, in particular DNA methylation and histone modifications. The deregulation of TEs has been reported in some developmental diseases, as well as for different types of human cancers. To date, the role of TEs, the mechanisms underlying TE reactivation, and the interplay with DNA methylation in human cancers remain largely unexplained. We reviewed the loss of epigenetic regulation and subsequent genomic instability, chromosomal aberrations, transcriptional deregulation, oncogenic activation, and aberrations of non-coding RNAs as the potential mechanisms underlying TE deregulation in human cancers.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Division of Surgical Oncology, Department of Surgery Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover 30625, Germany.
- PILAR (Philippine and Indonesian Scholar) Research and Education, 20 Station Road, Cambridge CB1 2JD, UK.
| | - Wahyu Wulaningsih
- PILAR (Philippine and Indonesian Scholar) Research and Education, 20 Station Road, Cambridge CB1 2JD, UK.
- MRC (Medical Research Council) Unit for Lifelong Health and Ageing, University College London, London WC1B 5JU, UK.
- Division of Haematology/Oncology, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover 30625, Germany.
| |
Collapse
|
17
|
Translational repression by a miniature inverted-repeat transposable element in the 3' untranslated region. Nat Commun 2017; 8:14651. [PMID: 28256530 PMCID: PMC5338036 DOI: 10.1038/ncomms14651] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
Transposable elements constitute a substantial portion of eukaryotic genomes and contribute to genomic variation, function, and evolution. Miniature inverted-repeat transposable elements (MITEs), as DNA transposons, are widely distributed in plant and animal genomes. Previous studies have suggested that retrotransposons act as translational regulators; however, it remains unknown how host mRNAs are influenced by DNA transposons. Here we report a translational repression mechanism mediated by a stowaway-like MITE (sMITE) embedded in the 3'-untranslated region (3'-UTR) of Ghd2, a member of the CCT (CONSTANS [CO], CO-LIKE and TIMING OF CAB1) gene family in rice. Ghd2 regulates important agronomic traits, including grain number, plant height and heading date. Interestingly, the translational repression of Ghd2 by the sMITE mainly relies on Dicer-like 3a (OsDCL3a). Furthermore, other MITEs in the 3'-UTRs of different rice genes exhibit a similar effect on translational repression, thus suggesting that MITEs may exert a general regulatory function at the translational level.
Collapse
|
18
|
Farré D, Engel P, Angulo A. Novel Role of 3'UTR-Embedded Alu Elements as Facilitators of Processed Pseudogene Genesis and Host Gene Capture by Viral Genomes. PLoS One 2016; 11:e0169196. [PMID: 28033411 PMCID: PMC5199112 DOI: 10.1371/journal.pone.0169196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
Since the discovery of the high abundance of Alu elements in the human genome, the interest for the functional significance of these retrotransposons has been increasing. Primate Alu and rodent Alu-like elements are retrotransposed by a mechanism driven by the LINE1 (L1) encoded proteins, the same machinery that generates the L1 repeats, the processed pseudogenes (PPs), and other retroelements. Apart from free Alu RNAs, Alus are also transcribed and retrotranscribed as part of cellular gene transcripts, generally embedded inside 3' untranslated regions (UTRs). Despite different proposed hypotheses, the functional implication of the presence of Alus inside 3'UTRs remains elusive. In this study we hypothesized that Alu elements in 3'UTRs could be involved in the genesis of PPs. By analyzing human genome data we discovered that the existence of 3'UTR-embedded Alu elements is overrepresented in genes source of PPs. In contrast, the presence of other retrotransposable elements in 3'UTRs does not show this PP linked overrepresentation. This research was extended to mouse and rat genomes and the results accordingly reveal overrepresentation of 3'UTR-embedded B1 (Alu-like) elements in PP parent genes. Interestingly, we also demonstrated that the overrepresentation of 3'UTR-embedded Alus is particularly significant in PP parent genes with low germline gene expression level. Finally, we provide data that support the hypothesis that the L1 machinery is also the system that herpesviruses, and possibly other large DNA viruses, use to capture host genes expressed in germline or somatic cells. Altogether our results suggest a novel role for Alu or Alu-like elements inside 3'UTRs as facilitators of the genesis of PPs, particularly in lowly expressed genes. Moreover, we propose that this L1-driven mechanism, aided by the presence of 3'UTR-embedded Alus, may also be exploited by DNA viruses to incorporate host genes to their viral genomes.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- * E-mail:
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
19
|
Abstract
Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms.
Collapse
Affiliation(s)
- Reyad A Elbarbary
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Bronwyn A Lucas
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. Center for RNA Biology, University of Rochester, Rochester, NY, USA. Department of Oncology, Wilmot Cancer Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
20
|
Li W, Park JY, Zheng D, Hoque M, Yehia G, Tian B. Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. BMC Biol 2016; 14:6. [PMID: 26801249 PMCID: PMC4724118 DOI: 10.1186/s12915-016-0229-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Most mammalian genes display alternative cleavage and polyadenylation (APA). Previous studies have indicated preferential expression of APA isoforms with short 3’ untranslated regions (3’UTRs) in testes. Results By deep sequencing of the 3’ end region of poly(A) + transcripts, we report widespread shortening of 3’UTR through APA during the first wave of spermatogenesis in mouse, with 3’UTR size being the shortest in spermatids. Using genes without APA as a control, we show that shortening of 3’UTR eliminates destabilizing elements, such as U-rich elements and transposable elements, which appear highly potent during spermatogenesis. We additionally found widespread regulation of APA events in introns and exons that can affect the coding sequence of transcripts and global activation of antisense transcripts upstream of the transcription start site, suggesting modulation of splicing and initiation of transcription during spermatogenesis. Importantly, genes that display significant 3’UTR shortening tend to have functions critical for further sperm maturation, and testis-specific genes display greater 3’UTR shortening than ubiquitously expressed ones, indicating functional relevance of APA to spermatogenesis. Interestingly, genes with shortened 3’UTRs tend to have higher RNA polymerase II and H3K4me3 levels in spermatids as compared to spermatocytes, features previously known to be associated with open chromatin state. Conclusions Our data suggest that open chromatin may create a favorable cis environment for 3’ end processing, leading to global shortening of 3’UTR during spermatogenesis. mRNAs with shortened 3’UTRs are relatively stable thanks to evasion of powerful mRNA degradation mechanisms acting on 3’UTR elements. Stable mRNAs generated in spermatids may be important for protein production at later stages of sperm maturation, when transcription is globally halted. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wencheng Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ji Yeon Park
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ghassan Yehia
- Transgenic Core Facility, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA. .,Rutgers Cancer Institute of New Jersey, Newark, NJ, USA.
| |
Collapse
|
21
|
Caudron-Herger M, Pankert T, Seiler J, Németh A, Voit R, Grummt I, Rippe K. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J 2015; 34:2758-74. [PMID: 26464461 DOI: 10.15252/embj.201591458] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023] Open
Abstract
Non-coding RNAs play a key role in organizing the nucleus into functional subcompartments. By combining fluorescence microscopy and RNA deep-sequencing-based analysis, we found that RNA polymerase II transcripts originating from intronic Alu elements (aluRNAs) were enriched in the nucleolus. Antisense-oligo-mediated depletion of aluRNAs or drug-induced inhibition of RNA polymerase II activity disrupted nucleolar structure and impaired RNA polymerase I-dependent transcription of rRNA genes. In contrast, overexpression of a prototypic aluRNA sequence increased both nucleolus size and levels of pre-rRNA, suggesting a functional link between aluRNA, nucleolus integrity and pre-rRNA synthesis. Furthermore, we show that aluRNAs interact with nucleolin and target ectopic genomic loci to the nucleolus. Our study suggests an aluRNA-based mechanism that links RNA polymerase I and II activities and modulates nucleolar structure and rRNA production.
Collapse
Affiliation(s)
- Maïwen Caudron-Herger
- Genome Organization & Function, German Cancer Research Center (DKFZ) Bioquant Center, Heidelberg, Germany
| | - Teresa Pankert
- Genome Organization & Function, German Cancer Research Center (DKFZ) Bioquant Center, Heidelberg, Germany
| | - Jeanette Seiler
- Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | - Attila Németh
- Department of Biochemistry III, Biochemistry Center Regensburg University of Regensburg, Regensburg, Germany
| | - Renate Voit
- Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | - Ingrid Grummt
- Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | - Karsten Rippe
- Genome Organization & Function, German Cancer Research Center (DKFZ) Bioquant Center, Heidelberg, Germany
| |
Collapse
|
22
|
Abstract
mRNA transcripts containing inverted Alu elements (IRAlus) in the 3′ untranslated region (UTR) are retained within the nucleus at paraspeckles. Here, Maquat and Elbarbary lend their perspective on the recent report by Hu et al. (in the March 15, 2015, issue of Genes & Development) on the role of the CARM1 methyltransferase in promoting nuclear export of 3′ UTR IRAlus mRNAs from nuclear paraspeckles. A subset of messenger RNAs (mRNAs) that contain inverted Alu elements in their 3′ untranslated region are inefficiently exported to the cytoplasm and retained in subnuclear bodies called paraspeckles. The arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1) promotes the nuclear export of these mRNAs by methylating the paraspeckle component p54nrb, which reduces the binding of p54nrb to the inverted Alu elements, and down-regulating synthesis of another paraspeckle component, the long noncoding RNA NEAT1, which inhibits paraspeckle formation.
Collapse
Affiliation(s)
- Reyad A Elbarbary
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA; Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA; Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
23
|
Abstract
Alu element is the most successful transposon and it maintains a high level of content in primate genome. However, despite the fact that the expression level of independent Alu element is rather low under common condition, an increasing number of the observations for the Alu transcripts in cells and tissues have been reported recently. Alu transcripts play key roles in the network of gene expression regulation. The main functions of Alu transcript focus on gene regulation both at transcriptional and post-transcriptional levels. This review summarizes major functions of Alu transcripts on gene expression and highlights molecular mechanisms dependent on conserved sequence or secondary structure in order to unravel a relative ubiquitous way that Alu transcript uses to affect the whole genome.
Collapse
Affiliation(s)
- Li Zhang
- Laboratory of Fully Human Antibody Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Ju-Gao Chen
- Department of Oncology, The Second Clinical Medical college (Shenzhen People׳s Hospital), Jinan University, Shenzhen, Guangdong, China
| | - Qi Zhao
- Laboratory of Fully Human Antibody Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
24
|
Abstract
Alus are transposable elements belonging to the short interspersed element family. They occupy over 10% of human genome and have been spreading through genomes over the past 65 million years. In the past, they were considered junk DNA with little function that took up genome volumes. Today, Alus and other transposable elements emerge to be key players in cellular function, including genomic activities, gene expression regulations, and evolution. Here we summarize the current understanding of Alu function in genome and gene expression regulation in human cell nuclei.
Collapse
Affiliation(s)
- Chen Wang
- Department of Cell and Molecular Biology; Northwestern University; Feinberg School of Medicine; Chicago, IL USA
| | - Sui Huang
- Department of Cell and Molecular Biology; Northwestern University; Feinberg School of Medicine; Chicago, IL USA
| |
Collapse
|
25
|
Ng SK, Weissbach R, Ronson GE, Scadden ADJ. Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res 2013; 41:9786-99. [PMID: 23982513 PMCID: PMC3834823 DOI: 10.1093/nar/gkt750] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Long double-stranded RNA may undergo hyper-editing by adenosine deaminases that act on RNA (ADARs), where up to 50% of adenosine residues may be converted to inosine. However, although numerous RNAs may undergo hyper-editing, the role for inosine-containing hyper-edited double-stranded RNA in cells is poorly understood. Nevertheless, editing plays a critical role in mammalian cells, as highlighted by the analysis of ADAR-null mutants. In particular, the long form of ADAR1 (ADAR1p150) is essential for viability. Moreover, a number of studies have implicated ADAR1p150 in various stress pathways. We have previously shown that ADAR1p150 localized to cytoplasmic stress granules in HeLa cells following either oxidative or interferon-induced stress. Here, we show that the Z-DNA-binding domain (ZαADAR1) exclusively found in ADAR1p150 is required for its localization to stress granules. Moreover, we show that fusion of ZαADAR1 to either green fluorescent protein (GFP) or polypyrimidine binding protein 4 (PTB4) also results in their localization to stress granules. We additionally show that the Zα domain from other Z-DNA-binding proteins (ZBP1, E3L) is likewise sufficient for localization to stress granules. Finally, we show that Z-RNA or Z-DNA binding is important for stress granule localization. We have thus identified a novel role for Z-DNA-binding domains in mammalian cells.
Collapse
Affiliation(s)
- Siew Kit Ng
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | |
Collapse
|
26
|
Elbarbary RA, Li W, Tian B, Maquat LE. STAU1 binding 3' UTR IRAlus complements nuclear retention to protect cells from PKR-mediated translational shutdown. Genes Dev 2013; 27:1495-510. [PMID: 23824540 PMCID: PMC3713430 DOI: 10.1101/gad.220962.113] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/29/2013] [Indexed: 11/24/2022]
Abstract
For a number of human genes that encode transcripts containing inverted repeat Alu elements (IRAlus) within their 3' untranslated region (UTR), product mRNA is efficiently exported to the cytoplasm when the IRAlus, which mediate nuclear retention, are removed by alternative polyadenylation. Here we report a new mechanism that promotes gene expression by targeting mRNAs that maintain their 3' UTR IRAlus: Binding of the dsRNA-binding protein Staufen1 (STAU1) to 3' UTR IRAlus inhibits nuclear retention so as to augment the nuclear export of 3' UTR IRAlus-containing mRNAs (IRAlus mRNAs). Moreover, we found that 3' UTR IRAlus-bound STAU1 enhances 3' UTR IRAlus mRNA translation by precluding protein kinase R (PKR) binding, which obviates PKR activation, eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, and repression of global cell translation. Thus, STAU1 binding to 3' UTR IRAlus functions along with 3' UTR IRAlus-mediated nuclear retention to suppress the shutdown of cellular translation triggered by PKR binding to endogenous cytoplasmic dsRNAs. We also show that a changing STAU1/PKR ratio contributes to myogenesis via effects on the 3' UTR IRAlus of mRNA encoding the microRNA-binding protein LIN28.
Collapse
Affiliation(s)
- Reyad A. Elbarbary
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Wencheng Li
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey 07101, USA
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey 07101, USA
| | - Lynne E. Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|