1
|
Wang C, Chen Z, Copenhaver GP, Wang Y. Heterochromatin in plant meiosis. Nucleus 2024; 15:2328719. [PMID: 38488152 PMCID: PMC10950279 DOI: 10.1080/19491034.2024.2328719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Heterochromatin is an organizational property of eukaryotic chromosomes, characterized by extensive DNA and histone modifications, that is associated with the silencing of transposable elements and repetitive sequences. Maintaining heterochromatin is crucial for ensuring genomic integrity and stability during the cell cycle. During meiosis, heterochromatin is important for homologous chromosome synapsis, recombination, and segregation, but our understanding of meiotic heterochromatin formation and condensation is limited. In this review, we focus on the dynamics and features of heterochromatin and how it condenses during meiosis in plants. We also discuss how meiotic heterochromatin influences the interaction and recombination of homologous chromosomes during prophase I.
Collapse
Affiliation(s)
- Cong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhiyu Chen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yingxiang Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
2
|
Zhang Q, Tao C, Gao S, Li S, Xu B, Ke H, Wang Y, Zhang F, Qin Y, Zhang L, Guo T. Homozygous Variant in KASH5 Causes Premature Ovarian Insufficiency by Disordered Meiotic Homologous Pairing. J Clin Endocrinol Metab 2022; 107:2589-2597. [PMID: 35708642 DOI: 10.1210/clinem/dgac368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Premature ovarian insufficiency (POI) affects 1% to 3.7% of women at reproductive age, and its etiology is heterogeneous. The linker of nucleoskeleton and cytoskeleton (LINC) complex, consisting of KASH5 and SUN1, plays an indispensable role in meiotic homolog pairing, determining the ovarian reserve. However, their roles in the pathogenesis of POI are unknown. OBJECTIVE To investigate the role of KASH5 variation in the pathogenesis of POI. DESIGN Whole-exome sequencing was performed in a pedigree with 2 POI patients. The pathogenicity of identified variant was illustrated by in vitro functional studies, and its effect on ovarian function and meiosis was confirmed by histological analysis and oocyte spreads with Kash5 C-terminal deleted mice model. RESULTS A homozygous splicing site variant in KASH5 (c.747G > A) was identified. In vitro studies found the variant disturbed the nuclear membrane localization of KASH5 and its binding with SUN1. Moreover, the Kash5 C-terminal deleted mice revealed defective meiotic homolog pairing and accelerated depletion of oocytes. CONCLUSIONS The splicing site variant in KASH5 is responsible for POI due to defective meiotic homolog pairing and accelerated depletion of oocytes. Our study is the first to report disorganized LINC complex participating in POI pathogenesis, potentially suggesting the essential roles of meiotic telomere attachment and dynein-driven proteins for chromosome movement in ovarian function maintenance.
Collapse
Affiliation(s)
- Qian Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Chengqiu Tao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Shuchang Gao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Bingying Xu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Hanni Ke
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yiyang Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Feng Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| |
Collapse
|
3
|
Chen Y, Wang Y, Chen J, Zuo W, Fan Y, Huang S, Liu Y, Chen G, Li Q, Li J, Wu J, Bian Q, Huang C, Lei M. The SUN1-SPDYA interaction plays an essential role in meiosis prophase I. Nat Commun 2021; 12:3176. [PMID: 34039995 PMCID: PMC8155084 DOI: 10.1038/s41467-021-23550-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Chromosomes pair and synapse with their homologous partners to segregate correctly at the first meiotic division. Association of telomeres with the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex composed of SUN1 and KASH5 enables telomere-led chromosome movements and telomere bouquet formation, facilitating precise pairwise alignment of homologs. Here, we identify a direct interaction between SUN1 and Speedy A (SPDYA) and determine the crystal structure of human SUN1-SPDYA-CDK2 ternary complex. Analysis of meiosis prophase I process in SPDYA-binding-deficient SUN1 mutant mice reveals that the SUN1-SPDYA interaction is required for the telomere-LINC complex connection and the assembly of a ring-shaped telomere supramolecular architecture at the nuclear envelope, which is critical for efficient homologous pairing and synapsis. Overall, our results provide structural insights into meiotic telomere structure that is essential for meiotic prophase I progression. Telomeres attach to the nuclear envelope to facilitate homolog pairing during meiosis prophase I. Here, the authors show that SUN1 and SPDYA interact, and demonstrate that this interaction is important for telomere structure and function, and essential to mice gametogenesis.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Wu Zuo
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Fan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Sijia Huang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Yongmei Liu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Guangming Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China.,Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Zhenjiang, China
| | - Qing Li
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Chenhui Huang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China. .,Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Kmonickova V, Frolikova M, Steger K, Komrskova K. The Role of the LINC Complex in Sperm Development and Function. Int J Mol Sci 2020; 21:E9058. [PMID: 33260574 PMCID: PMC7730847 DOI: 10.3390/ijms21239058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex is localized within the nuclear envelope and consists of SUN (Sad1/UNc84 homology domain-containing) proteins located in the inner nuclear membrane and KASH (Klarsicht/Anc1/Syne1 homology domain-containing) proteins located in the outer nuclear membrane, hence linking nuclear with cytoplasmic structures. While the nucleoplasm-facing side acts as a key player for correct pairing of homolog chromosomes and rapid chromosome movements during meiosis, the cytoplasm-facing side plays a pivotal role for sperm head development and proper acrosome formation during spermiogenesis. A further complex present in spermatozoa is involved in head-to-tail coupling. An intact LINC complex is crucial for the production of fertile sperm, as mutations in genes encoding for complex proteins are known to be associated with male subfertility in both mice and men. The present review provides a comprehensive overview on our current knowledge of LINC complex subtypes present in germ cells and its central role for male reproduction. Future studies on distinct LINC complex components are an absolute requirement to improve the diagnosis of idiopathic male factor infertility and the outcome of assisted reproduction.
Collapse
Affiliation(s)
- Vera Kmonickova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Molecular Andrology, Justus-Liebig University, 35392 Giessen, Germany;
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| |
Collapse
|
5
|
Greither T, Schumacher J, Dejung M, Behre HM, Zischler H, Butter F, Herlyn H. Fertility Relevance Probability Analysis Shortlists Genetic Markers for Male Fertility Impairment. Cytogenet Genome Res 2020; 160:506-522. [PMID: 33238277 DOI: 10.1159/000511117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Impairment of male fertility is one of the major public health issues worldwide. Nevertheless, genetic causes of male sub- and infertility can often only be suspected due to the lack of reliable and easy-to-use routine tests. Yet, the development of a marker panel is complicated by the large quantity of potentially predictive markers. Actually, hundreds or even thousands of genes could have fertility relevance. Thus, a systematic method enabling a selection of the most predictive markers out of the many candidates is required. As a criterion for marker selection, we derived a gene-specific score, which we refer to as fertility relevance probability (FRP). For this purpose, we first categorized 2,753 testis-expressed genes as either candidate markers or non-candidates, according to phenotypes in male knockout mice. In a parallel approach, 2,502 genes were classified as candidate markers or non-candidates based on phenotypes in men. Subsequently, we conducted logistic regression analyses with evolutionary rates of genes (dN/dS), transcription levels in testis relative to other organs, and connectivity of the encoded proteins in a protein-protein interaction network as covariates. In confirmation of the procedure, FRP values showed the expected pattern, thus being overall higher in genes with known relevance for fertility than in their counterparts without corresponding evidence. In addition, higher FRP values corresponded with an increased dysregulation of protein abundance in spermatozoa of 37 men with normal and 38 men with impaired fertility. Present analyses resulted in a ranking of genes according to their probable predictive power as candidate markers for male fertility impairment. Thus, AKAP4, TNP1, DAZL, BRDT, DMRT1, SPO11, ZPBP, HORMAD1, and SMC1B are prime candidates toward a marker panel for male fertility impairment. Additional candidate markers are DDX4, SHCBP1L, CCDC155, ODF1, DMRTB1, ASZ1, BOLL, FKBP6, SLC25A31, PRSS21, and RNF17. FRP inference additionally provides clues for potential new markers, thereunder TEX37 and POU4F2. The results of our logistic regression analyses are freely available at the PreFer Genes website (https://prefer-genes.uni-mainz.de/).
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Julia Schumacher
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mario Dejung
- Quantitative Proteomics, Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hans Zischler
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany,
| |
Collapse
|
6
|
Alena SK, Eva B, Aleš K, Emilie L. Spatiotemporal Mislocalization of Nuclear Membrane-Associated Proteins in γ-Irradiation-Induced Senescent Cells. Cells 2020; 9:E999. [PMID: 32316379 PMCID: PMC7227243 DOI: 10.3390/cells9040999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular senescence, induced by genotoxic or replication stress, is accompanied by defects in nuclear morphology and nuclear membrane-heterochromatin disruption. In this work, we analyzed cytological and molecular changes in the linker of nucleoskeleton and cytoskeleton (LINC) complex proteins in senescence triggered by γ-irradiation. We used human mammary carcinoma and osteosarcoma cell lines, both original and shRNA knockdown clones targeting lamin B receptor (LBR) and leading to LBR and lamin B (LB1) reduction. The expression status and integrity of LINC complex proteins (nesprin-1, SUN1, SUN2), lamin A/C, and emerin were analyzed by immunodetection using confocal microscopy and Western blot. The results show frequent mislocalization of these proteins from the nuclear membrane to cytoplasm and micronuclei and, in some cases, their fragmentation and amplification. The timing of these changes clearly preceded the onset of senescence. The LBR deficiency triggered neither senescence nor changes in the LINC protein distribution before irradiation. However, the cytological changes following irradiation were more pronounced in shRNA knockdown cells compared to original cell lines. We conclude that mislocalization of LINC complex proteins is a significant characteristic of cellular senescence phenotypes and may influence complex events at the nuclear membrane, including trafficking and heterochromatin attachment.
Collapse
Affiliation(s)
- Svobodová Kovaříková Alena
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (S.K.A.); (B.E.)
| | - Bártová Eva
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (S.K.A.); (B.E.)
| | - Kovařík Aleš
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Lukášová Emilie
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
- Laboratory of Cell Biology and Radiobiology and Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| |
Collapse
|
7
|
Dunne OM, Davies OR. Molecular structure of human synaptonemal complex protein SYCE1. Chromosoma 2019; 128:223-236. [PMID: 30607510 PMCID: PMC6823292 DOI: 10.1007/s00412-018-00688-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
The reduction in chromosome number during meiosis is essential for the production of haploid germ cells and thereby fertility. To achieve this, homologous chromosomes are first synapsed together by a protein assembly, the synaptonemal complex (SC), which permits genetic exchange by crossing over and the subsequent accurate segregation of homologues. The mammalian SC is formed of a zipper-like array of SYCP1 molecules that bind together homologous chromosomes through self-assembly in the midline that is structurally supported by the central element. The SC central element contains five proteins—SYCE1, SYCE3, SIX6OS1, and SYCE2-TEX12—that permit SYCP1 assembly to extend along the chromosome length to achieve full synapsis. Here, we report the structure of human SYCE1 through solution biophysical methods including multi-angle light scattering and small-angle X-ray scattering. The structural core of SYCE1 is formed by amino acids 25–179, within the N-terminal half of the protein, which mediates SYCE1 dimerization. This α-helical core adopts a curved coiled-coil structure of 20-nm length in which the two chains are arranged in an anti-parallel configuration. This structure is retained within full-length SYCE1, in which long C-termini adopt extended conformations to achieve an elongated molecule of over 50 nm in length. The SYCE1 structure is compatible with it functioning as a physical strut that tethers other components to achieve structural stability of the SC central element.
Collapse
Affiliation(s)
- Orla M Dunne
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
8
|
Janin A, Gache V. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Front Physiol 2018; 9:1277. [PMID: 30245638 PMCID: PMC6137955 DOI: 10.3389/fphys.2018.01277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the inner nuclear transmembrane protein emerin in the early 1990s, nuclear envelope (NE) components and related involvement in nuclei integrity and functionality have been highly investigated. The NE is composed of two distinct lipid bilayers described as the inner (INM) and outer (ONM) nuclear membrane. NE proteins can be specifically “integrated” in the INM (such as emerin and SUN proteins) or in the ONM such as nesprins. Additionally, flanked to the INM, the nuclear lamina, a proteinaceous meshwork mainly composed of lamins A and C completes NE composition. This network of proteins physically interplays to guarantee NE integrity and most importantly, shape the bridge between cytoplasmic cytoskeletons networks (such as microtubules and actin) and the genome, through the anchorage to the heterochromatin. The essential network driving the connection of nucleoskeleton with cytoskeleton takes place in the perinuclear space (the space between ONM and INM) with the contribution of the LINC complex (for Linker of Nucleoskeleton to Cytoskeleton), hosting KASH and SUN proteins interactions. This close interplay between compartments has been related to diverse functions from nuclear integrity, activity and positioning through mechanotransduction pathways. At the same time, mutations in NE components genes coding for proteins such as lamins or nesprins, had been associated with a wide range of congenital diseases including cardiac and muscular diseases. Although most of these NE associated proteins are ubiquitously expressed, a large number of tissue-specific disorders have been associated with diverse pathogenic mutations. Thus, diagnosis and molecular explanation of this group of diseases, commonly called “nuclear envelopathies,” is currently challenging. This review aims, first, to give a better understanding of diverse functions of the LINC complex components, from the point of view of lamins and nesprins. Second, to summarize human congenital diseases with a special focus on muscle and heart abnormalities, caused by mutations in genes coding for these two types of NE associated proteins.
Collapse
Affiliation(s)
- Alexandre Janin
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Vincent Gache
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
9
|
Kozono T, Tadahira K, Okumura W, Itai N, Tamura-Nakano M, Dohi T, Tonozuka T, Nishikawa A. Jaw1/LRMP has a role in maintaining nuclear shape via interaction with SUN proteins. J Biochem 2018; 164:303-311. [DOI: 10.1093/jb/mvy053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Takuma Kozono
- Department of Food and Energy Systems Science, Graduate School of Bio-Applications Systems Engineering, 3-5-8 Saiwai-cho, Fuchu, Tokyo, Japan
| | - Kazuko Tadahira
- Division of Applied Biological Chemistry, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, Japan
| | - Wataru Okumura
- Department of Food and Energy Systems Science, Graduate School of Bio-Applications Systems Engineering, 3-5-8 Saiwai-cho, Fuchu, Tokyo, Japan
| | - Nao Itai
- Division of Applied Biological Chemistry, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Taeko Dohi
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, Japan
| | - Takashi Tonozuka
- Division of Applied Biological Chemistry, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, Japan
| | - Atsushi Nishikawa
- Department of Food and Energy Systems Science, Graduate School of Bio-Applications Systems Engineering, 3-5-8 Saiwai-cho, Fuchu, Tokyo, Japan
- Division of Applied Biological Chemistry, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, Japan
| |
Collapse
|
10
|
Enguita-Marruedo A, Van Cappellen WA, Hoogerbrugge JW, Carofiglio F, Wassenaar E, Slotman JA, Houtsmuller A, Baarends WM. Live cell analyses of synaptonemal complex dynamics and chromosome movements in cultured mouse testis tubules and embryonic ovaries. Chromosoma 2018; 127:341-359. [PMID: 29582139 PMCID: PMC6096571 DOI: 10.1007/s00412-018-0668-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/27/2023]
Abstract
During mammalian meiotic prophase, homologous chromosomes connect through the formation of the synaptonemal complex (SC). SYCP3 is a component of the lateral elements of the SC. We have generated transgenic mice expressing N- or C-terminal fluorescent-tagged SYCP3 (mCherry-SYCP3 (CSYCP) and SYCP3-mCherry (SYCPC)) to study SC dynamics and chromosome movements in vivo. Neither transgene rescued meiotic aberrations in Sycp3 knockouts, but CSYCP could form short axial element-like structures in the absence of endogenous SYCP3. On the wild-type background, both fusion proteins localized to the axes of the SC together with endogenous SYCP3, albeit with delayed initiation (from pachytene) in spermatocytes. Around 40% of CSYCP and SYCPC that accumulated on the SC was rapidly exchanging with other tagged proteins, as analyzed by fluorescent recovery after photobleaching (FRAP) assay. We used the CSYCP transgenic mice for further live cell analyses and observed synchronized bouquet configurations in living cysts of two or three zygotene oocyte nuclei expressing CSYCP, which presented cycles of telomere clustering and dissolution. Rapid chromosome movements were observed in both zygotene oocytes and pachytene spermatocytes, but rotational movements of the nucleus were more clear in oocytes. In diplotene spermatocytes, desynapsis was found to proceed in a discontinuous manner, whereby even brief chromosome re-association events were observed. Thus, this live imaging approach can be used to follow changes in the dynamic behavior of the nucleus and chromatin, in normal mice and different infertile mouse models.
Collapse
Affiliation(s)
- Andrea Enguita-Marruedo
- Department of Developmental Biology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Wiggert A Van Cappellen
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Jos W Hoogerbrugge
- Department of Developmental Biology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Fabrizia Carofiglio
- Department of Developmental Biology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Johan A Slotman
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Adriaan Houtsmuller
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Nesprin-1/2: roles in nuclear envelope organisation, myogenesis and muscle disease. Biochem Soc Trans 2018; 46:311-320. [PMID: 29487227 DOI: 10.1042/bst20170149] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 02/05/2023]
Abstract
Nesprins (nuclear envelope spectrin repeat proteins) are multi-isomeric scaffolding proteins. Nesprin-1 and -2 are highly expressed in skeletal and cardiac muscles and together with SUN (Sad1p/UNC84) domain-containing proteins form the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex at the nuclear envelope in association with lamin A/C and emerin. Mutations in nesprin-1/2 have been found in patients with autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) as well as dilated cardiomyopathy (DCM). Several lines of evidence indicate that compromised LINC complex function is the critical step leading to muscle disease. Here, we review recent advances in our understanding of the functions of nesprin-1/2 in the LINC complex and mechanistic insights into how mutations in nesprin-1/2 lead to nesprin-related muscle diseases, in particular DCM and EDMD.
Collapse
|
12
|
Majumder S, Willey PT, DeNies MS, Liu AP, Luxton GWG. A synthetic biology platform for the reconstitution and mechanistic dissection of LINC complex assembly. J Cell Sci 2018; 132:jcs.219451. [DOI: 10.1242/jcs.219451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/19/2018] [Indexed: 11/20/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) is a conserved nuclear envelope-spanning molecular bridge that is responsible for the mechanical integration of the nucleus with the cytoskeleton. LINC complexes are formed by a transluminal interaction between the outer and inner nuclear membrane KASH and SUN proteins, respectively. Despite recent structural insights, our mechanistic understanding of LINC complex assembly remains limited by the lack of an experimental system for its in vitro reconstitution and manipulation. Here, we describe artificial nuclear membranes (ANMs) as a synthetic biology platform based on mammalian cell-free expression for the rapid reconstitution of SUN proteins in supported lipid bilayers. We demonstrate that SUN1 and SUN2 are oriented in ANMs with solvent-exposed C-terminal KASH-binding SUN domains. We also find that SUN2 possesses a single transmembrane domain, while SUN1 possesses three. Finally, SUN protein-containing ANMs bind synthetic KASH peptides, thereby reconstituting the LINC complex core. This work represents the first in vitro reconstitution of KASH-binding SUN proteins in supported lipid bilayers using cell-free expression, which will be invaluable for testing proposed models of LINC complex assembly and its regulation.
Collapse
Affiliation(s)
- Sagardip Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Patrick T. Willey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maxwell S. DeNies
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48019, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48019, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48019, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48019, USA
| | - G. W. Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Elosegui-Artola A, Andreu I, Beedle AE, Lezamiz A, Uroz M, Kosmalska AJ, Oria R, Kechagia JZ, Rico-Lastres P, Le Roux AL, Shanahan CM, Trepat X, Navajas D, Garcia-Manyes S, Roca-Cusachs P. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores. Cell 2017; 171:1397-1410.e14. [DOI: 10.1016/j.cell.2017.10.008] [Citation(s) in RCA: 519] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/14/2017] [Accepted: 10/04/2017] [Indexed: 12/28/2022]
|
14
|
The Nucleoporin Nup2 Contains a Meiotic-Autonomous Region that Promotes the Dynamic Chromosome Events of Meiosis. Genetics 2017; 206:1319-1337. [PMID: 28455351 DOI: 10.1534/genetics.116.194555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a specialized cellular program required to create haploid gametes from diploid parent cells. Homologous chromosomes pair, synapse, and recombine in a dynamic environment that accommodates gross chromosome reorganization and significant chromosome motion, which are critical for normal chromosome segregation. In Saccharomyces cerevisiae, Ndj1 is a meiotic telomere-associated protein required for physically attaching telomeres to proteins embedded in the nuclear envelope. In this study, we identified additional proteins that act at the nuclear periphery from meiotic cell extracts, including Nup2, a nonessential nucleoporin with a known role in tethering interstitial chromosomal loci to the nuclear pore complex. We found that deleting NUP2 affects meiotic progression and spore viability, and gives increased levels of recombination intermediates and products. We identified a previously uncharacterized 125 aa region of Nup2 that is necessary and sufficient for its meiotic function, thus behaving as a meiotic autonomous region (MAR). Nup2-MAR forms distinct foci on spread meiotic chromosomes, with a subset overlapping with Ndj1 foci. Localization of Nup2-MAR to meiotic chromosomes does not require Ndj1, nor does Ndj1 localization require Nup2, suggesting these proteins function in different pathways, and their interaction is weak or indirect. Instead, several severe synthetic phenotypes are associated with the nup2Δ ndj1Δ double mutant, including delayed turnover of recombination joint molecules, and a failure to undergo nuclear divisions without also arresting the meiotic program. These data suggest Nup2 and Ndj1 support partially overlapping functions that promote two different levels of meiotic chromosome organization necessary to withstand a dynamic stage of the eukaryotic life cycle.
Collapse
|
15
|
Telomere homeostasis in mammalian germ cells: a review. Chromosoma 2015; 125:337-51. [DOI: 10.1007/s00412-015-0555-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/03/2023]
|
16
|
Lee CY, Horn HF, Stewart CL, Burke B, Bolcun-Filas E, Schimenti JC, Dresser ME, Pezza RJ. Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes. Cell Rep 2015; 11:551-63. [PMID: 25892231 DOI: 10.1016/j.celrep.2015.03.045] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/21/2015] [Accepted: 03/23/2015] [Indexed: 01/08/2023] Open
Abstract
Telomere-led rapid prophase movements (RPMs) in meiotic prophase have been observed in diverse eukaryote species. A shared feature of RPMs is that the force that drives the chromosomal movements is transmitted from the cytoskeleton, through the nuclear envelope, to the telomeres. Studies in mice suggested that dynein movement along microtubules is transmitted to telomeres through SUN1/KASH5 nuclear envelope bridges to generate RPMs. We monitored RPMs in mouse seminiferous tubules using 4D fluorescence imaging and quantitative motion analysis to characterize patterns of movement in the RPM process. We find that RPMs reflect a combination of nuclear rotation and individual chromosome movements. The telomeres move along microtubule tracks that are apparently continuous with the cytoskeletal network and exhibit characteristic arrangements at different stages of prophase. Quantitative measurements confirmed that SUN1/KASH5, microtubules, and dynein, but not actin, were necessary for RPMs and that defects in meiotic recombination and synapsis resulted in altered RPMs.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Henning F Horn
- Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Colin L Stewart
- Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Brian Burke
- Laborotory of Nuclear Dynamics and Architecture, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | | | - John C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Michael E Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Roberto J Pezza
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
17
|
Tran EJ, King MC, Corbett AH. Macromolecular transport between the nucleus and the cytoplasm: Advances in mechanism and emerging links to disease. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2784-2795. [PMID: 25116306 PMCID: PMC4161953 DOI: 10.1016/j.bbamcr.2014.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 01/08/2023]
Abstract
Transport of macromolecules between the cytoplasm and the nucleus is critical for the function of all eukaryotic cells. Large macromolecular channels termed nuclear pore complexes that span the nuclear envelope mediate the bidirectional transport of cargoes between the nucleus and cytoplasm. However, the influence of macromolecular trafficking extends past the nuclear pore complex to transcription and RNA processing within the nucleus and signaling pathways that reach into the cytoplasm and beyond. At the Mechanisms of Nuclear Transport biennial meeting held from October 18 to 23, 2013 in Woods Hole, MA, researchers in the field met to report on their recent findings. The work presented highlighted significant advances in understanding nucleocytoplasmic trafficking including how transport receptors and cargoes pass through the nuclear pore complex, the many signaling pathways that impinge on transport pathways, interplay between the nuclear envelope, nuclear pore complexes, and transport pathways, and numerous links between transport pathways and human disease. The goal of this review is to highlight newly emerging themes in nuclear transport and underscore the major questions that are likely to be the focus of future research in the field.
Collapse
Affiliation(s)
- Elizabeth J Tran
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA.
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, 4117 Rollins Research Center, 1510 Clifton Road, NE, Atlanta, GA 30322, USA.
| |
Collapse
|
18
|
Ciska M, Moreno Díaz de la Espina S. The intriguing plant nuclear lamina. FRONTIERS IN PLANT SCIENCE 2014; 5:166. [PMID: 24808902 PMCID: PMC4010787 DOI: 10.3389/fpls.2014.00166] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/08/2014] [Indexed: 05/19/2023]
Abstract
The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.
Collapse
Affiliation(s)
| | - Susana Moreno Díaz de la Espina
- *Correspondence: Susana Moreno Díaz de la Espina, Department of Cell and Molecular Biology, Biological Research Centre – Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain e-mail:
| |
Collapse
|