1
|
Hijazi A, Galon J. Principles of risk assessment in colon cancer: immunity is key. Oncoimmunology 2024; 13:2347441. [PMID: 38694625 PMCID: PMC11062361 DOI: 10.1080/2162402x.2024.2347441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
In clinical practice, the administration of adjuvant chemotherapy (ACT) following tumor surgical resection raises a critical dilemma for stage II colon cancer (CC) patients. The prognostic features used to identify high-risk CC patients rely on the pathological assessment of tumor cells. Currently, these factors are considered for stratifying patients who may benefit from ACT at early CC stages. However, the extent to which these factors predict clinical outcomes (i.e. recurrence, survival) remains highly controversial, also uncertainty persists regarding patients' response to treatment, necessitating further investigation. Therefore, an imperious need is to explore novel biomarkers that can reliably stratify patients at risk, to optimize adjuvant treatment decisions. Recently, we evaluated the prognostic and predictive value of Immunoscore (IS), an immune digital-pathology assay, in stage II CC patients. IS emerged as the sole significant parameter for predicting disease-free survival (DFS) in high-risk patients. Moreover, IS effectively stratified patients who would benefit most from ACT based on their risk of recurrence, thus predicting their outcomes. Notably, our findings revealed that digital IS outperformed the visual quantitative assessment of the immune response conducted by expert pathologists. The latest edition of the WHO classification for digestive tumor has introduced the evaluation of the immune response, as assessed by IS, as desirable and essential diagnostic criterion. This supports the revision of current cancer guidelines and strongly recommends the implementation of IS into clinical practice as a patient stratification tool, to guide CC treatment decisions. This approach may provide appropriate personalized therapeutic decisions that could critically impact early-stage CC patient care.
Collapse
Affiliation(s)
- Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Veracyte, Marseille, France
| |
Collapse
|
2
|
Hijazi A, Bifulco C, Baldin P, Galon J. Digital Pathology for Better Clinical Practice. Cancers (Basel) 2024; 16:1686. [PMID: 38730638 PMCID: PMC11083211 DOI: 10.3390/cancers16091686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: Digital pathology (DP) is transforming the landscape of clinical practice, offering a revolutionary approach to traditional pathology analysis and diagnosis. (2) Methods: This innovative technology involves the digitization of traditional glass slides which enables pathologists to access, analyze, and share high-resolution whole-slide images (WSI) of tissue specimens in a digital format. By integrating cutting-edge imaging technology with advanced software, DP promises to enhance clinical practice in numerous ways. DP not only improves quality assurance and standardization but also allows remote collaboration among experts for a more accurate diagnosis. Artificial intelligence (AI) in pathology significantly improves cancer diagnosis, classification, and prognosis by automating various tasks. It also enhances the spatial analysis of tumor microenvironment (TME) and enables the discovery of new biomarkers, advancing their translation for therapeutic applications. (3) Results: The AI-driven immune assays, Immunoscore (IS) and Immunoscore-Immune Checkpoint (IS-IC), have emerged as powerful tools for improving cancer diagnosis, prognosis, and treatment selection by assessing the tumor immune contexture in cancer patients. Digital IS quantitative assessment performed on hematoxylin-eosin (H&E) and CD3+/CD8+ stained slides from colon cancer patients has proven to be more reproducible, concordant, and reliable than expert pathologists' evaluation of immune response. Outperforming traditional staging systems, IS demonstrated robust potential to enhance treatment efficiency in clinical practice, ultimately advancing cancer patient care. Certainly, addressing the challenges DP has encountered is essential to ensure its successful integration into clinical guidelines and its implementation into clinical use. (4) Conclusion: The ongoing progress in DP holds the potential to revolutionize pathology practices, emphasizing the need to incorporate powerful AI technologies, including IS, into clinical settings to enhance personalized cancer therapy.
Collapse
Affiliation(s)
- Assia Hijazi
- The French National Institute of Health & Medical Research (INSERM), Laboratory of Integrative Cancer Immunology, F-75006 Paris, France;
- Equipe Labellisée Ligue Contre le Cancer, F-75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
| | - Carlo Bifulco
- Providence Genomics, Portland, OR 02912, USA;
- Earle A Chiles Research Institute, Portland, OR 97213, USA
| | - Pamela Baldin
- Department of Pathology, Cliniques Universitaires Saint Luc, UCLouvain, 1200 Brussels, Belgium;
| | - Jérôme Galon
- The French National Institute of Health & Medical Research (INSERM), Laboratory of Integrative Cancer Immunology, F-75006 Paris, France;
- Equipe Labellisée Ligue Contre le Cancer, F-75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
- Veracyte, 13009 Marseille, France
| |
Collapse
|
3
|
Munoz J, Flinn IW, Cohen JB, Sachs J, Exter B, Ranger A, Harris P, Payumo F, Nath R, Hamadani M, Westin JR, Bachanova V. Results from a Phase 1 Study of ACTR707 in Combination with Rituximab in Patients with Relapsed or Refractory CD20 + B Cell Lymphoma. Transplant Cell Ther 2024; 30:241.e1-241.e8. [PMID: 37898374 DOI: 10.1016/j.jtct.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
The antibody-coupled T cell receptor (ACTR) platform is an autologous engineered T cell therapy combining the cell-killing ability of T cells and the tumor-targeting ability of coadministered antibodies. Activation of the T cell product ACTR707 is dependent on the engagement of antibody bound to target cells via the CD16 domain of the chimeric receptor (CD16V-CD28-CD3ζ). ACTR707 in combination with the anti-CD20 monoclonal antibody rituximab was evaluated in the ATTCK-20-03 study, a multisite, single-arm, open-label phase I trial in B cell non-Hodgkin lymphoma (NHL). The primary objectives of this study were to evaluate the safety of the combination of ACTR707 and rituximab and to determine a recommended phase 2 dose (RP2D). Secondary objectives included evaluation of antitumor activity and ACTR T cell persistence. The study design included an ACTR707 cell dose escalation phase and an expansion phase at the RP2D. Escalating dose levels of ACTR707 in combination with rituximab were explored in 5 dose cohorts, with 25 subjects receiving study treatment. Subjects received lymphodepleting chemotherapy (cyclophosphamide 400 mg/m2/day and fludarabine 30 mg/m2/day) for 3 days, followed by rituximab 375 mg/m2 and, 24 to 48 hours later, a single dose of ACTR707. Additional doses of rituximab were administered every 3 weeks until disease progression, unacceptable toxicity, or investigator decision. Blood samples were collected at various time points to assess levels of rituximab, cytokines, inflammatory markers, and ACTR707 T cells. The overall response rate of ACTR707 plus rituximab was 56% (14 of 25) across all dose levels. Ten subjects (40.0%) achieved a complete response, with the longest duration of 586 days (range, 85 to 586 days), and 4 subjects (16.0%) experienced a partial response, with the longest duration of 130 days (range, 44 to 130 days). Only 1 case of cytokine release syndrome (grade 2) and no events of neurotoxicity were reported. There were no dose-limiting toxicities or events leading to death. ACTR707 plus rituximab resulted in only 1 adverse event (neutropenia), leading to study discontinuation of rituximab. The ATTCK-20-03 trial serves as proof of principle regarding the ACTR approach that potentially could be used with other antibodies targeting other markers in other malignancies. Although the ACTR707 program has been discontinued, these results may support other programs in the use of similar novel approaches of antibody-coupled T cell activation.
Collapse
Affiliation(s)
- Javier Munoz
- Banner MD Anderson Cancer Center, Gilbert, Arizona.
| | - Ian W Flinn
- Sarah Cannon Research Institute, Nashville, Tennessee
| | - Jonathon B Cohen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
| | | | | | - Ann Ranger
- Unum Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | | | - Mehdi Hamadani
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jason R Westin
- University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Willis J, Anders RA, Torigoe T, Hirohashi Y, Bifulco C, Zlobec I, Mlecnik B, Demaria S, Choi WT, Dundr P, Tatangelo F, Di Mauro A, Baldin P, Bindea G, Marliot F, Haicheur N, Fredriksen T, Kirilovsky A, Buttard B, Vasaturo A, Lafontaine L, Maby P, El Sissy C, Hijazi A, Majdi A, Lagorce C, Berger A, Van den Eynde M, Pagès F, Lugli A, Galon J. Multi-Institutional Evaluation of Pathologists' Assessment Compared to Immunoscore. Cancers (Basel) 2023; 15:4045. [PMID: 37627073 PMCID: PMC10452341 DOI: 10.3390/cancers15164045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The Immunoscore (IS) is a quantitative digital pathology assay that evaluates the immune response in cancer patients. This study reports on the reproducibility of pathologists' visual assessment of CD3+- and CD8+-stained colon tumors, compared to IS quantification. METHODS An international group of expert pathologists evaluated 540 images from 270 randomly selected colon cancer (CC) cases. Concordance between pathologists' T-score, corresponding hematoxylin-eosin (H&E) slides, and the digital IS was evaluated for two- and three-category IS. RESULTS Non-concordant T-scores were reported in more than 92% of cases. Disagreement between semi-quantitative visual assessment of T-score and the reference IS was observed in 91% and 96% of cases before and after training, respectively. Statistical analyses showed that the concordance index between pathologists and the digital IS was weak in two- and three-category IS, respectively. After training, 42% of cases had a change in T-score, but no improvement was observed with a Kappa of 0.465 and 0.374. For the 20% of patients around the cut points, no concordance was observed between pathologists and digital pathology analysis in both two- and three-category IS, before or after training (all Kappa < 0.12). CONCLUSIONS The standardized IS assay outperformed expert pathologists' T-score evaluation in the clinical setting. This study demonstrates that digital pathology, in particular digital IS, represents a novel generation of immune pathology tools for reproducible and quantitative assessment of tumor-infiltrated immune cell subtypes.
Collapse
Affiliation(s)
- Joseph Willis
- Department of Pathology, UH Cleveland Medical Center, Cleveland, OH 44106, USA;
| | | | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.T.); (Y.H.)
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.T.); (Y.H.)
| | - Carlo Bifulco
- Department of Pathology and Molecular Genomics, Providence Portland Medical Center, Portland, OR 97213, USA;
| | - Inti Zlobec
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (I.Z.); (A.L.)
| | - Bernhard Mlecnik
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Inovarion, 75005 Paris, France
| | - Sandra Demaria
- Department of Pathology, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Won-Tak Choi
- Department of Pathology, University of California, San Francisco, CA 94143, USA;
| | - Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 12808 Prague, Czech Republic;
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (F.T.); (A.D.M.)
| | - Annabella Di Mauro
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (F.T.); (A.D.M.)
| | - Pamela Baldin
- Department of Pathology, Cliniques Universitaires St-Luc, Institut de Recherche Clinique et Experimentale (Pole GAEN), Université Catholique de Louvain, 1348 Brussels, Belgium;
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Florence Marliot
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Nacilla Haicheur
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Tessa Fredriksen
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Amos Kirilovsky
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Bénédicte Buttard
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Angela Vasaturo
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Lucie Lafontaine
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Pauline Maby
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Carine El Sissy
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Amine Majdi
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Christine Lagorce
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Department of Pathology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Anne Berger
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Digestive Surgery Department, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Marc Van den Eynde
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires St-Luc, Institut de Recherche Clinique et Experimentale (Pole MIRO), Université Catholique de Louvain, 1030 Brussels, Belgium;
| | - Franck Pagès
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Alessandro Lugli
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (I.Z.); (A.L.)
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| |
Collapse
|
5
|
Hijazi A, Antoniotti C, Cremolini C, Galon J. Light on life: immunoscore immune-checkpoint, a predictor of immunotherapy response. Oncoimmunology 2023; 12:2243169. [PMID: 37554310 PMCID: PMC10405746 DOI: 10.1080/2162402x.2023.2243169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
In the last decade, a plethora of immunotherapeutic strategies have been designed to modulate the tumor immune microenvironment. In particular, immune checkpoint (IC) blockade therapies present the most promising advances made in cancer treatment in recent years. In non-small cell lung cancer (NSCLC), biomarkers predicting response to IC treatments are currently lacking. We have recently identified Immunoscore-IC, a powerful biomarker that predicts the efficiency of immune-checkpoint inhibitors (ICIs) in NSCLC patients. Immunoscore-IC is an in vitro diagnostic assay that quantifies densities of PD-L1+, CD8+ cells, and distances between CD8+ and PD-L1+ cells in the tumor microenvironment. Immunoscore-IC can classify responder vs non-responder NSCLC patients for ICIs therapy and is revealed as a promising predictive marker of response to anti-PD-1/PD-L1 immunotherapy in these patients. Immunoscore-IC has also shown a significant predictive value, superior to the currently used PD-L1 marker. In colorectal cancer (CRC), the addition of atezolizumab to first-line FOLFOXIRI plus bevacizumab improved progression-free survival (PFS) in patients with previously untreated metastatic CRC. In the AtezoTRIBE trial, Immunoscore-IC emerged as the first biomarker with robust predictive value in stratifying pMMR metastatic CRC patients who critically benefit from checkpoint inhibitors. Thus, Immunoscore-IC could be a universal biomarker to predict response to PD-1/PD-L1 checkpoint inhibitor immunotherapy across multiple cancer indications. Therefore, cancer patient stratification (by Immunoscore-IC), based on the presence of T lymphocytes and PD-L1 potentially provides support for clinicians to guide them through combination cancer treatment decisions.
Collapse
Affiliation(s)
- Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Carlotta Antoniotti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Veracyte, Marseille, France
| |
Collapse
|
6
|
Pan H, Liu P, Kroemer G, Kepp O. Preconditioning with immunogenic cell death-inducing treatments for subsequent immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:279-294. [PMID: 38225106 DOI: 10.1016/bs.ircmb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Since the dawn of anticancer immunotherapy, the clinical use of immune checkpoint inhibitors (ICI) has increased exponentially. Monoclonal antibodies targeting CTLA-4 and the PD-1/PD-L1 interaction were first introduced for the treatment of patients with unresectable melanoma. In melanoma, ICI lead to durable regression in a significant number of patients and have thus been clinically approved as a first-line treatment of advanced disease. Over the past years an increasing number of regulatory approvals have been granted for the use of ICI in patients affected by a large range of distinct carcinomas. In retrospect surprisingly, it has been discovered that particularly successful chemotherapeutic treatments are able to trigger anticancer immune responses because they induce immunogenic cell death (ICD), hence killing cancer cells in a way that they elicit an immune response against tumor-associated antigens. Logically, preclinical studies as well as clinical trials are currently exploring the possibility to combine ICD inducers with ICI to obtain optimal therapeutic effects. Here, we provide a broad overview of current strategies for the implementation of combinatorial approaches involving ICD induction followed by ICI in anticancer therapy.
Collapse
Affiliation(s)
- Hui Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| |
Collapse
|
7
|
Ghiringhelli F, Bibeau F, Greillier L, Fumet JD, Ilie A, Monville F, Laugé C, Catteau A, Boquet I, Majdi A, Morgand E, Oulkhouir Y, Brandone N, Adam J, Sbarrato T, Kassambara A, Fieschi J, Garcia S, Lepage AL, Tomasini P, Galon J. Immunoscore immune checkpoint using spatial quantitative analysis of CD8 and PD-L1 markers is predictive of the efficacy of anti- PD1/PD-L1 immunotherapy in non-small cell lung cancer. EBioMedicine 2023; 92:104633. [PMID: 37244159 DOI: 10.1016/j.ebiom.2023.104633] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Anti-PD-1 and PD-L1 antibodies (mAbs) are approved immunotherapy agents to treat metastatic non-small cell lung cancer (NSCLC) patients. Only a minority of patients responds to these treatments and biomarkers predicting response are currently lacking. METHODS Immunoscore-Immune-Checkpoint (Immunoscore-IC), an in vitro diagnostic test, was used on 471 routine single FFPE-slides, and the duplex-immunohistochemistry CD8 and PD-L1 staining was quantified using digital-pathology. Analytical validation was performed on two independent cohorts of 206 NSCLC patients. Quantitative parameters related to cell location, number, proximity and clustering were analysed. The Immunoscore-IC was applied on a first cohort of metastatic NSCLC patients (n = 133), treated with anti-PD1 or anti-PD-L1 mAbs. Another independent cohort (n = 132) served as validation. FINDINGS Anti-PDL1 clone (HDX3) has similar characteristics as anti-PD-L1 clones (22C3, SP263). Densities of PD-L1+ cells, CD8+ cells and distances between CD8+ and PD-L1+ cells were quantified and the Immunoscore-IC classification was computed. Using univariate Cox model, 5 histological dichotomised variables (CD8 free of PD-L1+ cells, CD8 clusters, CD8 cells in proximity of PD-L1 cells, CD8 density and PD-L1 cells in proximity of CD8 cells) were significantly associated with Progression-Free Survival (PFS) (all P < 0.0001). Immunoscore-IC classification improved the discriminating power of prognostic model, which included clinical variables and pathologist PD-L1 assessment. In two categories, the Immunoscore-IC risk-score was significantly associated with patients' PFS (HR = 0.39, 95% CI (0.26-0.59), P < 0.0001) and Overall Survival (OS) (HR = 0.42, 95% CI (0.27-0.65), P < 0.0001) in the training-set. Further increased hazard ratios (HR) were found when stratifying patients into three-category Immunoscore-IC (IS-IC). All patients with Low-IS-IC progressed in less than 18 months, whereas PFS at 36 months were 34% and 33% of High-IS-IC patients in the training and validation sets, respectively. INTERPRETATION Immunoscore-IC is a powerful tool to predict the efficacy of immune-checkpoint inhibitors (ICIs) in patients with NSCLC. FUNDING Veracyte, INSERM, Labex Immuno-Oncology, Transcan ERAnet European project, ARC, SIRIC, CARPEM, Ligue Contre le Cancer, ANR, QNRF, INCa France, Louis Jeantet Prize Foundation.
Collapse
Affiliation(s)
- François Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France; Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France; University of Burgundy-Franche Comté, Maison de l'Université Esplanade Erasme, Dijon, France; UMR INSERM 1231, Dijon, France; Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France
| | - Frederic Bibeau
- Department of Pathology, Besançon University Hospital, Franche-Comté University, Besançon, France; Department of Pathology, Caen University Hospital, Normandy University, Caen, France
| | - Laurent Greillier
- Multidisciplinary Oncology and Therapeutic Innovations Department, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Aix Marseille University, Marseille, France
| | - Jean-David Fumet
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France; Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France; University of Burgundy-Franche Comté, Maison de l'Université Esplanade Erasme, Dijon, France; UMR INSERM 1231, Dijon, France; Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France
| | - Alis Ilie
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France
| | | | | | | | | | - Amine Majdi
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France; Equipe Labellisée Ligue Contre le Cancer, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Erwan Morgand
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France; Equipe Labellisée Ligue Contre le Cancer, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Youssef Oulkhouir
- Department of Thoracic Oncology, Caen University Hospital, Normandy University, Caen, France
| | - Nicolas Brandone
- Eurofins Pathologie, Bd Charles Moretti, Marseille 13014, France
| | - Julien Adam
- Anatomie et Cytologie Pathologiques, Hôpital Paris Saint-Joseph, INSERM, Gustave Roussy, Université Paris Saclay, Paris, France
| | | | | | | | - Stéphane Garcia
- Multidisciplinary Oncology and Therapeutic Innovations Department, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Aix Marseille University, Marseille, France
| | - Anne Laure Lepage
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France; Department of Pathology, Besançon University Hospital, Franche-Comté University, Besançon, France
| | - Pascale Tomasini
- Multidisciplinary Oncology and Therapeutic Innovations Department, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Aix Marseille University, Marseille, France
| | - Jérôme Galon
- Veracyte, Marseille, France; INSERM, Laboratory of Integrative Cancer Immunology, Paris, France; Equipe Labellisée Ligue Contre le Cancer, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
8
|
Chen M, Wu W, Wang S, Lai X, Liu M, Sun Y, Liu X, Li G, Song Y, Bao C, Li X, Chen G, Deng Y. Neutrophils as emerging immunotherapeutic targets: Indirect treatment of tumors by regulating the tumor immune environment based on a sialic acid derivative-modified nanocomplex platform. Int J Pharm 2022; 620:121684. [PMID: 35314280 DOI: 10.1016/j.ijpharm.2022.121684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
Abstract
Tumor cells are dependent on their microenvironment; thus, targeting the non-cancerous components surrounding the tumor may be beneficial. Neutrophils are important inflammatory cells in the tumor microenvironment that significantly affect tumor cell proliferation, metastasis, and immune regulation. Targeted regulation of tumor-associated neutrophil-related pathways is expected to become a new therapeutic approach. Colchicine compounds are powerful anti-inflammatory drugs that strongly inhibit the chemotaxis of neutrophils to the inflammatory site. We attempted to achieve anticancer effects by utilizing its ability to inhibit neutrophil recruitment rather than killing tumor cells. As such drugs are likely to cause non-specific damages due to the lack of selectivity, we synthesized and used sialic acid and cholesterol derivatives (SA-CH) for surface modification of the newly synthesized low-toxic colchicine derivative (BCS) nanocomposite to improve neutrophil targeting. In vivo and in vitro experiments have shown that SA-CH-modified BCS preparations are effectively absorbed by neutrophils, inhibit cell migration, reduce infiltration of tumor-associated neutrophils, enhance T lymphocyte function, and exhibit good anti-S180 early tumor effect. In addition, in a triple-negative breast cancer model, the agent could strongly inhibit tumor metastasis to the lungs.
Collapse
Affiliation(s)
- Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Wenjing Wu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Mengyang Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yiming Sun
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Gang Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Changshun Bao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaohu Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
9
|
Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 2021; 1:894-907. [PMID: 23162757 PMCID: PMC3489745 DOI: 10.4161/onci.20931] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) have first been characterized for their capacity to detect conserved microbial components like lipopolysaccharide (LPS) and double-stranded RNA, resulting in the elicitation of potent (innate) immune responses against invading pathogens. More recently, TLRs have also been shown to promote the activation of the cognate immune system against cancer cells. Today, only three TLR agonists are approved by FDA for use in humans: the bacillus Calmette-Guérin (BCG), monophosphoryl lipid A (MPL) and imiquimod. BCG (an attenuated strain of Mycobacterium bovis) is mainly used as a vaccine against tuberculosis, but also for the immunotherapy of in situ bladder carcinoma. MPL (derived from the LPS of Salmonella minnesota) is included in the formulation of Cervarix®, a vaccine against human papillomavirus-16 and -18. Imiquimod (a synthetic imidazoquinoline) is routinely employed for actinic keratosis, superficial basal cell carcinoma, and external genital warts (condylomata acuminata). In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating FDA-approved TLR agonists as off-label medications for cancer therapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM, U848; Villejuif, France ; Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vacchelli E, Aranda F, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2021; 3:e27048. [PMID: 24605265 PMCID: PMC3937194 DOI: 10.4161/onci.27048] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 02/06/2023] Open
Abstract
In 1997, for the first time in history, a monoclonal antibody (mAb), i.e., the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug Administration for use in cancer patients. Since then, the panel of mAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has not stopped to expand, nowadays encompassing a stunning amount of 15 distinct molecules. This therapeutic armamentarium includes mAbs that target tumor-associated antigens, as well as molecules that interfere with tumor-stroma interactions or exert direct immunostimulatory effects. These three classes of mAbs exert antineoplastic activity via distinct mechanisms, which may or may not involve immune effectors other than the mAbs themselves. In previous issues of OncoImmunology, we provided a brief scientific background to the use of mAbs, all types confounded, in cancer therapy, and discussed the results of recent clinical trials investigating the safety and efficacy of this approach. Here, we focus on mAbs that primarily target malignant cells or their interactions with stromal components, as opposed to mAbs that mediate antineoplastic effects by activating the immune system. In particular, we discuss relevant clinical findings that have been published during the last 13 months as well as clinical trials that have been launched in the same period to investigate the therapeutic profile of hitherto investigational tumor-targeting mAbs.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 15, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
11
|
Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2021; 1:493-506. [PMID: 22754768 PMCID: PMC3382908 DOI: 10.4161/onci.20459] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the last two decades, a number of approaches for the activation of the immune system against cancer has been developed. These include highly specific interventions, such as monoclonal antibodies, vaccines and cell-based therapies, as well as relatively unselective strategies, such as the systemic administration of adjuvants and immunomodulatory cytokines. Cytokines constitute a huge group of proteins that, taken together, regulate not only virtually all the aspects of innate and cognate immunity, but also several other cellular and organismal functions. Cytokines operate via specific transmembrane receptors that are expressed on the plasma membrane of target cells and, depending on multiple variables, can engage autocrine, paracrine or endocrine signaling pathways. The most appropriate term for defining the cytokine network is “pleiotropic”: cytokines are produced by - and operate on - multiple, often overlapping, cell types, triggering context-depend biological outcomes as diverse as cell proliferation, chemotaxis, differentiation, inflammation, elimination of pathogens and cell death. Moreover, cytokines often induce the release of additional cytokines, thereby engaging self-amplificatory or self-inhibitory signaling cascades. In this Trial Watch, we will summarize the biological properties of cytokines and discuss the progress of ongoing clinical studies evaluating their safety and efficacy as immunomodulatory agents against cancer.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM; U848; Villejuif, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Vacchelli E, Galluzzi L, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Kroemer G. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2021; 1:179-188. [PMID: 22720239 PMCID: PMC3376992 DOI: 10.4161/onci.1.2.19026] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The long-established notion that apoptosis would be immunologically silent, and hence it would go unnoticed by the immune system, if not tolerogenic, and hence it would actively suppress immune responses, has recently been revisited. In some instances, indeed, cancer cells undergo apoptosis while emitting a spatiotemporally-defined combination of signals that renders them capable of eliciting a long-term protective antitumor immune response. Importantly, only a few anticancer agents can stimulate such an immunogenic cell death. These include cyclophosphamide, doxorubicin and oxaliplatin, which are currently approved by FDA for the treatment of multiple hematologic and solid malignancies, as well as mitoxantrone, which is being used in cancer therapy and against multiple sclerosis. In this Trial Watch, we will review and discuss the progress of recent (initiated after January 2008) clinical trials evaluating the off-label use of cyclophosphamide, doxorubicin, oxaliplatin and mitoxantrone.
Collapse
Affiliation(s)
- Erika Vacchelli
- U848; Villejuif, France; INSERM; Université Paris-Sud/Paris XI; Paris, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2021; 1:1557-1576. [PMID: 23264902 PMCID: PMC3525611 DOI: 10.4161/onci.22428] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prophylactic vaccination constitutes one of the most prominent medical achievements of history. This concept was first demonstrated by the pioneer work of Edward Jenner, dating back to the late 1790s, after which an array of preparations that confer life-long protective immunity against several infectious agents has been developed. The ensuing implementation of nation-wide vaccination programs has de facto abated the incidence of dreadful diseases including rabies, typhoid, cholera and many others. Among all, the most impressive result of vaccination campaigns is surely represented by the eradication of natural smallpox infection, which was definitively certified by the WHO in 1980. The idea of employing vaccines as anticancer interventions was first theorized in the 1890s by Paul Ehrlich and William Coley. However, it soon became clear that while vaccination could be efficiently employed as a preventive measure against infectious agents, anticancer vaccines would have to (1) operate as therapeutic, rather than preventive, interventions (at least in the vast majority of settings), and (2) circumvent the fact that tumor cells often fail to elicit immune responses. During the past 30 y, along with the recognition that the immune system is not irresponsive to tumors (as it was initially thought) and that malignant cells express tumor-associated antigens whereby they can be discriminated from normal cells, considerable efforts have been dedicated to the development of anticancer vaccines. Some of these approaches, encompassing cell-based, DNA-based and purified component-based preparations, have already been shown to exert conspicuous anticancer effects in cohorts of patients affected by both hematological and solid malignancies. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating purified peptides or full-length proteins as therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2021; 1:1323-1343. [PMID: 23243596 PMCID: PMC3518505 DOI: 10.4161/onci.22009] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Orsay, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2021; 1:699-716. [PMID: 22934262 PMCID: PMC3429574 DOI: 10.4161/onci.20696] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are prototypic pattern recognition receptors (PRRs) best known for their ability to activate the innate immune system in response to conserved microbial components such as lipopolysaccharide and double-stranded RNA. Accumulating evidence indicates that the function of TLRs is not restricted to the elicitation of innate immune responses against invading pathogens. TLRs have indeed been shown to participate in tissue repair and injury-induced regeneration as well as in adaptive immune responses against cancer. In particular, TLR4 signaling appears to be required for the efficient processing and cross-presentation of cell-associated tumor antigens by dendritic cells, which de facto underlie optimal therapeutic responses to some anticancer drugs. Thus, TLRs constitute prominent therapeutic targets for the activation/intensification of anticancer immune responses. In line with this notion, long-used preparations such as the Coley toxin (a mixture of killed Streptococcus pyogenes and Serratia marcescens bacteria) and the bacillus Calmette-Guérin (BCG, an attenuated strain of Mycobacterium bovis originally developed as a vaccine against tuberculosis), both of which have been associated with consistent anticancer responses, potently activate TLR2 and TLR4 signaling. Today, besides BCG, only one TLR agonist is FDA-approved for therapeutic use in cancer patients: imiquimod. In this Trial Watch, we will briefly present the role of TLRs in innate and cognate immunity and discuss the progress of clinical studies evaluating the safety and efficacy of experimental TLR agonists as immunostimulatory agents for oncological indications.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yue Y, Huang S, Li H, Li W, Hou J, Luo L, Liu Q, Wang C, Yang S, Lv L, Shao J, Wu Z. M2b macrophages protect against myocardial remodeling after ischemia/reperfusion injury by regulating kinase activation of platelet-derived growth factor receptor of cardiac fibroblast. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1409. [PMID: 33313154 PMCID: PMC7723613 DOI: 10.21037/atm-20-2788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Myocardial injury is a major cause of myocardial remodeling. Macrophages are important in cardiac repair as a result of their interactions with fibroblasts. As regulatory macrophages, M2b macrophages modulate inflammatory immune responses without participating in wound healing and could have enhanced protective effects on myocardial remodeling. Therefore, we tested the hypothesis that M2b macrophages could improve cardiac function and ameliorate myocardial fibrosis after the myocardial ischemia/reperfusion injury (MI/RI). Methods In vivo, MI/RI models were established with Sprague-Dawley (SD) rats and either M2b macrophages (MT group) or the same volume of vehicle (CK group) was injected into the ischemic zone. Two weeks after the operation, cardiac function and diameters were determined by echocardiography examination. Level of myocardial fibrosis was measured by Sirius red staining and the expression of fibrosis-related factors. In vitro, cardiac fibroblasts (CFs) were co-cultured with M2b macrophages or cultured with M2b macrophage supernatant. Expression of α-smooth muscle actin (α-SMA) and connective tissue growth factor (CCN2/CTGF) in the CFs were measured by western blotting and immunofluorescence staining. In addition, the expression of platelet-derived growth factors (PDGFs), the expression of platelet-derived growth factor receptors (PDGFRs) and the phosphorylation of PDGFRs was detected by western blotting. Results A significantly higher rat survival rate, improved left ventricular (LV) systolic function, decreased diameter of the LV and alleviated myocardial fibrosis were observed in the MT group than in the CK group. In vitro, the activation of CFs was significantly reduced by the M2b macrophages treatments, relative to the blank control. In addition, the kinase activation of PDGFRs was decreased by M2b macrophage treatments both in vivo and in vitro. Conclusions Our study demonstrated that the administration of M2b macrophages could attenuate myocardial remodeling after MI/RI. The regulation of the activation of PDGFRs in CFs is an important part of the protective mechanism.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Suiqing Huang
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huayang Li
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- Department of Medical Ultrasound, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Hou
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Luo
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quan Liu
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuiping Wang
- Department of Cardiothoracic Surgery ICU, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Yang
- Department of Cardiothoracic Surgery ICU, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linhua Lv
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinghua Shao
- Out-Patient Department, Shenxian Second People's Hospital, Shenxian, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Marliot F, Pagès F, Galon J. Usefulness and robustness of Immunoscore for personalized management of cancer patients. Oncoimmunology 2020; 9:1832324. [PMID: 33194318 PMCID: PMC7644247 DOI: 10.1080/2162402x.2020.1832324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This review details the analytical performance characteristics of the consensus Immunoscore, measuring the immune response to cancer, improving the estimation of risk of recurrence, and predicting response to treatment for patients with colon cancer. The analytical validation of Immunoscore has been documented. Immunoscore is a robust, reproducible, quantitative, and standardized immune assay, with a high prognostic performance, independent of all of the prognostic markers currently used in clinical practice. Immunoscore evaluation within the tumor microenvironment is clinically relevant, and Immunoscore was recently introduced into ESMO Clinical Practice Guidelines for colon cancer and into the WHO classification of the Digestive System Tumors. This paves the way for the use of Immunoscore in clinical practice in colorectal tumors and likely soon in many other solid tumors.
Collapse
Affiliation(s)
- Florence Marliot
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Centre de Recherche DES Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, Paris, France
| | - Franck Pagès
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Centre de Recherche DES Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, Paris, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Centre de Recherche DES Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
18
|
Van den Eynde M, Mlecnik B, Bindea G, Galon J. Multiverse of immune microenvironment in metastatic colorectal cancer. Oncoimmunology 2020; 9:1824316. [PMID: 33457100 PMCID: PMC7781760 DOI: 10.1080/2162402x.2020.1824316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The comprehensive analysis of patients with a complete resection of all metastases reveals the heterogeneity of the colorectal metastatic disease and its clinical impact. Complex tumor immune interrelations shape the metastatic landscape, not only in terms of number and size of lesions, or mutational pattern, but also in terms of immune cell infiltrate. Significantly higher densities of T-cells and lower density of B-cells were quantified in the tumor microenvironment of metastases compared with primary tumors. A high T cell infiltration and Immunoscore measured in the least-infiltrated metastasis were associated with a significantly lower number of metastases, larger metastasis, and prolonged survival while patients with increased metastatic burden had a lower Immunoscore. Immunoscore was evaluated on a biopsy, in a random metastasis or as the mean value of all metastases significantly predicting outcome. However, the most immune-infiltrated metastasis was not significantly predicting outcome, whereas the least immune-infiltrated metastasis was best in predicting clinical outcome. A good likelihood of concordance of Immunoscore was observed between one biopsy and complete metastasis, but the overall intra-metastatic immune infiltrate might be better estimated with multiple biopsies or sampling of larger tumor areas. This intra-metastatic adaptive immune reaction increases following aneoadjuvant treatment containing anti-EGFR monoclonal antibody, an effect that is currently therapeutically evaluated in clinical trials to improve the survival of metastatic patients.
Collapse
Affiliation(s)
- Marc Van den Eynde
- Department of Medical Oncology and Hepato-gastroenterology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc/Université Catholique De Louvain (Uclouvain), Brussels, Belgium
| | - Bernhard Mlecnik
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France.,Equipe Labellisée Ligue Contre Le Cancer, Paris, France.,Centre De Recherche Des Cordeliers, Sorbonne Université, Université De Paris, Paris, France.,Inovarion, Paris, France
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France.,Equipe Labellisée Ligue Contre Le Cancer, Paris, France.,Centre De Recherche Des Cordeliers, Sorbonne Université, Université De Paris, Paris, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France.,Equipe Labellisée Ligue Contre Le Cancer, Paris, France.,Centre De Recherche Des Cordeliers, Sorbonne Université, Université De Paris, Paris, France
| |
Collapse
|
19
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
20
|
Saeed M, Faisal SM, Akhtar F, Ahmad S, Alreshidi MM, Kausar MA, Kazmi S, Saeed A, Adnan M, Ashraf GM. Human Papillomavirus Induced Cervical and Oropharyngeal Cancers: From Mechanisms to Potential Immuno-therapeutic Strategies. Curr Drug Metab 2020; 21:167-177. [DOI: 10.2174/1389200221666200421121228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/04/2019] [Accepted: 01/30/2020] [Indexed: 01/09/2023]
Abstract
The human papillomavirus (HPV) associated infections are the hallmark of cervical and neck cancer.
Almost all the cases of cervical cancer (CC) and 70% of oropharyngeal cancer (OC) are, more or less, caused by the
persistent infection of HPV. CC is the fourth most common cancer globally, and is commenced by the persistent
infection with human papillomaviruses (HPVs), predominantly HPV types; 16 and 18. In the light of the above facts,
there is an immediate requirement to develop novel preventive and innovative therapeutic strategies that may help in
lower occurrences of HPV mediated cancers. Currently, only radiation and chemical-based therapies are the treatment
for HPV mediated neck cancer (NC) and CC. Recent advances in the field of immunotherapy are underway,
which are expected to unravel the optimal treatment strategies for the growing HPV mediated cancers. In this review,
we decipher the mechanism of pathogenesis with current immunotherapeutic advances in regressing the NC and CC,
with an emphasis on immune-therapeutic strategies being tested in clinical trials and predominantly focus on defining
the efficacy and limitations. Taken together, these immunological advances have enhanced the effectiveness of immunotherapy
and promises better treatment results in coming future.
Collapse
Affiliation(s)
- Mohd. Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Syed Mohd Faisal
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Firoz Akhtar
- Department of Pharmacology and Toxicology, Higuchi Biosciences Center, University of Kansas, Lawrence, KS 2099, United States
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mousa M. Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd. Adnan Kausar
- Department of Biochemistry, College of Medicine University of Hail, Hail, Saudi Arabia
| | - Shadab Kazmi
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohd. Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
|
22
|
Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 2018; 7:e1511506. [PMID: 30524907 PMCID: PMC6279318 DOI: 10.1080/2162402x.2018.1511506] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen
Collapse
Affiliation(s)
- Lucillia Bezu
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Giulia Cerrato
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jonathan Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,INSERM, U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
23
|
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018; 7:e1503032. [PMID: 30524901 PMCID: PMC6279343 DOI: 10.1080/2162402x.2018.1503032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023] Open
Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Samuel T. Workenhe
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, NS, Canada
- Department of Biology, Dalhousie University, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Jean-Eudes Fahrner
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Transgene S.A., Illkirch-Graffenstaden, France
| | | | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karen L. Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
24
|
García-Martínez E, Smith M, Buqué A, Aranda F, de la Peña FA, Ivars A, Cánovas MS, Conesa MAV, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 2018; 7:e1433982. [PMID: 29872569 PMCID: PMC5980390 DOI: 10.1080/2162402x.2018.1433982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.
Collapse
Affiliation(s)
- Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, IDIBAPS, Barcelona, Spain
| | | | - Alejandra Ivars
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Sanchez Cánovas
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, France
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology 2017; 6:e1371896. [PMID: 29209572 PMCID: PMC5706611 DOI: 10.1080/2162402x.2017.1371896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The goal of cancer immunotherapy is to establish new or boost pre-existing anticancer immune responses that eradicate malignant cells while generating immunological memory to prevent disease relapse. Over the past few years, immunomodulatory monoclonal antibodies (mAbs) that block co-inhibitory receptors on immune effectors cells - such as cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best known as PD-1) - or their ligands - such as CD274 (best known as PD-L1) - have proven very successful in this sense. As a consequence, many of such immune checkpoint blockers (ICBs) have already entered the clinical practice for various oncological indications. Considerable attention is currently being attracted by a second group of immunomodulatory mAbs, which are conceived to activate co-stimulatory receptors on immune effector cells. Here, we discuss the mechanisms of action of these immunostimulatory mAbs and summarize recent progress in their preclinical and clinical development.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rienk Offringa
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- DKFZ-Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
26
|
Byers JM, Christodoulides JA, Delehanty JB, Raghu D, Raphael MP. Quantifying time-varying cellular secretions with local linear models. Heliyon 2017; 3:e00340. [PMID: 28736751 PMCID: PMC5506887 DOI: 10.1016/j.heliyon.2017.e00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023] Open
Abstract
Extracellular protein concentrations and gradients initiate a wide range of cellular responses, such as cell motility, growth, proliferation and death. Understanding inter-cellular communication requires spatio-temporal knowledge of these secreted factors and their causal relationship with cell phenotype. Techniques which can detect cellular secretions in real time are becoming more common but generalizable data analysis methodologies which can quantify concentration from these measurements are still lacking. Here we introduce a probabilistic approach in which local-linear models and the law of mass action are applied to obtain time-varying secreted concentrations from affinity-based biosensor data. We first highlight the general features of this approach using simulated data which contains both static and time-varying concentration profiles. Next we apply the technique to determine concentration of secreted antibodies from 9E10 hybridoma cells as detected using nanoplasmonic biosensors. A broad range of time-dependent concentrations was observed: from steady-state secretions of 230 pM near the cell surface to large transients which reached as high as 56 nM over several minutes and then dissipated.
Collapse
Affiliation(s)
- Jeff M Byers
- Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5320
| | | | - James B Delehanty
- Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5320
| | - Deepa Raghu
- Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5320
| | - Marc P Raphael
- Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5320
| |
Collapse
|
27
|
Sica A, Strauss L, Consonni FM, Travelli C, Genazzani A, Porta C. Metabolic regulation of suppressive myeloid cells in cancer. Cytokine Growth Factor Rev 2017; 35:27-35. [DOI: 10.1016/j.cytogfr.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 12/23/2022]
|
28
|
Chen J, Guo XZ, Li HY, Zhao JJ, Xu WD. Dendritic cells engineered to secrete anti-DcR3 antibody augment cytotoxic T lymphocyte response against pancreatic cancer in vitro. World J Gastroenterol 2017; 23:817-829. [PMID: 28223726 PMCID: PMC5296198 DOI: 10.3748/wjg.v23.i5.817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the enhanced cytotoxic T lymphocyte responses against pancreatic cancer (PC) in vitro induced by dendritic cells (DCs) engineered to secrete anti-DcR3 monoclonal antibody (mAb).
METHODS DCs, T lymphocytes and primary PC cells were obtained from PC patients. DCs were transfected with a designed humanized anti-DcR3 monoclonal antibody heavy and light chain mRNA and/or total tumor RNA (DC-tumor-anti-DcR3 RNA or DC-total tumor RNA) by using electroporation technology. The identification, concentration and function of anti-DcR3 mAb secreted by DC-tumor-anti-DcR3 RNA were determined by western blotting and enzyme-linked immunosorbent assay. After co-culturing of autologous isolated PC cells with target DCs, the effects of secreting anti-DcR3 mAb on RNA-DCs’ viability and apoptosis were assessed by MTT assay and flow cytometry. Analysis of enhanced antigen-specific immune response against PC induced by anti-DcR3 mAb secreting DCs was performed using a 51Cr releasing test. T cell responses induced by RNA-loaded DCs were analyzed by measuring cytokine levels, including IFN-γ, IL-10, IL4, TNF-α and IL-12.
RESULTS The anti-DcR3 mAb secreted by DCs reacted with recombinant human DcR3 protein and generated a band with 35 kDa molecular weight. The secreting mAb was transient, peaking at 24 h and becoming undetectable after 72 h. After co-incubation with DC-tumor-anti-DcR3 RNA for designated times, the DcR3 level in the supernatant of autologous PC cells was significantly down-regulated (P < 0.05). DCs secreting anti-DcR3 mAb could improve cell viability and slow down the apoptosis of RNA-loaded DCs, compared with DC-total tumor RNA (P < 0.01). The anti-DcR3 mAb secreted by DC-tumor-anti-DcR3 RNA could enhance the induction of cytotoxic T lymphocytes (CTLs) activity toward RNA-transfected DCs, primary tumor cells, and PC cell lines, compared with CTLs stimulated by DC-total tumor RNA or control group (P < 0.05). Meanwhile, the antigen-specific CTL responses were MHC class I-restricted. The CD4+ T cells and CD8+ T cells incubated with anti-DcR3 mAb secreting DCs could produce extremely higher level IFN-γ and lower level IL4 than those incubated with DC-total tumor RNA or controls (P < 0.01).
CONCLUSION DCs engineered to secrete anti-DcR3 antibody can augment CTL responses against PC in vitro, and the immune-enhancing effects may be partly due to their capability of down-regulating DC apoptosis and adjusting the Th1/Th2 cytokine network.
Collapse
|
29
|
Liu M, Li Z, Yang J, Jiang Y, Chen Z, Ali Z, He N, Wang Z. Cell-specific biomarkers and targeted biopharmaceuticals for breast cancer treatment. Cell Prolif 2016; 49:409-20. [PMID: 27312135 PMCID: PMC6496337 DOI: 10.1111/cpr.12266] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the second leading cause of cancer death among women, and its related treatment has been attracting significant attention over the past decades. Among the various treatments, targeted therapy has shown great promise as a precision treatment, by binding to cancer cell-specific biomarkers. So far, great achievements have been made in targeted therapy of breast cancer. In this review, we first discuss cell-specific biomarkers, which are not only useful for classification of breast cancer subtyping but also can be utilized as goals for targeted therapy. Then, the innovative and generic-targeted biopharmaceuticals for breast cancer, including monoclonal antibodies, non-antibody proteins and small molecule drugs, are reviewed. Finally, we provide our outlook on future developments of biopharmaceuticals, and provide solutions to problems in this field.
Collapse
Affiliation(s)
- Mei Liu
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zhiyang Li
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Department of Laboratory MedicineNanjing Drum Tower Hospital Clinical CollegeNanjing UniversityNanjingChina
| | - Jingjing Yang
- School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
| | - Yanyun Jiang
- School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
| | - Zhongsi Chen
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zeeshan Ali
- School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
| | - Nongyue He
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zhifei Wang
- School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
30
|
Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumour Biol 2016; 37:10053-66. [PMID: 27193823 DOI: 10.1007/s13277-016-5069-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Progress in cancer biology has led to an increasing discovery of oncogenic alterations of the platelet-derived growth factor receptors (PDGFRs) in cancers. In addition, their overexpression in numerous cancers invariably makes PDGFRs and platelet-derived growth factors (PDGFs) prognostic and treatment markers in some cancers. The oncologic alterations of the PDGFR/PDGF system affect the extracellular, transmembrane and tyrosine kinase domains as well as the juxtamembrane segment of the receptor. The receptor is also involved in fusions with intracellular proteins and receptor tyrosine kinase. These discoveries undoubtedly make the system an attractive oncologic therapeutic target. This review covers elementary biology of PDGFR/PDGF system and its role as a prognostic and treatment marker in cancers. In addition, the multifarious therapeutic targets of PDGFR/PDGF system are discussed. Great potential exists in the role of PDGFR/PDGF system as a prognostic and treatment marker and for further exploration of its multifarious therapeutic targets in safe and efficacious management of cancer treatments.
Collapse
|
31
|
Kroesen M, Büll C, Gielen PR, Brok IC, Armandari I, Wassink M, Looman MWG, Boon L, den Brok MH, Hoogerbrugge PM, Adema GJ. Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma. Oncoimmunology 2016; 5:e1164919. [PMID: 27471639 PMCID: PMC4938306 DOI: 10.1080/2162402x.2016.1164919] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023] Open
Abstract
Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients.
Collapse
Affiliation(s)
- Michiel Kroesen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Büll
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Paul R Gielen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Ingrid C Brok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Inna Armandari
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Melissa Wassink
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Maaike W G Looman
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Louis Boon
- EPIRUS Biopharmaceuticals Netherlands B.V. , Utrecht, The Netherlands
| | - Martijn H den Brok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Department of Pediatric Oncology, Radboud University Medical Center, Nijmegen, The Netherlands; Princes Máxima Center for Pediatric Oncology, De Bilt, The Netherlands
| | - Gosse J Adema
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| |
Collapse
|
32
|
Barina AR, Bashir MR, Howard BA, Hanks BA, Salama AK, Jaffe TA. Isolated recto-sigmoid colitis: a new imaging pattern of ipilimumab-associated colitis. Abdom Radiol (NY) 2016; 41:207-14. [PMID: 26867901 DOI: 10.1007/s00261-015-0560-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study is to describe typical CT findings and distinct imaging patterns of ipilimumab-associated colitis in immunotherapeutic treatment of melanoma. MATERIALS AND METHODS This HIPAA-compliant retrospective study included 86 patients with melanoma imaged with CT or PET/CT of the abdomen and pelvis during or shortly after administration of ipilimumab. Twelve of 86 patients (14%) developed symptoms of colitis and underwent CT imaging of the abdomen and pelvis while symptomatic. Two radiologists reviewed CT images to evaluate for the presence of CT findings of colitis including mesenteric vessel engorgement, pericolonic inflammatory change, hyperenhancement of colonic mucosa, colonic wall thickening, fluid-filled colonic distension, pneumoperitoneum, pneumatosis, and diverticulosis in the inflamed segment of colon. One nuclear medicine radiologist reviewed PET images for abnormally increased FDG uptake in the colon. The diagnosis of ipilimumab-associated colitis was made based on clinical presentation, imaging findings, and laboratory data. RESULTS Common CT findings of ipilimumab-associated colitis included colonic mucosal hyperenhancement (10/12 [83%]), mesenteric vessel engorgement (9/12 [75.0%]), colonic wall thickening (9/12 [75%]), and pericolonic fat stranding (2/12 [16%]). No patient developed pneumatosis or pneumoperitoneum. Diffuse colitis was present in 4/12 (33%) patients. Segmental colitis with associated diverticulosis (was present in 2/12 (17%) patients). A third pattern, isolated recto-sigmoid colitis without diverticulosis, was observed in 6/12 (50%) patients. All patients with colitis demonstrated recto-sigmoid involvement. CONCLUSIONS A third radiologic pattern of ipilimumab-associated colitis was observed in this study: isolated recto-sigmoid colitis without diverticulosis. All patterns of ipilimumab-associated colitis include recto-sigmoid involvement.
Collapse
Affiliation(s)
- Andrew R Barina
- Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC, 27710, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC, 27710, USA
| | - Brandon A Howard
- Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC, 27710, USA
| | - Brent A Hanks
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - April K Salama
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Tracy A Jaffe
- Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC, 27710, USA.
| |
Collapse
|
33
|
Dorvignit D, García-Martínez L, Rossin A, Sosa K, Viera J, Hernández T, Mateo C, Hueber AO, Mesa C, López-Requena A. Antitumor and cytotoxic properties of a humanized antibody specific for the GM3(Neu5Gc) ganglioside. Immunobiology 2015. [DOI: 10.1016/j.imbio.2015.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Müller D. Antibody fusions with immunomodulatory proteins for cancer therapy. Pharmacol Ther 2015; 154:57-66. [PMID: 26145167 DOI: 10.1016/j.pharmthera.2015.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 01/02/2023]
Abstract
The potential of immunomodulatory proteins, in particular cytokines, for cancer therapy is well recognized, but hampered by the toxicity associated with their systemic application. In order to address this problem, targeted delivery by antibody fusion proteins has been early proposed and their development intensively pursued over the last decade. Here, factors influencing the selection and modification of cytokines and antibody formats for this approach are being discussed, indicating current developments and translational advances in the field.
Collapse
Affiliation(s)
- Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
35
|
Aranda F, Buqué A, Bloy N, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for oncological indications. Oncoimmunology 2015; 4:e1046673. [PMID: 26451319 DOI: 10.1080/2162402x.2015.1046673] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/15/2022] Open
Abstract
One particular paradigm of anticancer immunotherapy relies on the administration of (potentially) tumor-reactive immune effector cells. Generally, these cells are obtained from autologous peripheral blood lymphocytes (PBLs) ex vivo (in the context of appropriate expansion, activation and targeting protocols), and re-infused into lymphodepleted patients along with immunostimulatory agents. In spite of the consistent progress achieved throughout the past two decades in this field, no adoptive cell transfer (ACT)-based immunotherapeutic regimen is currently approved by regulatory agencies for use in cancer patients. Nonetheless, the interest of oncologists in ACT-based immunotherapy continues to increase. Accumulating clinical evidence indicates indeed that specific paradigms of ACT, such as the infusion of chimeric antigen receptor (CAR)-expressing autologous T cells, are associated with elevated rates of durable responses in patients affected by various neoplasms. In line with this notion, clinical trials investigating the safety and therapeutic activity of ACT in cancer patients are being initiated at an ever increasing pace. Here, we review recent preclinical and clinical advances in the development of ACT-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Fernando Aranda
- Group of Immune Receptors of the Innate and Adaptive System; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) ; Barcelona, Spain
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Francesca Castoldi
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Wolf Hervé Fridman
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Dept. of Immunology; 2nd Faculty of Medicine and University Hospital Motol; Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM; U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Dept. of Immunology; 2nd Faculty of Medicine and University Hospital Motol; Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France ; INSERM; U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France
| |
Collapse
|
36
|
Pol J, Bloy N, Buqué A, Eggermont A, Cremer I, Sautès-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide-based anticancer vaccines. Oncoimmunology 2015; 4:e974411. [PMID: 26137405 PMCID: PMC4485775 DOI: 10.4161/2162402x.2014.974411] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023] Open
Abstract
Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventions with superior adjuvant activity in patients. Here, we summarize the latest advances in the development of peptide vaccines for cancer therapy.
Collapse
Key Words
- APC, antigen-presenting cell
- CMP, carbohydrate-mimetic peptide
- EGFR, epidermal growth factor receptor
- FDA, Food and Drug Administration
- GM-CSF, granulocyte macrophage colony stimulating factor
- HPV, human papillomavirus
- IDH1, isocitrate dehydrogenase 1 (NADP+), soluble
- IDO1, indoleamine 2, 3-dioxygenase 1
- IFNα, interferon α
- IL-2, interleukin-2
- MUC1, mucin 1
- NSCLC, non-small cell lung carcinoma
- PADRE, pan-DR binding peptide epitope
- PPV, personalized peptide vaccination
- SLP, synthetic long peptide
- TAA, tumor-associated antigen
- TERT, telomerase reverse transcriptase
- TLR, Toll-like receptor
- TRA, tumor rejection antigen
- WT1
- carbohydrate-mimetic peptides
- immune checkpoint blockers
- immunostimulatory cytokines
- survivin
- synthetic long peptides
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM; U970; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM; U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
37
|
Buqué A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e1008814. [PMID: 26137403 PMCID: PMC4485728 DOI: 10.1080/2162402x.2015.1008814] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
Immunomodulatory monoclonal antibodies (mAbs) differ from their tumor-targeting counterparts because they exert therapeutic effects by directly interacting with soluble or (most often) cellular components of the immune system. Besides holding promise for the treatment of autoimmune and inflammatory disorders, immunomodulatory mAbs have recently been shown to constitute a potent therapeutic weapon against neoplastic conditions. One class of immunomodulatory mAbs operates by inhibiting safeguard systems that are frequently harnessed by cancer cells to establish immunological tolerance, the so-called "immune checkpoints." No less than 3 checkpoint-blocking mAbs have been approved worldwide for use in oncological indications, 2 of which during the past 12 months. These molecules not only mediate single-agent clinical activity in patients affected by specific neoplasms, but also significantly boost the efficacy of several anticancer chemo-, radio- or immunotherapies. Here, we summarize recent advances in the development of checkpoint-blocking mAbs, as well as of immunomodulatory mAbs with distinct mechanisms of action.
Collapse
Key Words
- CRC, colorectal carcinoma
- CTLA4, cytotoxic T lymphocyte-associated protein 4
- FDA, Food and Drug Administration
- IL, interleukin
- KIR, killer cell immunoglobulin-like receptor
- MEDI4736
- MPDL3280A
- NK, natural killer
- NSCLC, non-small cell lung carcinoma
- PD-1, programmed cell death 1
- RCC, renal cell carcinoma
- TGFβ1, transforming growth factor β1
- TLR, Toll-like receptor
- TNFRSF, tumor necrosis factor receptor superfamily
- Treg, regulatory T cell
- ipilimumab
- mAb, monoclonal antibody
- nivolumab
- pembrolizumab
- urelumab
Collapse
Affiliation(s)
- Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c.; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Wolf Hervé Fridman
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jitka Fucikova
- Sotio a.c.; Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Radek Spisek
- Sotio a.c.; Prague, Czech Republic
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
38
|
Obrist F, Manic G, Kroemer G, Vitale I, Galluzzi L. Trial Watch: Proteasomal inhibitors for anticancer therapy. Mol Cell Oncol 2015; 2:e974463. [PMID: 27308423 PMCID: PMC4904962 DOI: 10.4161/23723556.2014.974463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.
Collapse
Affiliation(s)
- Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”
| | - Lorenzo Galluzzi
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
39
|
Kapelski S, Boes A, Spiegel H, de Almeida M, Klockenbring T, Reimann A, Fischer R, Barth S, Fendel R. Fast track antibody V-gene rescue, recombinant expression in plants and characterization of a PfMSP4-specific antibody. Malar J 2015; 14:50. [PMID: 25651860 PMCID: PMC4323031 DOI: 10.1186/s12936-015-0577-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/25/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Monoclonal antibodies (mAbs) are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines. Professional applications of mAbs depend on the steady supply of material. Because hybridoma cultures can stop producing the antibody or even die, preservation of the unique epitope specificity of mAbs by rescue of the sequences encoding the antibody variable domains (V regions) is important. The availability of these sequences enables not only the recombinant expression of the original antibody for further applications, but opens the road for antibody engineering towards innovative diagnostic or therapeutic applications. A time- and cost-efficient production system enabling the detailed analysis of the antibodies is an essential requirement in this context. METHODS Sequences were rescued from three hybridoma cell lines, subjected to sequence analysis, subcloned into binary expression vectors and recombinantly expressed as chimeric mAb (constant regions of human IgG1:k1) in Nicotiana benthamiana plants. The properties of the recombinant and the murine mAbs were compared using competition enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. The recognition of native PfMSP4 by the recombinant mAb was analysed by immunofluorescence staining of Pf 3D7A schizonts and by western blot analysis of merozoite extract. RESULTS The rescued sequences of all three hybridoma cell lines were identical. The recombinant mAb was successfully expressed as IgG in plants at moderate levels (45 mg/kg fresh leaf weight). Preservation of the original epitope was demonstrated in a competition ELISA, using recombinant mAb and the three murine mAbs. EGF_PfMSP4-specific affinities were determined by SPR spectroscopy to 8 nM and 10 nM for the murine or recombinant mAb, respectively. Binding to parasite PfMSP4 was confirmed in an immunofluorescence assay showing a characteristic staining pattern and by western blot analysis using merozoite extract. CONCLUSIONS As demonstrated by the example of an EGF_PfMSP4-specific antibody, the described combination of a simple and efficient hybridoma antibody cloning approach with the flexible, robust and cost-efficient transient expression system suitable to rapidly produce mg-amounts of functional recombinant antibodies provides an attractive method for the generation of mAbs and their derivatives as research tool, novel therapeutics or diagnostics.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Protozoan/genetics
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/isolation & purification
- Antigens, Protozoan/immunology
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Gene Expression
- Humans
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Immunoglobulin Variable Region/isolation & purification
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Organisms, Genetically Modified/genetics
- Organisms, Genetically Modified/metabolism
- Protozoan Proteins/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Surface Plasmon Resonance
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Melanie de Almeida
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
40
|
Vacchelli E, Pol J, Bloy N, Eggermont A, Cremer I, Fridman WH, Galon J, Marabelle A, Kohrt H, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e985940. [PMID: 25949870 DOI: 10.4161/2162402x.2014.985940] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/11/2014] [Indexed: 12/31/2022] Open
Abstract
An expanding panel of monoclonal antibodies (mAbs) that specifically target malignant cells or intercept trophic factors delivered by the tumor stroma is now available for cancer therapy. These mAbs can exert direct antiproliferative/cytotoxic effects as they inhibit pro-survival signal transduction cascades or activate lethal receptors at the plasma membrane of cancer cells, they can opsonize neoplastic cells to initiate a tumor-targeting immune response, or they can be harnessed to specifically deliver toxins or radionuclides to transformed cells. As an indication of the success of this immunotherapeutic paradigm, international regulatory agencies approve new tumor-targeting mAbs for use in cancer patients every year. Moreover, the list of indications for previously licensed molecules is frequently expanded to other neoplastic disorders as the results of large, randomized clinical trials become available. Here, we discuss recent advances in the preclinical and clinical development of tumor-targeting mAbs for oncological indications.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | | | - Isabelle Cremer
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Wolf Hervé Fridman
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jérôme Galon
- INSERM; U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM ; U1015 , Villejuif, France
| | - Holbrook Kohrt
- Department of Medicine; Division of Oncology; Stanford University ; Stanford, CA, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM ; U1015 , Villejuif, France
| | - Guido Kroemer
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou ; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
41
|
Abstract
Cancer stem cells (CSCs) are a subpopulation of tumor cells that display self-renewal and tumor initiation capacity and the ability to give rise to the heterogenous lineages of cancer cells that comprise the tumor. CSCs exhibit intrinsic mechanisms of resistance to modern cancer therapeutics, allowing them to survive current cancer therapies and to initiate tumor recurrence and metastasis. Various cell surface and transmembrane proteins expressed by CSCs, including CD44, CD47, CD123, EpCAM (CD326), CD133, IGF receptor I, and proteins of the Notch and Wnt signaling pathways have been identified. Recently, monoclonal antibodies and antibody constructs raised against these CSC proteins have shown efficacy against CSCs in human cancer xenograft mice, and some of them have demonstrated antitumor activity in clinical studies. Since current cancer therapies fail to eliminate CSCs, leading to cancer recurrence and progression, selective targeting of CSCs with monoclonal antibodies and antibody constructs may represent a novel therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Cord Naujokat
- Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Varela-Calviño R, Cordero OJ. Immunology and Immunotherapy of Colorectal Cancer. CANCER IMMUNOLOGY 2015:217-236. [DOI: 10.1007/978-3-662-46410-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
43
|
Galluzzi L, Vacchelli E, Pedro JMBS, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, Apte RN, Aranda F, Ayyoub M, Beckhove P, Blay JY, Bracci L, Caignard A, Castelli C, Cavallo F, Celis E, Cerundolo V, Clayton A, Colombo MP, Coussens L, Dhodapkar MV, Eggermont AM, Fearon DT, Fridman WH, Fučíková J, Gabrilovich DI, Galon J, Garg A, Ghiringhelli F, Giaccone G, Gilboa E, Gnjatic S, Hoos A, Hosmalin A, Jäger D, Kalinski P, Kärre K, Kepp O, Kiessling R, Kirkwood JM, Klein E, Knuth A, Lewis CE, Liblau R, Lotze MT, Lugli E, Mach JP, Mattei F, Mavilio D, Melero I, Melief CJ, Mittendorf EA, Moretta L, Odunsi A, Okada H, Palucka AK, Peter ME, Pienta KJ, Porgador A, Prendergast GC, Rabinovich GA, Restifo NP, Rizvi N, Sautès-Fridman C, Schreiber H, Seliger B, Shiku H, Silva-Santos B, Smyth MJ, Speiser DE, Spisek R, Srivastava PK, Talmadge JE, Tartour E, Van Der Burg SH, Van Den Eynde BJ, Vile R, Wagner H, Weber JS, Whiteside TL, Wolchok JD, Zitvogel L, Zou W, Kroemer G. Classification of current anticancer immunotherapies. Oncotarget 2014; 5:12472-508. [PMID: 25537519 PMCID: PMC4350348 DOI: 10.18632/oncotarget.2998] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022] Open
Abstract
During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Erika Vacchelli
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - José-Manuel Bravo-San Pedro
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Laura Senovilla
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Elisa Elena Baracco
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Norma Bloy
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Francesca Castoldi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
- Sotio a.c., Prague, Czech Republic
| | - Jean-Pierre Abastado
- Pole d'innovation thérapeutique en oncologie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Dept. of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Ron N. Apte
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fernando Aranda
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maha Ayyoub
- INSERM, U1102, Saint Herblain, France
- Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Philipp Beckhove
- Translational Immunology Division, German Cancer Research Center, Heidelberg, Germany
| | - Jean-Yves Blay
- Equipe 11, Centre Léon Bérard (CLR), Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Bracci
- Dept. of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anne Caignard
- INSERM, U1160, Paris, France
- Groupe Hospitalier Saint Louis-Lariboisière - F. Vidal, Paris, France
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Dept. of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center, Dept. of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Estaban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA, USA
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Aled Clayton
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
- Velindre Cancer Centre, Cardiff, UK
| | - Mario P. Colombo
- Unit of Immunotherapy of Human Tumors, Dept. of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Lisa Coussens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Madhav V. Dhodapkar
- Sect. of Hematology and Immunobiology, Yale Cancer Center, Yale University, New Haven, CT, USA
| | | | | | - Wolf H. Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fučíková
- Sotio a.c., Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Dmitry I. Gabrilovich
- Dept. of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Abhishek Garg
- Cell Death Research and Therapy (CDRT) Laboratory, Dept. of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - François Ghiringhelli
- INSERM, UMR866, Dijon, France
- Centre Georges François Leclerc, Dijon, France
- Université de Bourgogne, Dijon, France
| | - Giuseppe Giaccone
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Eli Gilboa
- Dept. of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sacha Gnjatic
- Sect. of Hematology/Oncology, Immunology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Axel Hoos
- Glaxo Smith Kline, Cancer Immunotherapy Consortium, Collegeville, PA, USA
| | - Anne Hosmalin
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Hôpital Cochin, AP-HP, Paris, France
| | - Dirk Jäger
- National Center for Tumor Diseases, University Medical Center Heidelberg, Heidelberg, Germany
| | - Pawel Kalinski
- Dept. of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Dept. of Immunology and Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Klas Kärre
- Dept. of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Oliver Kepp
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rolf Kiessling
- Dept. of Oncology, Karolinska Institute Hospital, Stockholm, Sweden
| | - John M. Kirkwood
- University of Pittsburgh Cancer Institute Laboratory, Pittsburgh, PA, USA
| | - Eva Klein
- Dept. of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Alexander Knuth
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Claire E. Lewis
- Academic Unit of Inflammation and Tumour Targeting, Dept. of Oncology, University of Sheffield Medical School, Sheffield, UK
| | - Roland Liblau
- INSERM, UMR1043, Toulouse, France
- CNRS, UMR5282, Toulouse, France
- Laboratoire d'Immunologie, CHU Toulouse, Université Toulouse II, Toulouse, France
| | - Michael T. Lotze
- Dept. of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Jean-Pierre Mach
- Dept. of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Fabrizio Mattei
- Dept. of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Institute, Rozzano, Italy
- Dept. of Medical Biotechnologies and Translational Medicine, University of Milan, Rozzano, Italy
| | - Ignacio Melero
- Dept. of Immunology, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Dept. of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Cornelis J. Melief
- ISA Therapeutics, Leiden, The Netherlands
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Elizabeth A. Mittendorf
- Research Dept. of Surgical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Adekunke Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hideho Okada
- Dept. of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Marcus E. Peter
- Div. of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Angel Porgador
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
- Dept. of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Philadelphia, PA, USA
- Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Nicholas P. Restifo
- National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Naiyer Rizvi
- Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Hans Schreiber
- Dept. of Pathology, The Cancer Research Center, The University of Chicago, Chicago, IL, USA
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hiroshi Shiku
- Dept. of Immuno-GeneTherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Daniel E. Speiser
- Dept. of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Cancer Research Center, Lausanne, Switzerland
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Pramod K. Srivastava
- Dept. of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
- Carole and Ray Neag Comprehensive Cancer Center, Farmington, CT, USA
| | - James E. Talmadge
- Laboratory of Transplantation Immunology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | | | - Benoît J. Van Den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - Richard Vile
- Dept. of Molecular Medicine and Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hermann Wagner
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Jeffrey S. Weber
- Donald A. Adam Comprehensive Melanoma Research Center, Moffitt Cancer Center, Tampa, FL, USA
| | - Theresa L. Whiteside
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jedd D. Wolchok
- Dept. of Medicine and Ludwig Center, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, Villejuif, France
- Centre d'Investigation Clinique Biothérapie 507 (CICBT507), Gustave Roussy Cancer Campus, Villejuif, France
| | - Weiping Zou
- University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| |
Collapse
|
44
|
Makkouk A, Weiner GJ. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res 2014; 75:5-10. [PMID: 25524899 DOI: 10.1158/0008-5472.can-14-2538] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has proven to be challenging as it depends on overcoming multiple mechanisms that mediate immune tolerance to self-antigens. A growing understanding of immune tolerance has been the foundation for new approaches to cancer immunotherapy. Adoptive transfer of immune effectors such as antitumor mAb and chimeric antigen receptor T cells bypasses many of the mechanisms involved in immune tolerance by allowing for expansion of tumor-specific effectors ex vivo. Vaccination with whole tumor cells, protein, peptide, or dendritic cells has proven challenging, yet may be more useful when combined with other cancer immunotherapeutic strategies. Immunomodulatory approaches to cancer immunotherapy include treatment with agents that enhance and maintain T-cell activation. Recent advances in the use of checkpoint blockade to block negative signals and to maintain the antitumor response are particularly exciting. With our growing knowledge of immune tolerance and ways to overcome it, combination treatments are being developed, tested, and have particular promise. One example is in situ immunization that is designed to break tolerance within the tumor microenvironment. Progress in all these areas is continuing based on clear evidence that cancer immunotherapy designed to overcome immune tolerance can be useful for a growing number of patients with cancer.
Collapse
Affiliation(s)
- Amani Makkouk
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa
| | - George J Weiner
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa. Holden Comprehensive Cancer Center and Department of Internal Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
45
|
Vacchelli E, Aranda F, Eggermont A, Sautès-Fridman C, Tartour E, Kennedy EP, Platten M, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2014; 3:e957994. [PMID: 25941578 DOI: 10.4161/21624011.2014.957994] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/17/2022] Open
Abstract
Indoleamine 2,3-dioxigenase 1 (IDO1) is the main enzyme that catalyzes the first, rate-limiting step of the so-called "kynurenine pathway", i.e., the metabolic cascade that converts the essential amino acid L-tryptophan (Trp) into L-kynurenine (Kyn). IDO1, which is expressed constitutively by some tissues and in an inducible manner by specific subsets of antigen-presenting cells, has been shown to play a role in the establishment and maintenance of peripheral tolerance. At least in part, this reflects the capacity of IDO1 to restrict the microenvironmental availability of Trp and to favor the accumulation of Kyn and some of its derivatives. Also, several neoplastic lesions express IDO1, providing them with a means to evade anticancer immunosurveillance. This consideration has driven the development of several IDO1 inhibitors, some of which (including 1-methyltryptophan) have nowadays entered clinical evaluation. In animal tumor models, the inhibition of IDO1 by chemical or genetic interventions is indeed associated with the (re)activation of therapeutically relevant anticancer immune responses. This said, several immunotherapeutic regimens exert robust clinical activity in spite of their ability to promote the expression of IDO1. Moreover, 1-methyltryptophan has recently been shown to exert IDO1-independent immunostimulatory effects. Here, we summarize the preclinical and clinical studies testing the antineoplastic activity of IDO1-targeting interventions.
Collapse
Key Words
- 1-methyl-D-tryptophan
- AHR, aryl hydrocarbon receptor
- BIN1, bridging integrator 1
- CTLA4, cytotoxic T lymphocyte associated protein 4
- DC, dendritic cell
- FDA, Food and Drug Administration
- GCN2, general control non-derepressible 2
- HCC, hepatocellular carcinoma
- IDO, indoleamine 2,3-dioxigenase
- IFNγ, interferon γ
- INCB024360
- Kyn, L-kynurenine
- NK, natural killer
- NLG919
- ODN, oligodeoxynucleotide
- TDO2, tryptophan 2,3-dioxigenase
- TLR, Toll-like receptor
- Treg, regulatory T cell
- Trp, L-tryptophan
- indoximod
- interferon γ
- peptide-based anticancer vaccines
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; ; Université Paris-Sud/Paris XI; Orsay , Paris, France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | | | - Catherine Sautès-Fridman
- INSERM U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; INSERM U970 ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France
| | | | - Michael Platten
- Department of Neurooncology; University Hospital Heidelberg and National Center for Tumor Diseases ; Heidelberg, Germany ; German Cancer Consortium (DKTK) Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
46
|
Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Cardiac glycosides and cancer therapy. Oncoimmunology 2014; 2:e23082. [PMID: 23525565 PMCID: PMC3601180 DOI: 10.4161/onci.23082] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cardiac glycosides (CGs) are natural compounds sharing the ability to operate as potent inhibitors of the plasma membrane Na+/K+-ATPase, hence promoting—via an indirect mechanism—the intracellular accumulation of Ca2+ ions. In cardiomyocytes, increased intracellular Ca2+ concentrations exert prominent positive inotropic effects, that is, they increase myocardial contractility. Owing to this feature, two CGs, namely digoxin and digitoxin, have extensively been used in the past for the treatment of several cardiac conditions, including distinct types of arrhythmia as well as contractility disorders. Nowadays, digoxin is approved by the FDA and indicated for the treatment of congestive heart failure, atrial fibrillation and atrial flutter with rapid ventricular response, whereas the use of digitoxin has been discontinued in several Western countries. Recently, CGs have been suggested to exert potent antineoplastic effects, notably as they appear to increase the immunogenicity of dying cancer cells. In this Trial Watch, we summarize the mechanisms that underpin the unsuspected anticancer potential of CGs and discuss the progress of clinical studies that have evaluated/are evaluating the safety and efficacy of CGs for oncological indications.
Collapse
Affiliation(s)
- Laurie Menger
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM; U848; Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Galluzzi L, Lugli E. Cancer immunotherapy turns viral. Oncoimmunology 2014; 2:e24802. [PMID: 23734338 PMCID: PMC3654608 DOI: 10.4161/onci.24802] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | |
Collapse
|
48
|
Mavilio D, Galluzzi L, Lugli E. Novel multifunctional antibody approved for the treatment of breast cancer. Oncoimmunology 2014; 2:e24567. [PMID: 23802090 PMCID: PMC3661175 DOI: 10.4161/onci.24567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 01/13/2023] Open
Affiliation(s)
- Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center; Rozzano, Italy
| | | | | |
Collapse
|
49
|
Kroemer G, Zitvogel L, Galluzzi L. Victories and deceptions in tumor immunology: Stimuvax ®. Oncoimmunology 2014; 2:e23687. [PMID: 23483762 PMCID: PMC3583943 DOI: 10.4161/onci.23687] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Guido Kroemer
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; INSERM, U848; Villejuif, France ; Metabolomics Platform, Institut Gustave Roussy; Villejuif, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France
| | | | | |
Collapse
|
50
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|