1
|
Zeng J, Chen L, Tang J, Xue J, Wang Q, Feng X, Chen X, Huang K, Gan F. Short-term exposure to low doses of aflatoxin B1 aggravates nonalcoholic steatohepatitis by TLR4-mediated necroptosis. Free Radic Biol Med 2025; 226:129-142. [PMID: 39549881 DOI: 10.1016/j.freeradbiomed.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Aflatoxin B1 (AFB1), a worldwide mycotoxin found in food and foodstuffs, is a potent hepatotoxin in humans and animals. Non-alcoholic fatty liver disease (NAFLD), a widespread disease, could progress from simple steatosis to non-alcoholic steatohepatitis (NASH), hepatic cirrhosis, and even hepatocellular carcinoma (HCC). To date, little is known concerning the relationship between AFB1 and the progression of NAFLD. The effects of low doses of AFB1 on the development of NASH and their mechanism were investigated in vivo and in vitro. The results in vivo showed that AFB1 at 20 and 40 μg/kg.bw aggravated CDAHFD-induced NASH in mice as demonstrated by increasing the serum and liver lipid accumulation, liver inflammation and injury. The results in vitro showed that AFB1 at 1.0 μM aggravated FFA-induced lipid accumulation, inflammation and cell damage in HepG2 cells. In addition, RNA-seq indicated that necroptosis, Toll like receptor signaling and TNF-α signaling showed a significant change in KEGG pathway enrichment in AFB1 at 40 μg/kg.bw. AFB1 significantly upregulated the mRNA and protein levels of TLR4, RIPK3, p-RIPK3, MLKL and p-MLKL, and increased TUNEL positive cells. Also, immunofluorescence results showed that TUNEL, TLR4, TNF-α had co-localized with RIPK3, respectively. Necroptosis inhibitor (GSK-872) attenuated the aggravating effects of AFB1 on NASH. Knockout of TLR4 inhibited necroptosis and rescued the aggravating effects of AFB1 on NASH. These data indicate that low dose of AFB1 aggravated NASH via TLR4-mediated necroptosis. This suggests that low dose of AFB1 is potentially harmful to animals and humans, as they exacerbate NASH.
Collapse
Affiliation(s)
- Junya Zeng
- Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Li Chen
- Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiangyu Tang
- Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Junxin Xue
- Technical Center for Animal & Plant and Food Inspection and Quarantine, Shanghai Customs District, 200135, Shanghai, China
| | - Qi Wang
- Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xinyu Feng
- Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
2
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
3
|
Kim DH, Yoon JY, Lee JH, Suh DH. Alterations in epidermal stem cells within the pilosebaceous unit in atrophic acne scars. Australas J Dermatol 2024; 65:311-318. [PMID: 38419202 DOI: 10.1111/ajd.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/01/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Atrophic acne scarring is a common sequela of inflammatory acne, causing significant problems for affected patients. Although prolonged inflammation and subsequent aberrant tissue regeneration are considered the underlying pathogenesis, the role of epidermal stem cells, which are crucial to the regeneration of pilosebaceous units, remains unknown. OBJECTIVES To examine the changes occurring in epidermal stem cells in atrophic acne scars. METHODS Changes in collagen, elastic fibre and human leukocyte antigen (HLA)-DR expression were analysed in normal skin and inflammatory acne lesions at days 1, 3 and 7 after development. The expression of epidermal stem cell markers and proliferation markers was compared between normal skin and mature atrophic acne scar tissue. RESULTS In acne lesions, inflammation had invaded into pilosebaceous units over time. Their normal structure had been destructed and replaced with a reduced amount of collagen and elastic fibre. Expression of stem cell markers including CD34, p63, leucine-rich repeat-containing G protein-coupled receptor (LGR)6 and LGR5, which are expressed in the interfollicular epidermis, isthmus and bulge of hair follicles, significantly decreased in atrophic acne scar tissue compared to normal skin. Epidermal proliferation was significantly reduced in scar tissue. CONCLUSIONS These findings suggest that as inflammatory acne lesions progress, inflammation gradually infiltrates the pilosebaceous unit and affects the resident stem cells. This disruption impedes the normal regeneration of the interfollicular epidermis and adnexal structures, resulting in atrophic acne scars.
Collapse
Affiliation(s)
- Dong Hyo Kim
- Department of Dermatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Ji Young Yoon
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Jun Hyo Lee
- Department of Dermatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Dae Hun Suh
- Department of Dermatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| |
Collapse
|
4
|
Zhou Y, Xiang Y, Liu S, Li C, Dong J, Kong X, Ji X, Cheng X, Zhang L. RIPK3 signaling and its role in regulated cell death and diseases. Cell Death Discov 2024; 10:200. [PMID: 38684668 PMCID: PMC11059363 DOI: 10.1038/s41420-024-01957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3), a member of the receptor-interacting protein kinase (RIPK) family with serine/threonine protein kinase activity, interacts with RIPK1 to generate necrosomes, which trigger caspase-independent programmed necrosis. As a vital component of necrosomes, RIPK3 plays an indispensable role in necroptosis, which is crucial for human life and health. In addition, RIPK3 participates in the pathological process of several infections, aseptic inflammatory diseases, and tumors (including tumor-promoting and -suppressive activities) by regulating autophagy, cell proliferation, and the metabolism and production of chemokines/cytokines. This review summarizes the recent research progress of the regulators of the RIPK3 signaling pathway and discusses the potential role of RIPK3/necroptosis in the aetiopathogenesis of various diseases. An in-depth understanding of the mechanisms and functions of RIPK3 may facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Pathology, the Second People's Hospital of Jiaozuo; The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, 454000, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Yaxuan Xiang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Sijie Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Chenyao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Jiaheng Dong
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangrui Kong
- Wushu College, Henan University, Kaifeng, 475004, China
| | - Xinying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol 2024; 966:176338. [PMID: 38242225 DOI: 10.1016/j.ejphar.2024.176338] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Inflammation drives coronary artery disease and atherosclerosis implications. Lipoprotein entry, retention, and oxidative modification cause endothelial damage, triggering innate and adaptive immune responses. Recruited immune cells orchestrate the early atherosclerotic lesions by releasing proinflammatory cytokines, expediting the foam cell formation, intraplaque haemorrhage, secretion of matrix-degrading enzymes, and lesion progression, eventually promoting coronary artery syndrome via various inflammatory cascades. In addition, soluble mediators disrupt the dynamic anti- and prothrombotic balance maintained by endothelial cells and pave the way for coronary artery disease such as angina pectoris. Recent studies have established a relationship between elevated levels of inflammatory markers, including C-reactive protein (CRP), interleukins (IL-6, IL-1β), and tumour necrosis factor-alpha (TNF-α) with the severity of CAD and the possibility of future cardiovascular events. High-sensitivity C-reactive protein (hs-CRP) is a marker for assessing systemic inflammation and predicting the risk of developing CAD based on its peak plasma levels. Hence, understanding cross-talk interactions of inflammation, atherogenesis, and CAD is highly warranted to recalculate the risk factors that activate and propagate arterial lesions and devise therapeutic strategies accordingly. Cholesterol-inflammation lowering agents (statins), monoclonal antibodies targeting IL-1 and IL-6 (canakinumab and tocilizumab), disease-modifying antirheumatic drugs (methotrexate), sodium-glucose transport protein-2 (SGLT2) inhibitors, colchicine and xanthene oxidase inhibitor (allopurinol) have shown promising results in reducing inflammation, regressing atherogenic plaque and modifying the course of CAD. Here, we review the complex interplay between inflammatory, endothelial, smooth muscle and foam cells. Moreover, the putative role of inflammation in atherosclerotic CAD, underlying mechanisms and potential therapeutic implications are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia.
| | - Waqas Ahmad
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia
| |
Collapse
|
6
|
Mikkelsen K, Dargahi N, Fraser S, Apostolopoulos V. High-Dose Vitamin B6 (Pyridoxine) Displays Strong Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated Monocytes. Biomedicines 2023; 11:2578. [PMID: 37761018 PMCID: PMC10526783 DOI: 10.3390/biomedicines11092578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Vitamin B6 is shown to have anti-inflammatory properties, which makes it an interesting nutraceutical agent. Vitamin B6 deficiency is well established as a contributor to inflammatory-related conditions, whilst B6 supplementation can reverse these inflammatory effects. There is less information available regarding the effects of high-dose vitamin B6 supplementation as a therapeutic agent. This study set out to examine the effects of high-dose vitamin B6 on an LPS-stimulated monocyte/macrophage cell population via an analysis of protein and gene expression using an RT2 profiler PCR array for Human Innate and Adaptive Immune responses. It was identified that high-dose vitamin B6 has a global anti-inflammatory effect on lipopolysaccharide-induced inflammation in monocyte/macrophage cells by downregulating the key broad-spectrum inflammatory mediators CCL2, CCL5, CXCL2, CXCL8, CXCL10, CCR4, CCR5, CXCR3, IL-1β, IL-5, IL-6, IL-10, IL-18, IL-23-a, TNF-α, CSF2, DDX58, NLRP3, NOD1, NOD2, TLR-1 -2 -4 -5 -7 -8 -9, MYD88, C3, FOXP3, STAT1, STAT3, STAT6, LYZ, CASP-1, CD4, HLA-E, MAPK1, MAPK8 MPO, MX-1, NF-κβ, NF-κβ1A, CD14, CD40, CD40LG, CD86, Ly96, ICAM1, IRF3, ITGAM, and IFCAM2. The outcomes of this study show promise regarding vitamin B6 within the context of a potent broad-spectrum anti-inflammatory mediator and could prove useful as an adjunct treatment for inflammatory-related diseases.
Collapse
Affiliation(s)
| | | | | | - Vasso Apostolopoulos
- Immunology and Translational Research Group, Institute for Health and Sport, Werribee Campus, Victoria University, Melbourne, VIC 3030, Australia; (K.M.); (N.D.); (S.F.)
| |
Collapse
|
7
|
Nakazawa D, Takeda Y, Kanda M, Tomaru U, Ogawa H, Kudo T, Shiratori-Aso S, Watanabe-Kusunoki K, Ueda Y, Miyoshi A, Hattanda F, Nishio S, Uozumi R, Ishizu A, Atsumi T. Inhibition of Toll-like receptor 4 and Interleukin-1 receptor prevent SARS-CoV-2 mediated kidney injury. Cell Death Discov 2023; 9:293. [PMID: 37563112 PMCID: PMC10415265 DOI: 10.1038/s41420-023-01584-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/28/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Acute kidney injury (AKI) is a common and severe complication of the coronavirus disease 2019 (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly affects the glomerular and tubular epithelial cells to induce AKI; however, its pathophysiology remains unclear. Here, we explored the underlying mechanisms and therapeutic targets of renal involvement in COVID-19. We developed an in vitro human kidney cellular model, including immortalized tubular epithelial and endothelial cell lines, demonstrating that SARS-CoV-2 directly triggers cell death. To identify the molecular targets in the process of SARS-CoV-2-mediated cell injury, we performed transcriptional analysis using RNA sequencing. Tubular epithelial cells were more prone to dying by SARS-CoV-2 than endothelial cells; however, SARS-CoV-2 did not replicate in renal cells, distinct from VeroE6/transmembrane protease serine 2 cells. Transcriptomic analysis revealed increased inflammatory and immune-related gene expression levels in renal cells incubated with SARS-CoV-2. Toll-like receptor (TLR) 3 in renal cells recognized viral RNA and underwent cell death. Furthermore, analysis of upstream regulators identified several key transcriptional regulators. Among them, inhibition of the interleukin-1 receptor (IL-1R) and TLR4 pathways protects tubular epithelial and endothelial cells from injury via regulation of the signal transducer and activator of transcription protein-3/nuclear factor-kB pathway. Our results reveal that SARS-CoV-2 directly injures renal cells via the proinflammatory response without viral replication, and that IL-1R and TLR4 may be used as therapeutic targets for SARS-CoV-2 mediated kidney injury.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Masatoshi Kanda
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Takashi Kudo
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoka Shiratori-Aso
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako Watanabe-Kusunoki
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusho Ueda
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuko Miyoshi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Fumihiko Hattanda
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Uozumi
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Wood SJ, Goldufsky JW, Seu MY, Dorafshar AH, Shafikhani SH. Pseudomonas aeruginosa Cytotoxins: Mechanisms of Cytotoxicity and Impact on Inflammatory Responses. Cells 2023; 12:cells12010195. [PMID: 36611990 PMCID: PMC9818787 DOI: 10.3390/cells12010195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most virulent opportunistic Gram-negative bacterial pathogens in humans. It causes many acute and chronic infections with morbidity and mortality rates as high as 40%. P. aeruginosa owes its pathogenic versatility to a large arsenal of cell-associated and secreted virulence factors which enable this pathogen to colonize various niches within hosts and protect it from host innate immune defenses. Induction of cytotoxicity in target host cells is a major virulence strategy for P. aeruginosa during the course of infection. P. aeruginosa has invested heavily in this strategy, as manifested by a plethora of cytotoxins that can induce various forms of cell death in target host cells. In this review, we provide an in-depth review of P. aeruginosa cytotoxins based on their mechanisms of cytotoxicity and the possible consequences of their cytotoxicity on host immune responses.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W. Goldufsky
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michelle Y. Seu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
9
|
ZBP1-Mediated Necroptosis: Mechanisms and Therapeutic Implications. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010052. [PMID: 36615244 PMCID: PMC9822119 DOI: 10.3390/molecules28010052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Cell death is a fundamental pathophysiological process in human disease. The discovery of necroptosis, a form of regulated necrosis that is induced by the activation of death receptors and formation of necrosome, represents a major breakthrough in the field of cell death in the past decade. Z-DNA-binding protein (ZBP1) is an interferon (IFN)-inducing protein, initially reported as a double-stranded DNA (dsDNA) sensor, which induces an innate inflammatory response. Recently, ZBP1 was identified as an important sensor of necroptosis during virus infection. It connects viral nucleic acid and receptor-interacting protein kinase 3 (RIPK3) via two domains and induces the formation of a necrosome. Recent studies have also reported that ZBP1 induces necroptosis in non-viral infections and mediates necrotic signal transduction by a unique mechanism. This review highlights the discovery of ZBP1 and its novel findings in necroptosis and provides an insight into its critical role in the crosstalk between different types of cell death, which may represent a new therapeutic option.
Collapse
|
10
|
Toward Establishing an Ideal Adjuvant for Non-Inflammatory Immune Enhancement. Cells 2022; 11:cells11244006. [PMID: 36552770 PMCID: PMC9777512 DOI: 10.3390/cells11244006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The vertebrate immune system functions to eliminate invading foreign nucleic acids and foreign proteins from infectious diseases and malignant tumors. Because pathogens and cancer cells have unique amino acid sequences and motifs (e.g., microbe-associated molecular patterns, MAMPs) that are recognized as "non-self" to the host, immune enhancement is one strategy to eliminate invading cells. MAMPs contain nucleic acids specific or characteristic of the microbe and are potential candidates for immunostimulants or adjuvants. Adjuvants are included in many vaccines and are a way to boost immunity by deliberately administering them along with antigens. Although adjuvants are an important component of vaccines, it is difficult to evaluate their efficacy ex vivo and in vivo on their own (without antigens). In addition, inflammation induced by currently candidate adjuvants may cause adverse events, which is a hurdle to their approval as drugs. In addition, the lack of guidelines for evaluating the safety and efficacy of adjuvants in drug discovery research also makes regulatory approval difficult. Viral double-stranded (ds) RNA mimics have been reported as potent adjuvants, but the safety barrier remains unresolved. Here we present ARNAX, a noninflammatory nucleic acid adjuvant that selectively targets Toll-like receptor 3 (TLR3) in antigen-presenting dendritic cells (APCs) to safely induce antigen cross-presentation and subsequently induce an acquired immune response independent of inflammation. This review discusses the challenges faced in the clinical development of novel adjuvants.
Collapse
|
11
|
Chen YS, Chuang WC, Kung HN, Cheng CY, Huang DY, Sekar P, Lin WW. Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages. Mol Cells 2022; 45:257-272. [PMID: 34949739 PMCID: PMC9001149 DOI: 10.14348/molcells.2021.0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022] Open
Abstract
In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.
Collapse
Affiliation(s)
- Yuan-Shen Chen
- Department of Neurosurgery, National Taiwan University Hospital Yunlin Branch, Douliu 64041, Taiwan
| | - Wei-Chu Chuang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Yuan Cheng
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ponarulselvam Sekar
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
12
|
Chen W, Lin W, Wu L, Xu A, Liu C, Huang P. A Novel Prognostic Predictor of Immune Microenvironment and Therapeutic Response in Kidney Renal Clear Cell Carcinoma based on Necroptosis-related Gene Signature. Int J Med Sci 2022; 19:377-392. [PMID: 35165523 PMCID: PMC8795799 DOI: 10.7150/ijms.69060] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Necroptosis, a cell death of caspase-independence, plays a pivotal role in cancer biological regulation. Although necroptosis is closely associated with oncogenesis, cancer metastasis, and immunity, there remains a lack of studies determining the role of necroptosis-related genes (NRGs) in the highly immunogenic cancer type, kidney renal clear cell carcinoma (KIRC). Methods: The information of clinicopathology and transcriptome was extracted from TCGA database. Following the division into the train and test cohorts, a three-NRGs (TLR3, FASLG, ZBP1) risk model was identified in train cohort by LASSO regression. The overall survival (OS) comparison was conducted between different risk groups through Kaplan-Meier analysis, which was further validated in test cohort. The Cox proportional hazards regression model was introduced to assess its impact of clinicopathological factors and risk score on survival. ESTIMATE and CIBERSORT algorithms were introduced to evaluate immune microenvironment, while enrichment analysis was conducted to explore the biological significance. Correlation analysis was applied for the correlation assessment between checkpoint gene expression and risk score, between gene expression and therapeutic response. Gene expressions from TCGA were verified by GEO datasets and immunohistochemistry (IHC) analysis. Results: This NRGs-related signature predicted poorer OS in high-risk group, which was also verified in test cohort. Risk score could also independently predict survival outcome of KIRC. Significant changes were also found in immune microenvironment and checkpoint gene expressions between different risk groups, with immune functional enrichment in high-risk group. Interestingly, therapeutic response was correlated with the expressions of NRGs. The expressions of NRGs from TCGA were consistent with those from GEO datasets and IHC analysis. Conclusion: The NRGs-related signature functions as a novel prognostic predictor of immune microenvironment and therapeutic response in KIRC.
Collapse
Affiliation(s)
- Wenwei Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology & Department of Kidney Transplantation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenfeng Lin
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Huang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
13
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
14
|
ABIN-1 is a key regulator in RIPK1-dependent apoptosis (RDA) and necroptosis, and ABIN-1 deficiency potentiates necroptosis-based cancer therapy in colorectal cancer. Cell Death Dis 2021; 12:140. [PMID: 33542218 PMCID: PMC7862295 DOI: 10.1038/s41419-021-03427-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
ABIN-1, also called TNIP1, is an ubiquitin-binding protein that serves an important role in suppressing RIPK1-independent apoptosis, necroptosis, and NF-κB activation. However, the involvement of ABIN-1 in the regulation of RIPK1-dependent apoptosis (RDA) is unknown. In this study, we found that poly(I:C) + TAK1 inhibitor 5Z-7-oxozeaenol (P5) concurrently induces RDA and necroptosis in Abin-1−/−, but not in Abin-1+/+ mouse embryonic fibroblasts (MEFs). Upon P5 stimulation, cells initially die by necroptosis and subsequently by RDA. Furthermore, we explored the therapeutic effect of ABIN-1 deficiency in necroptosis-based cancer therapy in colorectal cancer (CRC). We found that poly(I:C) + 5Z-7-oxozeaenol + IDN-6556 (P5I) yields a robust pro-necroptosis response, and ABIN-1 deficiency additionally enhances this P5I-induced necroptosis. Moreover, phase I/II cIAP inhibitor birinapant with clinical caspase inhibitor IDN-6556 (BI) alone and 5-fluorouracil with IDN-6556 (FI) alone are sufficient to induce necroptotic cell death in CRC cells by promoting auto-secretion of tumor necrosis factor (TNF); ABIN-1 deficiency amplifies the BI- or FI-induced necroptosis. Two independent xenograft experiments using HT-29 or COLO205 cells show that both BI and P5I remarkably inhibit tumor growth via necroptosis activation. For poly(I:C)-induced cell death, the sensitizing effect of ABIN-1 deficiency on cell death may be attributed to increased expression of TLR3. In TNF-induced necroptosis, ABIN-1 deficiency increases TNF-induced RIPK1 polyubiquitination by reducing the recruitment of ubiquitin-editing enzyme A20 to the TNFR1 signaling complex and induces more TNF secretion in CRC cells upon pro-necroptosis stimulation. With this combined data, ABIN-1 deficiency promotes greater sensitization of CRC cells to necroptosis.
Collapse
|
15
|
Morgun EI, Vorotelyak EA. Epidermal Stem Cells in Hair Follicle Cycling and Skin Regeneration: A View From the Perspective of Inflammation. Front Cell Dev Biol 2020; 8:581697. [PMID: 33240882 PMCID: PMC7680886 DOI: 10.3389/fcell.2020.581697] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
There are many studies devoted to the role of hair follicle stem cells in wound healing as well as in follicle self-restoration. At the same time, the influence of the inflammatory cells on the hair follicle cycling in both injured and intact skin is well established. Immune cells of all wound healing stages, including macrophages, γδT cells, and T regs, may activate epidermal stem cells to provide re-epithelization and wound-induced hair follicle neogenesis. In addition to the ability of epidermal cells to maintain epidermal morphogenesis through differentiation program, they can undergo de-differentiation and acquire stem features under the influence of inflammatory milieu. Simultaneously, a stem cell compartment may undergo re-programming to adopt another fate. The proportion of skin resident immune cells and wound-attracted inflammatory cells (e.g., neutrophils and macrophages) in wound-induced hair follicle anagen and plucking-induced anagen is still under discussion to date. Experimental data suggesting the role of reactive oxygen species and prostaglandins, which are uncharacteristic of the intact skin, in the hair follicle cycling indicates the role of neutrophils in injury-induced conditions. In this review, we discuss some of the hair follicles stem cell activities, such as wound-induced hair follicle neogenesis, hair follicle cycling, and re-epithelization, through the prism of inflammation. The plasticity of epidermal stem cells under the influence of inflammatory microenvironment is considered. The relationship between inflammation, scarring, and follicle neogenesis as an indicator of complete wound healing is also highlighted. Taking into consideration the available data, we also conclude that there may exist a presumptive interlink between the stem cell activation, inflammation and the components of programmed cell death pathways.
Collapse
Affiliation(s)
- Elena I. Morgun
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
16
|
Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Wu Y, Dong G, Sheng C. Targeting necroptosis in anticancer therapy: mechanisms and modulators. Acta Pharm Sin B 2020; 10:1601-1618. [PMID: 33088682 PMCID: PMC7563021 DOI: 10.1016/j.apsb.2020.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Necroptosis, a genetically programmed form of necrotic cell death, serves as an important pathway in human diseases. As a critical cell-killing mechanism, necroptosis is associated with cancer progression, metastasis, and immunosurveillance. Targeting necroptosis pathway by small molecule modulators is emerging as an effective approach in cancer therapy, which has the advantage to bypass the apoptosis-resistance and maintain antitumor immunity. Therefore, a better understanding of the mechanism of necroptosis and necroptosis modulators is necessary to develop novel strategies for cancer therapy. This review will summarize recent progress of the mechanisms and detecting methods of necroptosis. In particular, the relationship between necroptosis and cancer therapy and medicinal chemistry of necroptosis modulators will be focused on.
Collapse
|
18
|
Yang Y, Feng R, Wang YZ, Sun HW, Zou QM, Li HB. Toll-like receptors: Triggers of regulated cell death and promising targets for cancer therapy. Immunol Lett 2020; 223:1-9. [PMID: 32311408 DOI: 10.1016/j.imlet.2020.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) belong to a family of pattern recognition receptors (PRRs). It is well known that TLRs play an essential role in activating innate and adaptive immune responses. TLRs are involved in mediating inflammatory responses and maintaining epithelial barrier homeostasis, and they are highly likely to activate various signalling pathways during cancer chemotherapy. For a long time, much research focused on the immune modulating function of TLRs in cancer genesis, pathology and therapeutic strategies. However, recent reports have suggested that except for the innate and adaptive immune responses that they initiate, TLRs can signal to induce regulated cell death (RCD), which also plays an important role in the antitumor process. TLR agonists also have been investigated as cancer therapeutic agents under clinical evaluation. In this review, we focused on the mechanism of RCD induced by TLR signals and the important role that they play in anticancer therapy combined with recent experimental and clinical trial data to discuss the possibility of TLRs as promising targets for cancer therapy. TLRs represent triggers of regulated cell death and targets for cancer therapy. The molecular mechanisms of TLR-induced RCD and relationship between TLR-signalling pathways and cancer remain to be investigated by further studies.
Collapse
Affiliation(s)
- Yun Yang
- National Engineering Research Center of Immunological Products & Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Rang Feng
- National Engineering Research Center of Immunological Products & Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Yuan-Zhong Wang
- City of Hope National Medical Center and Beckman Research Institute, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Hong-Wu Sun
- National Engineering Research Center of Immunological Products & Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products & Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China.
| | - Hai-Bo Li
- National Engineering Research Center of Immunological Products & Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
19
|
Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis. Apoptosis 2019; 23:299-313. [PMID: 29705943 DOI: 10.1007/s10495-018-1455-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to investigate whether RIPK1 mediated mitochondrial dysfunction and oxidative stress contributed to compression-induced nucleus pulposus (NP) cells necroptosis and apoptosis, together with the interplay relationship between necroptosis and apoptosis in vitro. Rat NP cells underwent various periods of 1.0 MPa compression. To determine whether compression affected mitochondrial function, we evaluated the mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP), mitochondrial ultrastructure and ATP content. Oxidative stress-related indicators reactive oxygen species, superoxide dismutase and malondialdehyde were also assessed. To verify the relevance between oxidative stress and necroptosis together with apoptosis, RIPK1 inhibitor necrostatin-1(Nec-1), mPTP inhibitor cyclosporine A (CsA), antioxidants and small interfering RNA technology were utilized. The results established that compression elicited a time-dependent mitochondrial dysfunction and elevated oxidative stress. Nec-1 and CsA restored mitochondrial function and reduced oxidative stress, which corresponded to decreased necroptosis and apoptosis. CsA down-regulated mitochondrial cyclophilin D expression, but had little effects on RIPK1 expression and pRIPK1 activation. Additionally, we found that Nec-1 largely blocked apoptosis; whereas, the apoptosis inhibitor Z-VAD-FMK increased RIPK1 expression and pRIPK1 activation, and coordinated regulation of necroptosis and apoptosis enabled NP cells survival more efficiently. In contrast to Nec-1, SiRIPK1 exacerbated mitochondrial dysfunction and oxidative stress. In summary, RIPK1-mediated mitochondrial dysfunction and oxidative stress play a crucial role in NP cells necroptosis and apoptosis during compression injury. The synergistic regulation of necroptosis and apoptosis may exert more beneficial effects on NP cells survival, and ultimately delaying or even retarding intervertebral disc degeneration.
Collapse
|
20
|
Hu X, Chen L, Li T, Zhao M. TLR3 is involved in paraquat-induced acute renal injury. Life Sci 2019; 223:102-109. [PMID: 30876938 DOI: 10.1016/j.lfs.2019.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
AIMS To investigate the role of Toll-like receptor 3 (TLR3) in mouse paraquat-induced acute renal injury. MATERIALS AND METHODS Acute renal injury was established in C57BL/6J mice by intraperitoneal injection of paraquat (28 mg/kg). The mice were also injected intraperitoneally with TLR3 agonist poly I:C (20 mg/kg) or TLR3/dsRNA complex inhibitor (1 mg) 1 h before paraquat exposure. At 72 hour post paraquat exposure, the mice were sacrificed and the blood and renal tissues were collected to examine TLR3 expression in renal tissues, pathological injury in renal tissues, renal function, inflammation, and cell apoptosis. KEY FINDINGS After paraquat exposure, TLR3 expression in mouse renal tissues was significantly increased, and pathological changes to the renal tissues and remarkable renal impairment were present. Compared to the paraquat group, the poly I:C group showed no significant difference in renal pathology, renal function, inflammation, or cell apoptosis. However, TLR3 inhibitor treatment significantly alleviated injury to the renal tissues, improved renal function, inhibited NF-κB activation, suppressed the infiltration of neutrophils, and lessened the expression of IL-1β, TNF-α, and keratinocyte chemoattractant (KC) in renal tissues. TLR3 inhibitor treatment also suppressed the activation of caspase-8 and caspase-3 and reduced apoptosis in the renal tissues. SIGNIFICANCE Paraquat exposure significantly upregulates TLR3 expression in renal tissues, and activation of the TLR3 signaling pathway is an important contributor to paraquat nephrotoxicity. TLR3 activation exacerbates inflammation and cell apoptosis in renal tissues by activating NF-κB and caspase-8, thus promoting paraquat-induced acute renal injury.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianghong Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
21
|
Nakano T, Yamamura ET, Fujita H, Sone T, Asano K. Novel methods for nucleotide length control in double-stranded polyinosinic-polycytidylic acid production using uneven length components. Biosci Biotechnol Biochem 2018; 82:1889-1901. [PMID: 30079840 DOI: 10.1080/09168451.2018.1501264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyinosinic-polycytidylic acid (PIC), a double-stranded RNA that induces innate immunity in mammals, is a candidate immunopotentiator for pharmaceuticals. The potency and adverse effects of PIC are strongly correlated with the nucleotide length, and the inability to precisely control the length in PIC production limits its practical use. Length extension during the annealing process is the major factor underlying the lack of control, but tuning the annealing conditions is insufficient to resolve this issue. In this study, we developed a novel method to produce accurate nucleotide length PIC at an industrial scale. The length extension was significantly suppressed by the assembly of multiple short polyinosinic acid molecules with one long polycytidylic acid molecule. A newly developed PIC, uPIC100-400, demonstrated a reproducible length and better storage stability than that of corresponding evenly structured PIC. Human dsRNA receptors exhibited equivalent responsiveness to uPIC100-400 and the evenly structured PIC with the same length.
Collapse
Affiliation(s)
- Tetsuo Nakano
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan.,b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| | - Ei-Tora Yamamura
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan
| | - Hiroshi Fujita
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan
| | - Teruo Sone
- b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| | - Kozo Asano
- b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
22
|
Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther 2018; 3:18. [PMID: 29967689 PMCID: PMC6026494 DOI: 10.1038/s41392-018-0018-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cell death is an essential biological process for physiological growth and development. Three classical forms of cell death-apoptosis, autophagy, and necrosis-display distinct morphological features by activating specific signaling pathways. With recent research advances, we have started to appreciate that these cell death processes can cross-talk through interconnecting, even overlapping, signaling pathways, and the final cell fate is the result of the interplay of different cell death programs. This review provides an insight into the independence of and associations among these three types of cell death and explores the significance of cell death under the specific conditions of human diseases, particularly neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Qi Chen
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China
| | - Jian Kang
- 3Cancer Signalling Laboratory, Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan street, Melbourne, VIC 3000 Australia
| | - Caiyun Fu
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China.,4Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA 94158 USA.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014 China
| |
Collapse
|
23
|
Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation. Cell Death Differ 2017; 25:180-189. [PMID: 28885615 PMCID: PMC5729519 DOI: 10.1038/cdd.2017.141] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022] Open
Abstract
Inflammation has emerged to be a critical mechanism responsible for neural damage and neurodegenerative diseases. Microglia, the resident innate immune cells in retina, are implicated as principal components of the immunological insult to retinal neural cells. The involvement of microglia in retinal inflammation is complex and here we propose for the first time that necroptosis in microglia triggers neuroinflammation and exacerbates retinal neural damage and degeneration. We found microglia experienced receptor-interacting protein kinase 1 (RIP1)- and RIP3-dependent necroptosis not only in the retinal degenerative rd1 mice, but also in the acute retinal neural injury mice. The necroptotic microglia released various pro-inflammatory cytokines and chemokines, such as tumor necrosis factor-α and chemokine (C-C motif) ligand 2, which orchestrated the retinal inflammation. Importantly, necroptosis blockade using necrostatin-1 could suppress microglia-mediated inflammation, rescue retinal degeneration or prevent neural injury in vivo. Meanwhile, cultured microglia underwent RIP1/3-mediated necroptosis and the necroptotic microglia produced large amounts of pro-inflammatory cytokines in response to lipopolysaccharide or oxidative stress in vitro. Mechanically, TLR4 deficiency ameliorated microglia necroptosis with decreased expression levels of machinery molecules RIP1 and RIP3, and suppressed retinal inflammation, suggesting that TLR4 signaling was required in microglia necroptosis-mediated inflammation. Thus, we proposed that microglia experienced necroptosis through TLR4 activation, promoting an inflammatory response that serves to exacerbate considerable neural damage and degeneration. Necroptosis blockade therefore emerged as a novel therapeutic strategy for tempering microglia-mediated neuroinflammation and ameliorating neural injury and neurodegenerative diseases.
Collapse
|
24
|
Moreno-Gonzalez G, Vandenabeele P, Krysko DV. Necroptosis: A Novel Cell Death Modality and Its Potential Relevance for Critical Care Medicine. Am J Respir Crit Care Med 2017; 194:415-28. [PMID: 27285640 DOI: 10.1164/rccm.201510-2106ci] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cell death is intertwined with life in development, homeostasis, pathology, and aging. Until recently, apoptosis was the best known form of programmed cell death, whereas necrosis was for a long time considered accidental owing to physicochemical injury. However, identification of crucial signaling and execution molecules, which are highly regulated, revealed that necrosis encompasses several cell death modalities that can be therapeutically targeted. The best understood form of regulated necrosis is necroptosis, which is transduced by the kinase activities of receptor interacting protein kinase-1 and receptor interacting protein kinase-3, eventually leading to the activation of mixed lineage kinase domain-like and plasma membrane permeabilization. We are only beginning to appreciate the role of necroptosis in different pathological conditions, including critical illnesses. In this review, we discuss the molecular mechanisms of necroptosis and analyze the effect of inhibiting necroptosis in experimental models of critical illnesses. In view of the identification of an increasing number of cell death modalities, we also briefly discuss the simultaneous targeting of multiple cell death modalities because, depending on the cell type and cellular conditions, various types of cell death may contribute to the pathology.
Collapse
Affiliation(s)
- Gabriel Moreno-Gonzalez
- 1 Molecular Signaling and Cell Death Unit, VIB Inflammation Research Center, Ghent, Belgium.,2 Department of Biomedical Molecular Biology, and.,3 Intensive Care Unit, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Peter Vandenabeele
- 1 Molecular Signaling and Cell Death Unit, VIB Inflammation Research Center, Ghent, Belgium.,2 Department of Biomedical Molecular Biology, and.,4 Methusalem Program, Ghent University, Ghent, Belgium; and
| | - Dmitri V Krysko
- 1 Molecular Signaling and Cell Death Unit, VIB Inflammation Research Center, Ghent, Belgium.,2 Department of Biomedical Molecular Biology, and
| |
Collapse
|
25
|
Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus. Blood 2017; 129:3237-3244. [PMID: 28473408 DOI: 10.1182/blood-2017-02-766253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes infections associated with extensive tissue damage and necrosis. In vitro, human neutrophils fed CA-MRSA lyse by an unknown mechanism that is inhibited by necrostatin-1, an allosteric inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK-1). RIPK-1 figures prominently in necroptosis, a specific form of programmed cell death dependent on RIPK-1, RIPK-3, and the mixed-lineage kinase-like protein (MLKL). We previously reported that necrostatin-1 inhibits lysis of human neutrophils fed CA-MRSA and attributed the process to necroptosis. We now extend our studies to examine additional components in the programmed cell death pathway to test the hypothesis that neutrophils fed CA-MRSA undergo necroptosis. Lysis of neutrophils fed CA-MRSA was independent of tumor necrosis factor α, active RIPK-1, and MLKL, but dependent on active RIPK-3. Human neutrophils fed CA-MRSA lacked phosphorylated RIPK-1, as well as phosphorylated or oligomerized MLKL. Neutrophils fed CA-MRSA possessed cytoplasmic complexes that included inactive caspase 8, RIPK-1, and RIPK-3, and the composition of the complex remained stable over time. Together, these data suggest that neutrophils fed CA-MRSA underwent a novel form of lytic programmed cell death via a mechanism that required RIPK-3 activity, but not active RIPK-1 or MLKL, and therefore was distinct from necroptosis. Targeting the molecular pathways that culminate in lysis of neutrophils during CA-MRSA infection may serve as a novel therapeutic intervention to limit the associated tissue damage.
Collapse
|
26
|
Lin JJ, Wang RYL, Chen JC, Chiu CC, Liao MH, Wu YJ. Cytotoxicity of 11-epi-Sinulariolide Acetate Isolated from Cultured Soft Corals on HA22T Cells through the Endoplasmic Reticulum Stress Pathway and Mitochondrial Dysfunction. Int J Mol Sci 2016; 17:ijms17111787. [PMID: 27801783 PMCID: PMC5133788 DOI: 10.3390/ijms17111787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/29/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
Natural compounds from soft corals have been increasingly used for their antitumor therapeutic properties. This study examined 11-epi-sinulariolide acetate (11-epi-SA), an active compound isolated from the cultured soft coral Sinularia flexibilis, to determine its potential antitumor effect on four hepatocellular carcinoma cell lines. Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the results demonstrated that 11-epi-SA treatment showed more cytotoxic effect toward HA22T cells. Protein profiling of the 11-epi-SA-treated HA22T cells revealed substantial protein alterations associated with stress response and protein synthesis and folding, suggesting that the mitochondria and endoplasmic reticulum (ER) play roles in 11-epi-SA-initiated apoptosis. Moreover, 11-epi-SA activated caspase-dependent apoptotic cell death, suggesting that mitochondria-related apoptosis genes were involved in programmed cell death. The unfolded protein response signaling pathway-related proteins were also activated on 11-epi-SA treatment, and these changes were accompanied by the upregulated expression of growth arrest and DNA damage-inducible protein (GADD153) and CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), the genes encoding transcription factors associated with growth arrest and apoptosis under prolonged ER stress. Two inhibitors, namely salubrinal (Sal) and SP600125, partially abrogated 11-epi-SA-related cell death, implying that the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)–activating transcription factor (ATF) 6–CHOP or the inositol-requiring enzyme 1 alpha (IRE1α)–c-Jun N-terminal kinase (JNK)–cJun signal pathway was activated after 11-epi-SA treatment. In general, these results suggest that 11-epi-SA exerts cytotoxic effects on HA22T cells through mitochondrial dysfunction and ER stress cell death pathways.
Collapse
Affiliation(s)
- Jen-Jie Lin
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Robert Y L Wang
- Department of Biomedical Sciences and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo 33305, Taiwan.
| | - Jiing-Chuan Chen
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ming-Hui Liao
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Yu-Jen Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan.
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan.
| |
Collapse
|
27
|
Takeda Y, Azuma M, Matsumoto M, Seya T. Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8(+) T cells during vaccine immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:143. [PMID: 27619885 PMCID: PMC5020536 DOI: 10.1186/s13046-016-0416-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/01/2016] [Indexed: 01/07/2023]
Abstract
Background Dendritic cells (DCs) mount tumor-associated antigens (TAAs), and the double-stranded RNA adjuvant Poly(I:C) stimulates Toll-like receptor 3 (TLR3) signal in DC, which in turn induces type I interferon (IFN) and interleukin-12 (IL-12), then cross-primes cytotoxic T lymphocytes (CTLs). Proliferation of CTLs correlates with tumor regression. How these potent cells expand with high quality is crucial to the outcome of CTL therapy. However, good markers reflecting the efficacy of DC-target immunotherapy have not been addressed. Methods Using an EG7 (ovalbumin, OVA-positive) tumor-implant mouse model, we examined what is a good marker for active CTL induction in treatment with Poly(I:C)/OVA. Results Simultaneous administration of Poly(I:C) and antigen (Ag) OVA significantly increased a minor population of CD8+ T cells, that express CD11c in lymphoid and tumor sites. The numbers of the CD11c+ CD8+ T cells correlated with those of induced Ag-specific CD8+ T cells and tumor regression. The CD11c+ CD8+ T cell moiety was characterized by its high killing activity and IFN-γ-producing ability, which represent an active phenotype of the effector CTLs. Not only a TLR3-specific (TICAM-1-dependent) signal but also TLR2 (MyD88) signal in DC triggered the expansion of CD11c+ CD8+ T cells in tumor-bearing mice. Notably, human CD11c+ CD8+ T cells also proliferated in peripheral blood mononuclear cells (PBMC) stimulated with cytomegalovirus (CMV) Ag. Conclusions CD11c expression in CD8+ T cells reflects anti-tumor CTL activity and would be a marker for immunotherapeutic efficacy in mouse models and probably cancer patients as well. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0416-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohei Takeda
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahiro Azuma
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
28
|
Adase CA, Borkowski AW, Zhang LJ, Williams MR, Sato E, Sanford JA, Gallo RL. Non-coding Double-stranded RNA and Antimicrobial Peptide LL-37 Induce Growth Factor Expression from Keratinocytes and Endothelial Cells. J Biol Chem 2016; 291:11635-46. [PMID: 27048655 DOI: 10.1074/jbc.m116.725317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 11/06/2022] Open
Abstract
A critical function for skin is that when damaged it must simultaneously identify the nature of the injury, repair barrier function, and limit the intrusion of pathogenic organisms. These needs are carried out through the detection of damage-associated molecular patterns (DAMPs) and a response that includes secretion of cytokines, chemokines, growth factors, and antimicrobial peptides (AMPs). In this study, we analyzed how non-coding double-stranded RNA (dsRNAs) act as a DAMP in the skin and how the human cathelicidin AMP LL-37 might influence growth factor production in response to this DAMP. dsRNA alone significantly increased the expression of multiple growth factors in keratinocytes, endothelial cells, and fibroblasts. Furthermore, RNA sequencing transcriptome analysis found that multiple growth factors increase when cells are exposed to both LL-37 and dsRNA, a condition that mimics normal wounding. Quantitative PCR and/or ELISA validated that growth factors expressed by keratinocytes in these conditions included, but were not limited to, basic fibroblast growth factor (FGF2), heparin-binding EGF-like growth factor (HBEGF), vascular endothelial growth factor C (VEGFC), betacellulin (BTC), EGF, epiregulin (EREG), and other members of the transforming growth factor β superfamily. These results identify a novel role for DAMPs and AMPs in the stimulation of repair and highlight the complex interactions involved in the wound environment.
Collapse
Affiliation(s)
- Christopher A Adase
- From the Department of Dermatology, University of California, San Diego, California 92093
| | - Andrew W Borkowski
- From the Department of Dermatology, University of California, San Diego, California 92093
| | - Ling-Juan Zhang
- From the Department of Dermatology, University of California, San Diego, California 92093
| | - Michael R Williams
- From the Department of Dermatology, University of California, San Diego, California 92093
| | - Emi Sato
- From the Department of Dermatology, University of California, San Diego, California 92093
| | - James A Sanford
- From the Department of Dermatology, University of California, San Diego, California 92093
| | - Richard L Gallo
- From the Department of Dermatology, University of California, San Diego, California 92093
| |
Collapse
|
29
|
Takaki H, Shime H, Matsumoto M, Seya T. Tumor cell death by pattern-sensing of exogenous RNA: Tumor cell TLR3 directly induces necroptosis by poly(I:C) in vivo, independent of immune effector-mediated tumor shrinkage. Oncoimmunology 2015; 6:e1078968. [PMID: 29123946 DOI: 10.1080/2162402x.2015.1078968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 10/22/2022] Open
Abstract
Poly(I:C) acts on dendritic cells to induce potent antitumor effects through the production of cytokines/interferons, activation of natural killer cells and proliferation of cytotoxic T lymphocytes. In some tumor or myeloid lineages, poly(I:C) seemed to induce necroptosis in concert with a pan-caspase inhibitor by directly acting on toll-like receptor (TLR) 3 in both in vivo and in vitro models.
Collapse
Affiliation(s)
- Hiromi Takaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Shime
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
30
|
Seya T, Takeda Y, Matsumoto M. Tumor vaccines with dsRNA adjuvant ARNAX induces antigen-specific tumor shrinkage without cytokinemia. Oncoimmunology 2015; 5:e1043506. [PMID: 27057425 DOI: 10.1080/2162402x.2015.1043506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/27/2015] [Accepted: 06/06/2015] [Indexed: 01/13/2023] Open
Abstract
Here, we introduce a double-stranded RNA mimic that is chemically synthesized to exclusively stimulate toll-like receptor 3 (TLR3). This function-defined TLR3 ligand, named ARNAX, acts as an adjuvant to induce antitumor CTL and NK without significant cytokinemia in mice, and thus superior to polyI:C for therapeutic vaccine immunotherapy against tumor.
Collapse
Affiliation(s)
- Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| | - Yohei Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| |
Collapse
|
31
|
The Viral Mimetic Polyinosinic:Polycytidylic Acid Alters the Growth Characteristics of Small Intestinal and Colonic Crypt Cultures. PLoS One 2015; 10:e0138531. [PMID: 26414184 PMCID: PMC4587363 DOI: 10.1371/journal.pone.0138531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022] Open
Abstract
Background & Aims The intestinal epithelium is the first line of defense against enteric pathogens. We investigated the response of small intestinal and colonic crypt cultures to a panel of toll-like receptor ligands to assess the impact of microbial pattern recognition on epithelial growth. Methods Primary murine jejunal enteroids and colonoids were cultured with lipopeptide Pam3CSK4, lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (Poly I:C) for 4 to 6 days. Surface area, budding and survival were assessed. Proliferation and numbers of lysozyme positive cells were quantified by flow cytometry. Gene expression was assessed by Nanostring and qRT-PCR. Results Exposure to Pam3CSK4 and LPS had minimal impact on either enteroids or colonoids. In contrast, Poly I:C increased the surface area of enteroids, while colonoids demonstrated decreased budding. Survival was decreased by Poly I:C in enteroids but not in colonoids. Both enteroids and colonoids exhibited upregulated gene expression of chemokines, but these were increased in magnitude in enteroids. Decreases in gene expression associated with epithelial differentiation and lysozyme positive cells were more apparent in enteroids than in colonoids. Baseline gene expression between enteroids and colonoids differed markedly in levels of stem cell and inflammatory markers. The changes in morphology induced by Poly I:C were mediated by the toll-like receptor adaptor molecule 1 (Ticam1) in enteroids but not in colonoids. Conclusions Poly I:C alters the molecular program of epithelial cells and shifts from absorption and digestion towards defense and inflammation. Diversity of responses to microbial patterns in enteroids and colonoids may underlie differences in susceptibility to infection along the intestinal tract.
Collapse
|
32
|
Takemura R, Takaki H, Okada S, Shime H, Akazawa T, Oshiumi H, Matsumoto M, Teshima T, Seya T. PolyI:C-Induced, TLR3/RIP3-Dependent Necroptosis Backs Up Immune Effector-Mediated Tumor Elimination In Vivo. Cancer Immunol Res 2015; 3:902-14. [PMID: 25898986 DOI: 10.1158/2326-6066.cir-14-0219] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/07/2015] [Indexed: 01/17/2023]
Abstract
Double-stranded RNA directly acts on fibroblast and myeloid lineages to induce necroptosis as in TNFα. Here, we investigated whether this type of cell death occurred in cancer cells in response to polyinosinic-polycytidylic acid (polyI:C) and the pan-caspase inhibitor z-Val-Ala-Asp fluromethyl ketone (zVAD). We found that the colon cancer cell line CT26 is highly susceptible to necroptosis, as revealed by staining with annexin V/propidium iodide. CT26 cells possess RNA sensors, TLR3 and MDA5, which are upregulated by interferon (IFN)-inducing pathways and linked to receptor-interacting protein kinase (RIP) 1/3 activation via TICAM-1 or MAVS adaptor, respectively. Although exogenously added polyI:C alone marginally induced necroptosis in CT26 cells, a combined regimen of polyI:C and zVAD induced approximately 50% CT26 necroptosis in vitro without secondary effects of TNFα or type I IFNs. CT26 necroptosis depended on the TLR3-TICAM-1-RIP3 axis in the tumor cells to produce reactive oxygen species, but not on MDA5, MAVS, or the caspases/inflammasome activation. However, the RNA-derived necroptosis was barely reproduced in vivo in a CT26 tumor-implanted Balb/c mouse model with administration of polyI:C + zVAD. Significant shrinkage of CT26 tumors was revealed only when polyI:C (100 μg) was injected intraperitoneally and zVAD (1 mg) subcutaneously into tumor-bearing mice that were depleted of cytotoxic T lymphocytes and natural killer cells. The results were confirmed with immune-compromised mice with no lymphocytes. Although necroptosis-induced tumor growth retardation appears mechanistically complicated and dependent on the injection routes of polyI:C and zVAD, anti-caspase reagent directed to tumor cells will make RNA adjuvant immunotherapy more effective by modulating the formation of the tumoricidal microenvironment and dendritic cell-inducing antitumor immune system.
Collapse
Affiliation(s)
- Ryo Takemura
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan. Department of Hematology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Takaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Shime
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Akazawa
- Department of Tumor Immunology, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
33
|
Xu Z, Luo J, Yang L, Wang X, Pan Y, Shang Y, Yang J. Impacts of K562 cells towards activities of Toll-like receptor pathway of human mesenchymal stem cell-bone marrow. Int J Clin Exp Med 2015; 8:9320-9326. [PMID: 26309591 PMCID: PMC4537973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
The study aim was to investigate the impacts of K562 cells towards the activities of Toll-like receptor pathway of human mesenchymal stem cell-bone marrow (HMSC-bm). The in vitro co-culture of HMSC-bm and K562 cells was set as the experiment group (HMSC-bm + K562), the HMSC-bm cultured alone was set as the control group (HMSC-bm), the expressions of six interested genes and their proteins, namely MyD88, P38, NF-κB, TAB1, TLR3 and TBK1, of the Toll -like receptor signaling pathway were detected and compared, as well as the secretions of such cytokines as IL-6, IL-8, TNF-α and IFN-α in the cell supernatant, which were regulated by the Toll-like receptor pathway. The expressions of MyD88, P38, TAB1 and TLR3 of the HMSC-bm + K562 group were higher than the HMSC-bm group, while that of TBK1 was lower, and the NF-κB expression showed no significant difference between the two groups (P > 0.05). Compared with the HMSC-bm group, the supernatant of HMSC-bm + K562 group exhibited the higher secretion levels of IL-6 and IL-8, while that of IFN-α was just contrary, and the differences were significant (P < 0.05). The secretion levels of TNF-α within the two groups were not significantly different (P > 0.05). The co-culture of K562 and HMSC-bm could induce the activity changes of Toll-like receptor pathway of HMSC-bm, which was beneficial towards the proliferation of K562 cells.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Hematology, The Second Hospital, Hebei Medical University Shijiazhuang 050000, Hebei, P.R. China
| | - Jianmin Luo
- Department of Hematology, The Second Hospital, Hebei Medical University Shijiazhuang 050000, Hebei, P.R. China
| | - Lin Yang
- Department of Hematology, The Second Hospital, Hebei Medical University Shijiazhuang 050000, Hebei, P.R. China
| | - Xingzhe Wang
- Department of Hematology, The Second Hospital, Hebei Medical University Shijiazhuang 050000, Hebei, P.R. China
| | - Yuxia Pan
- Department of Hematology, The Second Hospital, Hebei Medical University Shijiazhuang 050000, Hebei, P.R. China
| | - Yintao Shang
- Department of Hematology, The Second Hospital, Hebei Medical University Shijiazhuang 050000, Hebei, P.R. China
| | - Jingci Yang
- Department of Hematology, The Second Hospital, Hebei Medical University Shijiazhuang 050000, Hebei, P.R. China
| |
Collapse
|
34
|
Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Radioimmunotherapy for oncological indications. Oncoimmunology 2014; 3:e954929. [PMID: 25941606 DOI: 10.4161/21624011.2014.954929] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 02/06/2023] Open
Abstract
During the past two decades, it has become increasingly clear that the antineoplastic effects of radiation therapy do not simply reflect the ability of X-, β- and γ-rays to damage transformed cells and directly cause their permanent proliferative arrest or demise, but also involve cancer cell-extrinsic mechanisms. Indeed, among other activities, radiotherapy has been shown to favor the establishment of tumor-specific immune responses that operate systemically, underpinning the so-called 'out-of-field' or 'abscopal' effect. Thus, ionizing rays appear to elicit immunogenic cell death, a functionally peculiar variant of apoptosis associated with the emission of a particularly immunostimulatory combination of damage-associated molecular patterns. In line with this notion, radiation therapy fosters, and thus exacerbates, the antineoplastic effects of various treatment modalities, including surgery, chemotherapy and various immunotherapeutic agents. Here, we summarize recent advances in the use of ionizing rays as a means to induce or potentiate therapeutically relevant anticancer immune responses. In addition, we present clinical trials initiated during the past 12 months to test the actual benefit of radioimmunotherapy in cancer patients.
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris-Sud/Paris XI ; Paris, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Gwenola Manic
- Regina Elena National Cancer Institute ; Rome, Italy
| | - Ilio Vitale
- Regina Elena National Cancer Institute ; Rome, Italy
| | | | - Jérôme Galon
- INSERM, U1138 ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers ; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; INSERM, U970 ; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
35
|
Babcook MA, Sramkoski RM, Fujioka H, Daneshgari F, Almasan A, Shukla S, Nanavaty RR, Gupta S. Combination simvastatin and metformin induces G1-phase cell cycle arrest and Ripk1- and Ripk3-dependent necrosis in C4-2B osseous metastatic castration-resistant prostate cancer cells. Cell Death Dis 2014; 5:e1536. [PMID: 25412314 PMCID: PMC4260755 DOI: 10.1038/cddis.2014.500] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022]
Abstract
Castration-resistant prostate cancer (CRPC) cells acquire resistance to chemotherapy and apoptosis, in part, due to enhanced aerobic glycolysis and biomass production, known as the Warburg effect. We previously demonstrated that combination simvastatin (SIM) and metformin (MET) ameliorates critical Warburg effect-related metabolic aberrations of C4-2B cells, synergistically and significantly decreases CRPC cell viability and metastatic properties, with minimal effect on normal prostate epithelial cells, and inhibits primary prostate tumor growth, metastasis, and biochemical failure in an orthotopic model of metastatic CRPC, more effectively than docetaxel chemotherapy. Several modes of cell death activated by individual treatment of SIM or MET have been reported; however, the cell death process induced by combination SIM and MET treatment in metastatic CRPC cells remains unknown. This must be determined prior to advancing combination SIM and MET to clinical trial for metastatic CRPC. Treatment of C4-2B cells with combination 4 μM SIM and 2 mM MET (SIM+MET) led to significant G1-phase cell cycle arrest and decrease in the percentage of DNA-replicating cells in the S-phase by 24 h; arrest was sustained throughout the 96-h treatment. SIM+MET treatment led to enhanced autophagic flux in C4-2B cells by 72–96 h, ascertained by increased LC3B-II (further enhanced with lysosomal inhibitor chloroquine) and reduced Sequestosome-1 protein expression, significantly increased percentage of acidic vesicular organelle-positive cells, and increased autophagic structure accumulation assessed by transmission electron microscopy. Chloroquine, however, could not rescue CRPC cell viability, eliminating autophagic cell death; rather, autophagy was upregulated by C4-2B cells in attempt to withstand chemotherapy. Instead, SIM+MET treatment led to Ripk1- and Ripk3-dependent necrosis by 48–96 h, determined by propidium iodide-Annexin V flow cytometry, increase in Ripk1 and Ripk3 protein expression, necrosome formation, HMGB-1 extracellular release, and necrotic induction and viability rescue with necrostatin-1 and Ripk3-targeting siRNA. The necrosis-inducing capacity of SIM+MET may make these drugs a highly-effective treatment for apoptosis- and chemotherapy-resistant metastatic CRPC cells.
Collapse
Affiliation(s)
- M A Babcook
- 1] Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA [2] Department of Urology, Case Western Reserve University School of Medicine & The Urology Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - R M Sramkoski
- Cytometry & Imaging Microscopy Core Facility, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - H Fujioka
- 1] Electron Microscopy Core Facility and Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA [2] Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - F Daneshgari
- Department of Urology, Case Western Reserve University School of Medicine & The Urology Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - A Almasan
- 1] Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA [2] Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - S Shukla
- Department of Urology, Case Western Reserve University School of Medicine & The Urology Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - R R Nanavaty
- Department of Biomedical Science, The Ohio State University, Columbus, OH 43210, USA
| | - S Gupta
- 1] Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA [2] Department of Urology, Case Western Reserve University School of Medicine & The Urology Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA [3] Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
36
|
Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautès-Fridman C, Cremer I, Henrik ter Meulen J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179. [PMID: 25083332 PMCID: PMC4091055 DOI: 10.4161/onci.29179] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.
Collapse
Affiliation(s)
- Fernando Aranda
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | - Erika Vacchelli
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France
- INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Villejuif, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
37
|
Takemura N, Kawasaki T, Kunisawa J, Sato S, Lamichhane A, Kobiyama K, Aoshi T, Ito J, Mizuguchi K, Karuppuchamy T, Matsunaga K, Miyatake S, Mori N, Tsujimura T, Satoh T, Kumagai Y, Kawai T, Standley DM, Ishii KJ, Kiyono H, Akira S, Uematsu S. Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome. Nat Commun 2014; 5:3492. [PMID: 24637670 PMCID: PMC3959210 DOI: 10.1038/ncomms4492] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 02/24/2014] [Indexed: 12/23/2022] Open
Abstract
High-dose ionizing radiation induces severe DNA damage in the epithelial stem cells in small intestinal crypts and causes gastrointestinal syndrome (GIS). Although the tumour suppressor p53 is a primary factor inducing death of crypt cells with DNA damage, its essential role in maintaining genome stability means inhibiting p53 to prevent GIS is not a viable strategy. Here we show that the innate immune receptor Toll-like receptor 3 (TLR3) is critical for the pathogenesis of GIS. Tlr3−/− mice show substantial resistance to GIS owing to significantly reduced radiation-induced crypt cell death. Despite showing reduced crypt cell death, p53-dependent crypt cell death is not impaired in Tlr3−/− mice. p53-dependent crypt cell death causes leakage of cellular RNA, which induces extensive cell death via TLR3. An inhibitor of TLR3–RNA binding ameliorates GIS by reducing crypt cell death. Thus, we propose blocking TLR3 activation as a novel approach to treat GIS. Ionizing radiation damages small intestinal crypt cells, including epithelial stem cells and their progeny. Here the authors show that radiation-induced crypt cell death is amplified by the release of cellular RNA from apoptotic epithelial cells, which then triggers pro-apoptotic TLR3 signalling on neighbouring cells.
Collapse
Affiliation(s)
- Naoki Takemura
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takumi Kawasaki
- 1] Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan [2] Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan [3] Laboratory of Molecular Immunobiology, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Jun Kunisawa
- 1] Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan [2] Laboratory of Vaccine Materials, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan
| | - Shintaro Sato
- 1] Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Aayam Lamichhane
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kouji Kobiyama
- 1] Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan [2] Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Taiki Aoshi
- 1] Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan [2] Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Junichi Ito
- Laboratory of Bioinformatics, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan
| | - Thangaraj Karuppuchamy
- 1] Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan [2] Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kouta Matsunaga
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shoichiro Miyatake
- Laboratory of Self Defense Gene Regulation, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Nobuko Mori
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Takashi Satoh
- 1] Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan [2] Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yutaro Kumagai
- 1] Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan [2] Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Daron M Standley
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ken J Ishii
- 1] Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan [2] Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Kiyono
- 1] Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Shizuo Akira
- 1] Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan [2] Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Satoshi Uematsu
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
38
|
Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 2014; 35:24-32. [PMID: 24582829 DOI: 10.1016/j.semcdb.2014.02.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/12/2014] [Indexed: 01/01/2023]
Abstract
It is now clear that apoptosis does not constitute the sole genetically encoded form of cell death. Rather, cells can spontaneously undertake or exogenously be driven into a cell death subroutine that manifests with necrotic features, yet can be inhibited by pharmacological and genetic interventions. As regulated necrosis (RN) plays a major role in both physiological scenarios (e.g., embryonic development) and pathological settings (e.g., ischemic disorders), consistent efforts have been made throughout the last decade toward the characterization of the molecular mechanisms that underlie this cell death modality. Contrarily to initial beliefs, RN does not invariably result from the activation of a receptor interacting protein kinase 3 (RIPK3)-dependent signaling pathway, but may be ignited by distinct molecular networks. Nowadays, various types of RN have been characterized, including (but not limited to) necroptosis, mitochondrial permeability transition (MPT)-dependent RN and parthanatos. Of note, the inhibition of only one of these modules generally exerts limited cytoprotective effects in vivo, underscoring the degree of interconnectivity that characterizes RN. Here, we review the signaling pathways, pathophysiological relevance and therapeutic implications of the major molecular cascades that underlie RN.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Gustave Roussy, F-94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75005 Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75005 Paris, France
| | - Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75005 Paris, France; INSERM, U848, F-94805 Villejuif, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, F-94805 Villejuif, France
| | - Stefan Krautwald
- Division for Nephrology and Hypertension, Christian-Albrechts-University, D-24118 Kiel, Germany
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75005 Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75005 Paris, France; INSERM, U848, F-94805 Villejuif, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, F-94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, F-75015 Paris, France.
| | - Andreas Linkermann
- Division for Nephrology and Hypertension, Christian-Albrechts-University, D-24118 Kiel, Germany
| |
Collapse
|
39
|
Affiliation(s)
- Andreas Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
40
|
Crosstalk between the intestinal microbiota and the innate immune system in intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis 2013; 19:2227-37. [PMID: 23669404 DOI: 10.1097/mib.0b013e31828dcac7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
: Inflammatory bowel diseases are a set of complex and chronic disorders that arise in genetically predisposed individuals due to a lack of tolerance to the gut microflora. Although the intestinal microbiota is required for the proper development of the host and the maintenance of intestinal homeostasis, its dysbiosis is associated with inflammatory bowel diseases pathogenesis. In this review, we focus the discussion on the crosstalk between the innate immune system and the microbiota. We examine new findings from genetic and functional studies investigating the critical role of the intestinal epithelial cell layer and the processes that maintain its integrity in health and disease. We further explore the mechanisms of the mucosal innate immune system including dendritic cells, macrophages, and innate-like lymphocytes in mediating immunological tolerance at the steady state or pathogenic inflammatory responses in inflammatory bowel diseases.
Collapse
|
41
|
Seya T, Azuma M, Matsumoto M. Targeting TLR3 with no RIG-I/MDA5 activation is effective in immunotherapy for cancer. Expert Opin Ther Targets 2013; 17:533-44. [PMID: 23414438 DOI: 10.1517/14728222.2013.765407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Many forms of RNA duplexes with agonistic activity for pattern-recognition receptors have been reported, some of which are candidates for adjuvant immunotherapy for cancer. These RNA duplexes induce cytokines, interferons (IFNs) and cellular effectors mainly via two distinct pathways, TLR3/TICAM-1 and MDA5/MAVS. AREAS COVERED We determined which pathway of innate immunity predominantly participates in evoking tumor immunity in response to RNA adjuvants. EXPERT OPINION In knockout (KO) mouse studies, robust cytokine or IFN production is dependent on systemic activation of the MAVS pathway, whereas maturation of dendritic cells (DCs) to drive cellular effectors (i.e., NK and CTL) depends on the TICAM-1 pathway in DCs. MAVS activation often causes endotoxin-like cytokinemia, while the TICAM-1 activation does not. Unlike the TLR/MyD88 pathway, this TICAM-1 pathway barely accelerates tumor progression. Although the therapeutic effect in human patients of MAVS-activating or TICAM-1-activating RNA duplexes remains undetermined, the design of a TLR3 agonist with optimized toxicity and dose is an important goal for human immunotherapy. Here we summarize current knowledge on available RNA duplex formulations, and offer a possible approach to developing a promising RNA duplex for clinical tests.
Collapse
Affiliation(s)
- Tsukasa Seya
- Hokkaido University, Graduate School of Medicine, Department of Microbiology and Immunology, Sapporo, 060-8638 , Japan.
| | | | | |
Collapse
|
42
|
Multi-step regulation of interferon induction by hepatitis C virus. Arch Immunol Ther Exp (Warsz) 2013; 61:127-38. [PMID: 23292079 DOI: 10.1007/s00005-012-0214-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 12/20/2012] [Indexed: 02/07/2023]
Abstract
Acute hepatitis C virus (HCV) infection evokes several distinct innate immune responses in host, but the virus usually propagates by circumventing these responses. Although a replication intermediate double-stranded RNA is produced in infected cells, type I interferon (IFN) induction and immediate cell death are largely blocked in infected cells. In vitro studies suggested that type I and III IFNs are mainly produced in HCV-infected hepatocytes if the MAVS pathway is functional, and dysfunction of this pathway may lead to cellular permissiveness to HCV replication and production. Cellular immunity, including natural killer cell activation and antigen-specific CD8 T-cell proliferation, occurs following innate immune activation in response to HCV, but is often ineffective for eradication of HCV. Constitutive dsRNA stimulation differs in output from type I IFN therapy, which has been an authentic therapy for patients with HCV. Host innate immune responses to HCV RNA/proteins may be associated with progressive hepatic fibrosis and carcinogenesis once persistent HCV infection is established in opposition to the IFN system. Hence, innate RNA sensing exerts pivotal functions against HCV genome replication and host pathogenesis through modulation of the IFN system. Molecules participating in the RIG-I and Toll-like receptor 3 pathways are the main targets for HCV, disabling the anti-viral functions of these IFN-inducing molecules. We discuss the mechanisms that abolish type I and type III IFN production in HCV-infected cells, which may contribute to understanding the mechanism of virus persistence and resistance to the IFN therapy.
Collapse
|
43
|
Matsumoto M, Funami K, Oshiumi H, Seya T. Toll-IL-1-receptor-containing adaptor molecule-1: a signaling adaptor linking innate immunity to adaptive immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:487-510. [PMID: 23663980 DOI: 10.1016/b978-0-12-386931-9.00018-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The innate immune system senses microbial infections using pattern-recognition receptors and signals to activate adaptive immunity. Type I transmembrane protein Toll-like receptors (TLRs) play important roles in antimicrobial immune responses. Upon the recognition of pathogen-associated molecular patterns, TLRs homo- or heterodimerize and recruit distinct adaptor molecules to the intracellular TIR domains. Toll-IL-1-receptor-containing adaptor molecule-1 (TICAM-1) is a signaling adaptor downstream of TLRs 3 and 4 that recognizes virus-derived double-stranded RNA and lipopolysaccharide, respectively. TLR3 is expressed on the endosomal membrane in myeloid DCs, where TLR3-mediated signaling is initiated. Once TICAM-1 is activated, transcription factors, IRF-3, NF-κB, and AP-1, are activated, leading to production of IFN-β and proinflammatory cytokines and maturation of dendritic cells, which are capable of activating NK cells and cytotoxic T cells. Hence, TICAM-1 signaling appears to link innate immunity to adaptive immunity. In this review, we summarize the current knowledge on TICAM-1 and discuss its role in virus infection and antitumor immunity.
Collapse
Affiliation(s)
- Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
44
|
Seya T, Oshiumi H, Matsumoto M. [Immunobiological response against RNA virus infection]. Uirusu 2013; 63:135-42. [PMID: 25366048 DOI: 10.2222/jsv.63.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Viruses infect host circumventing the host immune system; a variety of strategies for establishment of viral infection have been found in a virus-specific fashion. Infection with RNA viruses allows host dendritic cells to present antigens and a typical pattern (PAMP) of virus products, including the RNA genomes and replication intermediates such as double-stranded RNA (dsRNA), which induce antiviral effectors: type I interferons (IFN), cytokines, NK cell activation, Th1 polarization, CD8 T cell proliferation, etc. These findings revealed that RNA-sensing innate system closely links to a trigger of cellular immunity. This process unequivocally involves the maturation of antigen-presenting dendritic cell (mDC), and virus products frequently block this step. According to these findings, mDC have to sense non-self RNA to establish antiviral immunity without spoiling their functions via infection, except several exceptional cases. The notion infers that the RNA recognition in cytosol of infected cells (intrinsic sensing) functions as virocidal whereas that in mDC (extrinsic sensing) differentially converges on another antiviral strategy, activation of the immune system. In this review, we focus on the potential role of hepatitis C virus (HCV) RNA in modulating the inflammatory milieu around mDCs and evoking antiviral immunity to drive specific cellular effectors against the virus.
Collapse
Affiliation(s)
- Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University
| | | | | |
Collapse
|