1
|
Wei Q, Foyn H, Landskron J, Wang S, Rye IH, Skånland S, Russnes HEG, Klaveness J, Ahmad R, Taskén K. Identification of a group of 9-amino-acridines that selectively downregulate regulatory T cell functions through FoxP3. iScience 2025; 28:111931. [PMID: 40034859 PMCID: PMC11872463 DOI: 10.1016/j.isci.2025.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
FoxP3+ regulatory T cells (Tregs) are responsible for immune homeostasis by suppressing excessive anti-self-immunity. Tregs facilitate tumor growth by inhibiting anti-tumor immunity. Here, we explored the targeting of FoxP3 as a basis for new immunotherapies. In a high-throughput phenotypic screening of a drug repurposing library using human primary T cells, we identified quinacrine as a FoxP3 downregulator. In silico searches based on the structure of quinacrine, testing of sub-libraries of analogs in vitro, and validation identified a subset of 9-amino-acridines that selectively abrogated Treg suppressive functions. Mechanistically, these acridines interfered with the DNA-binding activity of FoxP3 and inhibited FoxP3-regulated downstream gene regulation. Release from Treg suppression by 9-amino-acridines increased anti-tumor immune responses both in cancer patient samples and in mice in a syngeneic tumor model. Our study highlights the feasibility of screening for small molecular inhibitors of FoxP3 as an approach to pursuing Treg-based immunotherapy.
Collapse
Affiliation(s)
- Qian Wei
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Håvard Foyn
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Johannes Landskron
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Shixiong Wang
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Inga Hansine Rye
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Sigrid Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway
| | - Hege Elisabeth Giercksky Russnes
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Jo Klaveness
- Department of Pharmacy, University of Oslo, 0371 Oslo, Norway
| | - Rafi Ahmad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Department of Biotechnology, University of Inland Norway, 2317 Hamar, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
2
|
Ueyama A, Nogami W, Nashiki K, Haruna M, Miwa H, Hagiwara M, Nagira M, Wada H, Nagira Y. Immunotherapy Targeting CCR8+ Regulatory T Cells Induces Antitumor Effects via Dramatic Changes to the Intratumor CD8+ T Cell Profile. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:673-682. [PMID: 37350632 DOI: 10.4049/jimmunol.2300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Regulatory T cells (Tregs) contribute to the formation of a tumor-immunosuppressive microenvironment. CCR8 is reportedly selectively expressed in tumor Tregs, and an anti-CCR8 Ab can exert potent antitumor effects by eliminating intratumor Tregs in murine tumor models. In this study, we analyzed changes to intratumor immunity after anti-CCR8 Ab administration, especially in CD8+ T cells, which are involved in cancer cell killing, using the CT26 colorectal carcinoma mouse model. Immunophenotyping of tumor-infiltrating cells by mass cytometry after Ab administration on day 5 of tumor inoculation revealed that CD8+ T cell subsets were dramatically altered in the CCR8 Ab-treated group, with an increase in naive cells and nonexhausted effector cells and a decrease in exhausted cells with high expression levels of TOX. These results were corroborated with flow cytometry analysis. Delayed administration of the anti-CCR8 Ab on day 9 or 12, when the amount of CCR8+ Tregs and CD8+ T cell exhaustion were more progressed, also resulted in a decrease in exhausted CD8+ T cells, leading to tumor regression. Finally, we confirmed that high CCR8+ Treg infiltration was associated with high TOX expression in CD8+ T cells in human cancer patients. In conclusion, administration of an anti-CCR8 Ab can dramatically alter the activation and exhaustion state of intratumor CD8+ T cells, resulting in strong antitumor effects. In cancer patients with an advanced tumor-immunosuppressive environment, CD8+ T cell exhaustion has progressed along with CCR8+ Treg induction. Therefore, targeted depletion of CCR8+ Tregs is expected to be effective in these patients.
Collapse
Affiliation(s)
- Azumi Ueyama
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Toyonaka, Japan
- Department of Clinical Research in Tumor Immunology, Osaka University, Suita, Japan
| | - Wataru Nogami
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Kunitaka Nashiki
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Miya Haruna
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Toyonaka, Japan
- Department of Clinical Research in Tumor Immunology, Osaka University, Suita, Japan
| | - Hiroto Miwa
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Toyonaka, Japan
- Department of Clinical Research in Tumor Immunology, Osaka University, Suita, Japan
| | - Masaki Hagiwara
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Morio Nagira
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Osaka University, Suita, Japan
| | - Yoji Nagira
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Toyonaka, Japan
| |
Collapse
|
3
|
Brog RA, Ferry SL, Schiebout CT, Messier CM, Cook WJ, Abdullah L, Zou J, Kumar P, Sentman CL, Frost HR, Huang YH. Superkine IL-2 and IL-33 Armored CAR T Cells Reshape the Tumor Microenvironment and Reduce Growth of Multiple Solid Tumors. Cancer Immunol Res 2022; 10:962-977. [PMID: 35696724 PMCID: PMC9357153 DOI: 10.1158/2326-6066.cir-21-0536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/01/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Chimeric-antigen receptor (CAR) T-cell therapy has shown remarkable efficacy against hematologic tumors. Yet, CAR T-cell therapy has had little success against solid tumors due to obstacles presented by the tumor microenvironment (TME) of these cancers. Here, we show that CAR T cells armored with the engineered IL-2 superkine Super2 and IL-33 were able to promote tumor control as a single-agent therapy. IFNγ and perforin were dispensable for the effects of Super2- and IL-33-armored CAR T cells. Super2 and IL-33 synergized to shift leukocyte proportions in the TME and to recruit and activate a broad repertoire of endogenous innate and adaptive immune cells including tumor-specific T cells. However, depletion of CD8+ T cells or NK cells did not disrupt tumor control, suggesting that broad immune activation compensated for loss of individual cell subsets. Thus, we have shown that Super2 and IL-33 CAR T cells can promote antitumor immunity in multiple solid tumor models and can potentially overcome antigen loss, highlighting the potential of this universal CAR T-cell platform for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rachel A Brog
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Shannon L Ferry
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Courtney T Schiebout
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Cameron M Messier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - W James Cook
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Leena Abdullah
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jia Zou
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Prathna Kumar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - H Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
4
|
The Effects of Mesenchymal Stem Cells on Antimelanoma Immunity Depend on the Timing of Their Administration. Stem Cells Int 2020; 2020:8842659. [PMID: 32695181 PMCID: PMC7368936 DOI: 10.1155/2020/8842659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
There is still a lively debate about whether mesenchymal stem cells (MSCs) promote or suppress antitumor immune response. Although several possible explanations have been proposed, including different numbers of injected and engrafted MSCs, heterogeneity in phenotype, and function of tumor cells, the exact molecular mechanisms responsible for opposite effects of MSCs in modulation of antitumor immunity are still unknown. Herewith, we used a B16F10 murine melanoma model to investigate whether timing of MSC administration in tumor-bearing mice was crucially important for their effects on antitumor immunity. MSCs, intravenously injected 24 h after melanoma induction (B16F10+MSC1d-treated mice), significantly enhanced natural killer (NK) and T cell-driven antitumor immunity, suppressed tumor growth, and improved survival of melanoma-bearing animals. Significantly higher plasma levels of antitumorigenic cytokines (TNF-α and IFN-γ), remarkably lower plasma levels of immunosuppressive cytokines (TGF-β and IL-10), and a significantly higher number of tumor-infiltrating, IFN-γ-producing, FasL- and granzyme B-expressing NK cells, IL-17-producing CD4+Th17 cells, IFN-γ- and TNF-α-producing CD4+Th1 cells, and CD8+cytotoxic T lymphocytes (CTLs) were observed in B16F10+MSC1d-treated mice. On the contrary, MSCs, injected 14 days after melanoma induction (B16F10+MSC14d-treated mice), promoted tumor growth by suppressing antigen-presenting properties of tumor-infiltrating dendritic cells (DCs) and macrophages and by reducing tumoricidal capacity of NK cells and T lymphocytes. Significantly higher plasma levels of TGF-β and IL-10, remarkably lower plasma levels of TNF-α and IFN-γ, and significantly reduced number of tumor-infiltrating, I-A-expressing, and IL-12-producing macrophages, CD80- and I-A-expressing DCs, granzyme B-expressing CTLs and NK cells, IFN-γ- and IL-17-producing CTLs, CD4+Th1, and Th17 cells were observed in B16F10+MSC14d-treated animals. In summing up, the timing of MSC administration into the tumor microenvironment was crucially important for MSC-dependent modulation of antimelanoma immunity. MSCs transplanted during the initial phase of melanoma growth exerted tumor-suppressive effect, while MSCs injected during the progressive stage of melanoma development suppressed antitumor immunity and enhanced tumor expansion.
Collapse
|
5
|
Second-generation IL-2 receptor-targeted diphtheria fusion toxin exhibits antitumor activity and synergy with anti-PD-1 in melanoma. Proc Natl Acad Sci U S A 2019; 116:3100-3105. [PMID: 30718426 DOI: 10.1073/pnas.1815087116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Denileukin diftitox (DAB-IL-2, Ontak) is a diphtheria-toxin-based fusion protein that depletes CD25-positive cells including regulatory T cells and has been approved for the treatment of persistent or recurrent cutaneous T cell lymphoma. However, the clinical use of denileukin diftitox was limited by vascular leak toxicity and production issues related to drug aggregation and purity. We found that a single amino acid substitution (V6A) in a motif associated with vascular leak induction yields a fully active, second-generation biologic, s-DAB-IL-2(V6A), which elicits 50-fold less human umbilical vein endothelial cell monolayer permeation and is 3.7-fold less lethal to mice by LD50 analysis than s-DAB-IL-2. Additionally, to overcome aggregation problems, we developed a production method for the fusion toxin using Corynebacterium diphtheriae that secretes fully folded, biologically active, monomeric s-DAB-IL-2 into the culture medium. Using the poorly immunogenic mouse B16F10 melanoma model, we initiated treatment 7 days after tumor challenge and observed that, while both s-DAB-IL-2(V6A) and s-DAB-IL-2 are inhibitors of tumor growth, the capacity to treat with higher doses of s-DAB-IL-2(V6A) could provide a superior activity window. In a sequential dual-therapy study in tumors that have progressed for 10 days, both s-DAB-IL-2(V6A) and s-DAB-IL-2 given before checkpoint inhibition with anti-programmed cell death-1 (anti-PD-1) antibodies inhibited tumor growth, while either drug given as monotherapy had less effect. s-DAB-IL-2(V6A), a fully monomeric protein with reduced vascular leak, is a second-generation diphtheria-toxin-based fusion protein with promise as a cancer immunotherapeutic both alone and in conjunction with PD-1 blockade.
Collapse
|
6
|
Putz EM, Guillerey C, Kos K, Stannard K, Miles K, Delconte RB, Takeda K, Nicholson SE, Huntington ND, Smyth MJ. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. Oncoimmunology 2017; 6:e1267892. [PMID: 28344878 DOI: 10.1080/2162402x.2016.1267892] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/30/2023] Open
Abstract
The cytokine-induced SH2-containing protein CIS belongs to the suppressor of cytokine signaling (SOCS) protein family. Here, we show the critical role of CIS in suppressing natural killer (NK) cell control of tumor initiation and metastasis. Cish-deficient mice were highly resistant to methylcholanthrene-induced sarcoma formation and protected from lung metastasis of B16F10 melanoma and RM-1 prostate carcinoma cells. In contrast, the growth of primary subcutaneous tumors, including those expressing the foreign antigen OVA, was unchanged in Cish-deficient mice. The combination of Cish deficiency and relevant targeted and immuno-therapies such as combined BRAF and MEK inhibitors, immune checkpoint blockade antibodies, IL-2 and type I interferon revealed further improved control of metastasis. The data clearly indicate that targeting CIS promotes NK cell antitumor functions and CIS holds great promise as a novel target in NK cell immunotherapy.
Collapse
Affiliation(s)
- Eva M Putz
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute , Herston, Queensland, Australia
| | - Camille Guillerey
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Kevin Kos
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute , Herston, Queensland, Australia
| | - Kimberley Stannard
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute , Herston, Queensland, Australia
| | - Kim Miles
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute , Herston, Queensland, Australia
| | - Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Kazuyoshi Takeda
- Department of Immunology, Juntendo University School of Medicine , Bunkyo-ku, Tokyo, Japan
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
7
|
Schartl M, Shen Y, Maurus K, Walter R, Tomlinson C, Wilson RK, Postlethwait J, Warren WC. Whole Body Melanoma Transcriptome Response in Medaka. PLoS One 2015; 10:e0143057. [PMID: 26714172 PMCID: PMC4699850 DOI: 10.1371/journal.pone.0143057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/30/2015] [Indexed: 01/17/2023] Open
Abstract
The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.
Collapse
Affiliation(s)
- Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
- Comprehensive Cancer Center, University Clinic Würzburg, Josef Schneider Straße 6, 97074, Würzburg, Germany
- * E-mail: (WCW); (MS)
| | - Yingjia Shen
- Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, United States of America
| | - Katja Maurus
- Physiological Chemistry, University of Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
| | - Ron Walter
- Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666, United States of America
| | - Chad Tomlinson
- McDonnell Genome Institute at Washington University, 4444 Forest Park Blvd., St Louis, MO, 63108, United States of America
| | - Richard K. Wilson
- McDonnell Genome Institute at Washington University, 4444 Forest Park Blvd., St Louis, MO, 63108, United States of America
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR, 97403, United States of America
| | - Wesley C. Warren
- McDonnell Genome Institute at Washington University, 4444 Forest Park Blvd., St Louis, MO, 63108, United States of America
- * E-mail: (WCW); (MS)
| |
Collapse
|
8
|
Ligtenberg MA, Çınar Ö, Holmdahl R, Mougiakakos D, Kiessling R. Methylcholanthrene-Induced Sarcomas Develop Independently from NOX2-Derived ROS. PLoS One 2015; 10:e0129786. [PMID: 26076008 PMCID: PMC4468117 DOI: 10.1371/journal.pone.0129786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) produced by the inducible NADPH oxidase type 2 (NOX2) complex are essential for clearing certain infectious organisms but may also have a role in regulating inflammation and immune response. For example, ROS is involved in myeloid derived suppressor cell (MDSC)- and regulatory T cell (T(reg)) mediated T- and NK-cell suppression. However, abundant ROS produced within the tumor microenvironment, or by the tumor itself may also yield oxidative stress, which can blunt anti-tumor immune responses as well as eventually leading to tumor toxicity. In this study we aimed to decipher the role of NOX2-derived ROS in a chemically (by methylcholanthrene (MCA)) induced sarcoma model. Superoxide production by NOX2 requires the p47(phox) (NCF1) subunit to organize the formation of the NOX2 complex on the cell membrane. Homozygous mutant mice (NCF1*/*) have a functional loss of their super oxide burst while heterozygous mice (NCF1*/+) retain this key function. Mice harboring either a homo- or a heterozygous mutation were injected intramuscularly with MCA to induce sarcoma formation. We found that NOX2 functionality does not determine tumor incidence in the tested MCA model. Comprehensive immune monitoring in tumor bearing mice showed that infiltrating immune cells experienced an increase in their oxidative state regardless of the NOX2 functionality. While MCA-induced sarcomas where characterized by a T(reg) and MDSC accumulation, no significant differences could be found between NCF1*/* and NCF1*/+ mice. Furthermore, infiltrating T cells showed an increase in effector-memory cell phenotype markers in both NCF1*/* and NCF1*/+ mice. Tumors established from both NCF1*/* and NCF1*/+ mice were tested for their in vitro proliferative capacity as well as their resistance to cisplatin and radiation therapy, with no differences being recorded. Overall our findings indicate that NOX2 activity does not play a key role in tumor development or immune cell infiltration in the chemically induced MCA sarcoma model.
Collapse
Affiliation(s)
- Maarten A. Ligtenberg
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Özcan Çınar
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Haematology and Oncology, University of Erlangen-Nuremberg, Nuremberg, Germany
| | - Rolf Kiessling
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clin Transl Immunology 2014; 3:e22. [PMID: 25505970 PMCID: PMC4232074 DOI: 10.1038/cti.2014.18] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023] Open
Abstract
The current excitement surrounding cancer immunotherapy stems particularly from clinical data involving agents mediating immune checkpoint receptor blockade, which have induced unprecedented efficacy against a range of tumours compared with previous immunotherapeutic approaches. However, an important consideration in targeting checkpoint receptors has been the emergence of associated toxicities termed immune-related adverse events (irAEs). In light of the clinical benefits observed after co-blockade of checkpoint receptors and data from preclinical mouse models, there is now a strong rationale to combine different checkpoint receptors together, with other immunotherapies or more conventional therapies to assess if clinical benefits to cancer patients can be further improved. However, one may predict the frequency and severity of irAEs will increase with combinations, which may result in premature therapy cessation, thus limiting the realization of such an approach. In addition, there is a limit to how many different combination therapies that can be tested in a timely manner given the legal, regulatory and budgetary issues associated with conducting clinical trials. Thus, there is a need to develop preclinical mouse models that more accurately inform us as to which immunotherapies might combine best to provide the optimal therapeutic index (maximal anti-tumour efficacy and low level irAEs) in different cancer settings. In this review we will discuss the irAEs observed in patients after checkpoint blockade and discuss which mouse models of cancer can be appropriate to assess the development of tumour immunity and irAEs following combination cancer immunotherapies.
Collapse
|
10
|
Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595. [PMID: 24319634 PMCID: PMC3850274 DOI: 10.4161/onci.25595] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in cancer patients.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U848; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- National Institute of Health; Rome, Italy
| | - Eric Tartour
- INSERM, U970; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
| | | | - Catherine Sautès-Fridman
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 15, Centre de Recherche des Cordeliers; Paris, France
- INSERM, U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Laurence Zitvogel
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1015; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Metabolomics and Cell Biology Platforms; Institut Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
11
|
Gyorki DE, Callahan M, Wolchok JD, Ariyan CE. The delicate balance of melanoma immunotherapy. Clin Transl Immunology 2013; 2:e5. [PMID: 25505953 PMCID: PMC4232053 DOI: 10.1038/cti.2013.5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 12/31/2022] Open
Abstract
The strategy of immune modulation for the treatment of cancer is being refined with the introduction of multiple new therapeutic agents into the clinic. Melanoma is a disease where many of these agents have demonstrated efficacy. The mechanisms of action of these agents exploit the counter-regulatory mechanisms of the immune response. However, these agents are also associated with immune-related adverse events (IRAEs), which represent tissue-specific inflammatory responses. These IRAEs highlight the delicate balance of immunologic homeostasis and, with some interventions, may occur more frequently in patients who sustain a therapeutic response. This review will discuss melanoma immunogenicity and immunotherapy. Furthermore, the spectrum and distinction between a reversible immune adverse event and autoimmunity will be highlighted.
Collapse
Affiliation(s)
- David E Gyorki
- Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Margaret Callahan
- Memorial Sloan-Kettering Cancer Center , New York, NY, USA ; Ludwig Center, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Jedd D Wolchok
- Memorial Sloan-Kettering Cancer Center , New York, NY, USA ; Ludwig Center, Memorial Sloan-Kettering Cancer Center , New York, NY, USA ; Weill Cornell Medical College , New York, NY, USA
| | - Charlotte E Ariyan
- Memorial Sloan-Kettering Cancer Center , New York, NY, USA ; Weill Cornell Medical College , New York, NY, USA
| |
Collapse
|