1
|
Johnson FM, O’Hara MP, Yapindi L, Jiang P, Tran HT, Reuben A, Xiao W, Gillison M, Sun X, Khalaf A, Lee JJ, Sastry JK, Ghosh S. Phase I/II Study of the Aurora Kinase A Inhibitor Alisertib and Pembrolizumab in Refractory, Rb-Deficient Head and Neck Squamous Cell Carcinomas. Clin Cancer Res 2025; 31:479-490. [PMID: 39589337 PMCID: PMC11790391 DOI: 10.1158/1078-0432.ccr-24-2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE Effective therapy for recurrent head and neck squamous cell carcinoma (HNSCC) that is refractory to chemotherapy and immunotherapy is a considerable need. Aurora kinase A inhibition leads to apoptosis and immunogenic cell death in preclinical models of human papilloma virus (HPV)-driven cancers. PATIENTS AND METHODS Alisertib was administered orally twice daily on days 1-7 and pembrolizumab on day 1 of a 21-day cycle to adults with advanced solid tumors (phase I) or with immunotherapy- and platinum-resistant, HPV-positive HNSCC (phase II). RESULTS The recommended phase II alisertib dose was 40 mg, which had only the expected toxicity including cytopenia that led to dose reductions in two phase II patients at cycles 13 and 16. We saw no objective responses, but the combination led to prolonged stable disease (SD) in several patients, including two of 10 phase I patients (8 and 27 months). Eight of the 15 HPV-positive patients had SD, of which four (heavily pretreated) had ≥6 months, with median overall and progression-free survival durations of 16.8 and 1.4 months, respectively. In circulating immune cells and plasma, patients with SD had markedly higher levels of HLA de novo resistance-expressing NK cells than did progressive disease patients who demonstrated a more immunosuppressive and inflammatory profile. Pharmacokinetics did not indicate any significant drug-drug interactions between pembrolizumab and alisertib. CONCLUSIONS The combination of alisertib and pembrolizumab was well tolerated and led to prolonged SD in some immunotherapy-resistant patients, supporting our hypothesis that Aurora kinase A inhibition can reverse immunotherapy resistance of retinoblastoma protein-deficient HNSCC.
Collapse
Affiliation(s)
- Faye M. Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Madison P. O’Hara
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Lacin Yapindi
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| | - Peixin Jiang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| | - Hai T. Tran
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| | - Weihong Xiao
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| | - Maura Gillison
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Xiaowen Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander Khalaf
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jagannadha K. Sastry
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Soma Ghosh
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Li B, Chen H, Yang S, Chen F, Xu L, Li Y, Li M, Zhu C, Shao F, Zhang X, Deng C, Zeng L, He Y, Zhang C. Advances in immunology and immunotherapy for mesenchymal gastrointestinal cancers. Mol Cancer 2023; 22:71. [PMID: 37072770 PMCID: PMC10111719 DOI: 10.1186/s12943-023-01770-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
Mesenchymal gastrointestinal cancers are represented by the gastrointestinal stromal tumors (GISTs) which occur throughout the whole gastrointestinal tract, and affect human health and economy globally. Curative surgical resections and tyrosine kinase inhibitors (TKIs) are the main managements for localized GISTs and recurrent/metastatic GISTs, respectively. Despite multi-lines of TKIs treatments prolonged the survival time of recurrent/metastatic GISTs by delaying the relapse and metastasis of the tumor, drug resistance developed quickly and inevitably, and became the huge obstacle for stopping disease progression. Immunotherapy, which is typically represented by immune checkpoint inhibitors (ICIs), has achieved great success in several solid tumors by reactivating the host immune system, and been proposed as an alternative choice for GIST treatment. Substantial efforts have been devoted to the research of immunology and immunotherapy for GIST, and great achievements have been made. Generally, the intratumoral immune cell level and the immune-related gene expressions are influenced by metastasis status, anatomical locations, driver gene mutations of the tumor, and modulated by imatinib therapy. Systemic inflammatory biomarkers are regarded as prognostic indicators of GIST and closely associated with its clinicopathological features. The efficacy of immunotherapy strategies for GIST has been widely explored in pre-clinical cell and mouse models and clinical experiments in human, and some patients did benefit from ICIs. This review comprehensively summarizes the up-to-date advancements of immunology, immunotherapy and research models for GIST, and provides new insights and perspectives for future studies.
Collapse
Affiliation(s)
- Bo Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hui Chen
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Shaohua Yang
- Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Liangliang Xu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Mingzhe Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chengming Zhu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Fangyuan Shao
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, Institute of Translational Medicine, Cancer Center, University of Macau, Macau SAR, 999078, China
| | - Xinhua Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road, Guangzhou, 510080, China
| | - Chuxia Deng
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, Institute of Translational Medicine, Cancer Center, University of Macau, Macau SAR, 999078, China.
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
3
|
Fahrner JE, Lahmar I, Goubet AG, Haddad Y, Carrier A, Mazzenga M, Drubay D, Alves Costa Silva C, de Sousa E, Thelemaque C, Melenotte C, Dubuisson A, Geraud A, Ferrere G, Birebent R, Bigenwald C, Picard M, Cerbone L, Lérias JR, Laparra A, Bernard-Tessier A, Kloeckner B, Gazzano M, Danlos FX, Terrisse S, Pizzato E, Flament C, Ly P, Tartour E, Benhamouda N, Meziani L, Ahmed-Belkacem A, Miyara M, Gorochov G, Barlesi F, Trubert A, Ungar B, Estrada Y, Pradon C, Gallois E, Pommeret F, Colomba E, Lavaud P, Deloger M, Droin N, Deutsch E, Gachot B, Spano JP, Merad M, Scotté F, Marabelle A, Griscelli F, Blay JY, Soria JC, Merad M, André F, Villemonteix J, Chevalier MF, Caillat-Zucman S, Fenollar F, Guttman-Yassky E, Launay O, Kroemer G, La Scola B, Maeurer M, Derosa L, Zitvogel L. The Polarity and Specificity of Antiviral T Lymphocyte Responses Determine Susceptibility to SARS-CoV-2 Infection in Patients with Cancer and Healthy Individuals. Cancer Discov 2022; 12:958-983. [PMID: 35179201 PMCID: PMC9394394 DOI: 10.1158/2159-8290.cd-21-1441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 01/07/2023]
Abstract
Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. SIGNIFICANCE This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Jean-Eudes Fahrner
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Transgene S.A., Illkirch-Graffenstaden, France
| | - Imran Lahmar
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Anne-Gaëlle Goubet
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Yacine Haddad
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Agathe Carrier
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Marine Mazzenga
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Damien Drubay
- Gustave Roussy, Villejuif, France.,Département de Biostatistique et d'Epidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Carolina Alves Costa Silva
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Lyon COVID Study Group
- Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France. R&D – Immunoassay, bioMérieux S.A., Marcy l'Etoile, France.,Joint Research Unit Hospices Civils de Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France.,International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France.,Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Eric de Sousa
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Cassandra Thelemaque
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Cléa Melenotte
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Aix-Marseille Université, Institut Hospitalo-Universitaire, Institut de Recherche pour le Développement, Assistance Publique – Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Marseille, France
| | - Agathe Dubuisson
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Arthur Geraud
- Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Gladys Ferrere
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Roxanne Birebent
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Camille Bigenwald
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Marion Picard
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Luigi Cerbone
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Ariane Laparra
- Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Alice Bernard-Tessier
- Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Benoît Kloeckner
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Marianne Gazzano
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - François-Xavier Danlos
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Safae Terrisse
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Eugenie Pizzato
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Caroline Flament
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Pierre Ly
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Eric Tartour
- Center of clinical investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France.,Department of Immunology, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Nadine Benhamouda
- Center of clinical investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France.,Department of Immunology, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | | | | | - Makoto Miyara
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Guy Gorochov
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Fabrice Barlesi
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France.,Sorbonne Université/Institut National de la Santé et de la Recherche Médicale, U1135, Centre d'Immunologie et des Maladies Infectieuses, Hôpital Pitié-Salpêtrière, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Alexandre Trubert
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Benjamin Ungar
- Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| | - Yeriel Estrada
- Department of Dermatology, Center of Excellence in Eczema Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Caroline Pradon
- Gustave Roussy, Villejuif, France.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York.,Centre de Ressources Biologiques, ET-EXTRA, Gustave Roussy, Villejuif, France
| | - Emmanuelle Gallois
- Gustave Roussy, Villejuif, France.,Département de Biologie Médicale et Pathologie Médicales, Service de Biochimie, Gustave Roussy, Villejuif, France
| | - Fanny Pommeret
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Emeline Colomba
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Pernelle Lavaud
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Marc Deloger
- Département de Biologie Médicale et Pathologie Médicales, Service de Microbiologie, Gustave Roussy, Villejuif, France
| | - Nathalie Droin
- Gustave Roussy, Plateforme de Bioinformatique, Université Paris-Saclay, INSERM US23, CNRS UMS, Villejuif, France
| | - Eric Deutsch
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Gustave Roussy, Plateforme de génomique, Université Paris-Saclay, INSERM US23, CNRS UMS, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1030, Gustave Roussy, Villejuif, France
| | - Bertrand Gachot
- Gustave Roussy, Villejuif, France.,Département de Radiothérapie, Gustave Roussy, Villejuif, France
| | | | - Mansouria Merad
- Gustave Roussy, Villejuif, France.,Department of Medical Oncology, Pitié-Salpétrière Hospital, APHP, Sorbonne Université, Paris, France
| | - Florian Scotté
- Gustave Roussy, Villejuif, France.,Service de Médecine aigue d’Urgence en Cancérologie, Gustave Roussy, Villejuif, France
| | - Aurélien Marabelle
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France.,Département Interdisciplinaire d'Organisation des Parcours Patients, Gustave Roussy, Villejuif, France
| | - Frank Griscelli
- Gustave Roussy, Villejuif, France.,Département de Biologie Médicale et Pathologie Médicales, Service de Biochimie, Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale – UMR935/UA9, Université Paris-Saclay, Villejuif, France.,INGESTEM National IPSC Infrastructure, Université de Paris-Saclay, Villejuif, France.,Université de Paris, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Lyon, France.,Université Claude Bernard, Lyon, France.,Unicancer, Paris, France
| | - Jean-Charles Soria
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Oncological Science, Icahn School of Medicine at Mount Sinai, New York, New York.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fabrice André
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U981, Gustave Roussy, Villejuif, France
| | - Juliette Villemonteix
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, APHP, Université de Paris, Paris, France
| | - Mathieu F. Chevalier
- INSERM UMR 976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Sophie Caillat-Zucman
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, APHP, Université de Paris, Paris, France.,INSERM UMR 976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Florence Fenollar
- IHU Méditérranée Infection, VITROME, IRD, AP-HM, SSA, Aix-Marseille University, Marseille, France
| | - Emma Guttman-Yassky
- Department of Dermatology, Center of Excellence in Eczema Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Odile Launay
- Université de Paris, Inserm CIC 1417, I-Reivac, APHP, Hopital Cochin, Paris, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France.,Pôle de Biologie, Hôpital Européen George Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Bernard La Scola
- Institut Hospitalo-Universitaire, Méditerranée Infection, Marseille, France
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Lisboa, Portugal.,Medizinische Klinik, Johannes Gutenberg University Mainz, Germany
| | - Lisa Derosa
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Laurence Zitvogel
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Center of clinical investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France.,Corresponding Author: Laurence Zitvogel, University Paris-Saclay, Gustave Roussy Cancer Center, 114 rue Edouard Vaillant, Villejuif Cedex 94805, France. Phone: 331-4211-5041; E-mail:
| |
Collapse
|
4
|
Erokhina SA, Streltsova MA, Kanevskiy LM, Grechikhina MV, Sapozhnikov AM, Kovalenko EI. HLA-DR-expressing NK cells: Effective killers suspected for antigen presentation. J Leukoc Biol 2020; 109:327-337. [PMID: 32421903 DOI: 10.1002/jlb.3ru0420-668rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
HLA-DR-expressing cells comprise an intriguing group of NK cells, which combine phenotypic characteristics of both NK cells and dendritic cells. These cells can be found in humans and mice; they are present in blood and tissues in healthy conditions and can expand in a spectrum of pathologies. HLA-DR+ NK cells are functionally active: they produce proinflammatory cytokines, degranulate, and easily proliferate in response to stimuli. Additionally, HLA-DR+ NK cells seem able to take in and then present certain antigens to CD4+ and CD8+ T cells, inducing their activation and proliferation, which puts them closer to professional antigen-presenting cells. It appears that these NK cells should be considerable players of the innate immune system, both due to their functional activity and regulation of the innate and adaptive immune responses. In this review, for the first time, we provide a detailed description and analysis of the available data characterizing phenotypic, developmental, and functional features of the HLA-DR+ NK cells in a healthy condition and a disease.
Collapse
Affiliation(s)
- Sofya A Erokhina
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria A Streltsova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Leonid M Kanevskiy
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria V Grechikhina
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Imatinib modulates pro-inflammatory microenvironment with angiostatic effects in experimental lung carcinogenesis. Inflammopharmacology 2019; 28:231-252. [PMID: 31676982 DOI: 10.1007/s10787-019-00656-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Lung cancer has second highest rate of incidence and mortality around the world. Smoking cigarettes is the main stream cause of lung carcinogenesis along with other factors such as spontaneous mutations, inactivation of tumor suppressor genes. The present study was aimed to identify the mechanistic role of Imatinib in the chemoprevention of experimental lung carcinogenesis in rat model. Gross morphological observations for tumor formation, histological examinations, RT-PCR, Western blotting, fluorescence spectroscopy and molecular docking studies were performed to elucidate the chemopreventive effects of Imatinib and support our hypothesis by various experiments. It is evident that immuno-compromised microenvironment inside solid tumors is responsible for tumor progression and drug resistance. Therefore, it is inevitable to modulate the pro-inflammatory signaling inside solid tumors to restrict neoangiogenesis. In the present study, we observed that Imatinib could downregulate the inflammatory signaling and also attributed angiostatic effects. Moreover, Imatinib also altered the biophysical properties of BAL cells such as plasma membrane potential, fluidity and microviscosity to restrict their infiltration and thereby accumulation to mount immuno-compromised environment inside the solid tumors during angiogenesis. Our molecular docking studies suggest that immunomodulatory and angiostatic properties of Imatinib could be either independent of each other or just a case of synergistic pleiotropy. Imatinib was observed to activate the intrinsic or mitochondrial pathway of apoptosis to achieve desired effects in cancer cell killings. Interestingly, binding of Imatinib inside the catalytic domain of PARP-1 also suggests that it has caspase-independent properties in promoting cancer cell deaths.
Collapse
|
6
|
Choi J, Rudak PT, Lesage S, Haeryfar SMM. Glycolipid Stimulation of Invariant NKT Cells Expands a Unique Tissue-Resident Population of Precursors to Mature NK Cells Endowed with Oncolytic and Antimetastatic Properties. THE JOURNAL OF IMMUNOLOGY 2019; 203:1808-1819. [PMID: 31462506 DOI: 10.4049/jimmunol.1900487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/24/2019] [Indexed: 01/30/2023]
Abstract
Invariant NKT (iNKT) cells are innate-like T lymphocytes that recognize and respond to glycolipid Ags such as α-galactosylceramide (α-GalCer). This unique property has been exploited in clinical trials for multiple malignancies. While investigating mouse iNKT cell responses to α-GalCer in vivo, we found a dramatically enlarged tissue-resident population surprisingly coexpressing select dendritic cell, NK cell, and B cell markers. Further phenotypic and functional analyses revealed the identity of this B220+CD11c+MHC class II+NK1.1+ population as precursors to mature NK (pre-mNK) cells, which also expressed high levels of proliferation and tissue retention markers but diminished sphingosine-1-phosphate receptor 1, a receptor that facilitates tissue trafficking. Accordingly, FTY720, a sphingosine-1-phosphate receptor 1 antagonist, failed to prevent pre-mNK cells' intrahepatic accumulation. We found iNKT cell-driven expansion of pre-mNK cells to be dependent on IL-12 and IL-18. Although α-GalCer-transactivated pre-mNK cells lost their capacity to process a model tumor Ag, they selectively expressed granzyme A and directly lysed YAC-1 thymoma cells through granule exocytosis. They also contributed to β2 microglobulin-deficient target cell destruction in vivo. Therefore, α-GalCer treatment skewed pre-mNK cell responses away from an APC-like phenotype and toward killer cell-like functions. Finally, the ability of α-GalCer to reduce the pulmonary metastatic burden of B16-F10 mouse melanoma was partially reversed by in vivo depletion of pre-mNK cells. To our knowledge, our findings shed new light on iNKT cells' mechanism of action and glycolipid-based immunotherapies. Therefore, we introduce pre-mNK cells as a novel downstream effector cell type whose anticancer properties may have been overlooked in previous investigations.
Collapse
Affiliation(s)
- Joshua Choi
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Patrick T Rudak
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada; .,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario N6A 5A5, Canada.,Division of General Surgery, Department of Surgery, Western University, London, Ontario N6A 5A5, Canada; and.,Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
7
|
Re GL, Conte AD, Re FL, Doretto P, Ubiali P, Brosolo P, Sulfaro S, Marus W. Cyclophosphamide, Fluorouracil and subcutaneous Interleukin-2 in the treatment of advanced GIST: A Case Report. Surg Case Rep 2019. [DOI: 10.31487/j.scr.2019.03.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A male 68 years hold patient was admitted to surgical ward for hemorrhagic shock. After CT scan detection of 6x5 cm neoformation of first jejunal loop, he was submitted to segmental resection and pathological diagnosis was gastrointestinal stromal tumor. The patient was defined as high-risk according to Takahashi criteria, but refused Imatinib adjuvant therapy. After 15 months of disease-free interval, he developed bilobar liver metastases. After treatment with Imatinib 400 mg he reported G3 hepatotoxicity resolved with temporary suspension, he continue low dose with stable disease. After liver progression, he resumed Imatinib full dose with disease stabilization for 9 months. After liver progression, second line Sunitinib 37,5 mg/day was started for four months with stable disease. After further liver and lymph node mediastinal progression he was treated for four months with Regorafenib with disease stabilization. Patient developed slow but inexorable progression of liver disease with severe abdominal pain resistant to opioid and was treated with authorized compassionate program comprising Cyclophosphamide 300 mg/sqm and Fluorouracil 500 mg/sqm on day 1 intravenously followed by Interleukin-2 4.5 MUI subcutaneously on days 3–6 and 17–20 every four weeks. After three cycles the patients obtained a relevant subjective improvement with partial response on mediastinal lymph node and liver stabilization. A substantial increase on neutrophil, lymphocytes, monocytes, platelets, T regulator cells count, and a decrease on platelets/lymphocytes, CD8/T regulator cells ratio, CD8, NK count and C-reactive protein value were observed after treatment compared to basal value. The toxicity was mild represented by fever G1, flue-like-syndrome G1 during the treatment. After four cycle of chemo-immunotherapy, the patient demonstrated progression of disease and died five months after treatment. Noteworthy is the temporal disease control with significant symptomatic improvement achieved for the first time with this chemo-immunotherapeutic combination in a patient with very advanced pretreated GIST.
Collapse
|
8
|
De Pelsmaeker S, Devriendt B, De Regge N, Favoreel HW. Porcine NK Cells Stimulate Proliferation of Pseudorabies Virus-Experienced CD8 + and CD4 +CD8 + T Cells. Front Immunol 2019; 9:3188. [PMID: 30705681 PMCID: PMC6344446 DOI: 10.3389/fimmu.2018.03188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/02/2022] Open
Abstract
Natural killer (NK) cells belong to the innate immune system and play a central role in the defense against viral infections and cancer development, but also contribute to shaping adaptive immune responses. NK cells are particularly important in the first line defense against herpesviruses, including alphaherpesviruses. In addition to their ability to kill target cells and produce interferon-γ, porcine and human NK cell subsets have been reported to display features associated with professional antigen presenting cells (APC), although it is currently unclear whether NK cells may internalize debris of virus-infected cells and whether this APC-like activity of NK cells may stimulate proliferation of antiviral T cells. Here, using the porcine alphaherpesvirus pseudorabies virus (PRV), we show that vaccination of pigs with a live attenuated PRV vaccine strain triggers expression of MHC class II on porcine NK cells, that porcine NK cells can internalize debris from PRV-infected target cells, and that NK cells can stimulate proliferation of CD8+ and CD4+CD8+ PRV-experienced T cells. These results highlight the potential of targeting these NK cell features in future vaccination strategies.
Collapse
Affiliation(s)
- Steffi De Pelsmaeker
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nick De Regge
- Department of Enzootic, Vector-Borne and Bee Diseases, Sciensano, Brussels, Belgium
| | - Herman W Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Streltsova MA, Erokhina SA, Kanevskiy LM, Lee DA, Telford WG, Sapozhnikov AM, Kovalenko EI. Analysis of NK cell clones obtained using interleukin-2 and gene-modified K562 cells revealed the ability of "senescent" NK cells to lose CD57 expression and start expressing NKG2A. PLoS One 2018; 13:e0208469. [PMID: 30517188 PMCID: PMC6281266 DOI: 10.1371/journal.pone.0208469] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/16/2018] [Indexed: 11/26/2022] Open
Abstract
In this work, we analyzed the phenotype and growth of human NK cell clones obtained by the stimulation of individual NK cells with IL-2 and gene-modified K562 feeder cells expressing membrane-bound IL-21 (K562-mbIL21). We generated clones from NK cells at distinct differentiation and activation stages, determined by CD56, CD57 and HLA-DR expression levels. Less differentiated CD56bright NK cell subsets showed higher cloning efficiency compared with more differentiated CD56dim subsets, especially with the CD57bright subset. However, clones from the CD56dimCD57– subset lived longer on average than other subsets. Moreover, several clones with the highest cell numbers were derived from CD56dimCD57–HLA-DR−cells. Most of the clones including those derived from more differentiated CD56dimCD57+/–NKG2A– NK cells showed a less-differentiated NKG2A+ phenotype. Also, CD57– cells were frequently observed in clones derived from CD57+ NK cells suggesting the loss of CD57 during the cloning process. On the other hand, KIR surface expression once detected for a clone never disappeared entirely, confirming irreversibility of the KIR expression. In summary, we have demonstrated that in specific conditions terminally differentiated CD57+ human NK cells are able to acquire the CD57– phenotype that was previously not observed and, thus, was considered impossible.
Collapse
Affiliation(s)
- Maria A Streltsova
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russian Federation
| | - Sofya A Erokhina
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russian Federation
| | - Leonid M Kanevskiy
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russian Federation
| | - Dean A Lee
- Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children's Hospital, Columbus, OH, United States of America
| | - William G Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russian Federation
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russian Federation
| |
Collapse
|
10
|
Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, Boselli L, Routier E, Cassard L, Collins M, Vaysse T, Marthey L, Eggermont A, Asvatourian V, Lanoy E, Mateus C, Robert C, Carbonnel F. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 2018; 28:1368-1379. [PMID: 28368458 DOI: 10.1093/annonc/mdx108] [Citation(s) in RCA: 883] [Impact Index Per Article: 126.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Ipilimumab, an immune checkpoint inhibitor targeting CTLA-4, prolongs survival in a subset of patients with metastatic melanoma (MM) but can induce immune-related adverse events, including enterocolitis. We hypothesized that baseline gut microbiota could predict ipilimumab anti-tumor response and/or intestinal toxicity. Patients and methods Twenty-six patients with MM treated with ipilimumab were prospectively enrolled. Fecal microbiota composition was assessed using 16S rRNA gene sequencing at baseline and before each ipilimumab infusion. Patients were further clustered based on microbiota patterns. Peripheral blood lymphocytes immunophenotypes were studied in parallel. Results A distinct baseline gut microbiota composition was associated with both clinical response and colitis. Compared with patients whose baseline microbiota was driven by Bacteroides (cluster B, n = 10), patients whose baseline microbiota was enriched with Faecalibacterium genus and other Firmicutes (cluster A, n = 12) had longer progression-free survival (P = 0.0039) and overall survival (P = 0.051). Most of the baseline colitis-associated phylotypes were related to Firmicutes (e.g. relatives of Faecalibacterium prausnitzii and Gemmiger formicilis), whereas no colitis-related phylotypes were assigned to Bacteroidetes. A low proportion of peripheral blood regulatory T cells was associated with cluster A, long-term clinical benefit and colitis. Ipilimumab led to a higher inducible T-cell COStimulator induction on CD4+ T cells and to a higher increase in serum CD25 in patients who belonged to Faecalibacterium-driven cluster A. Conclusion Baseline gut microbiota enriched with Faecalibacterium and other Firmicutes is associated with beneficial clinical response to ipilimumab and more frequent occurrence of ipilimumab-induced colitis.
Collapse
Affiliation(s)
- N Chaput
- Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Gustave Roussy Cancer Campus, Villejuif.,Faculty of Pharmacy, Chatenay-Malabry
| | - P Lepage
- Micalis Institute, INRA, AgroParisTech, Paris
| | - C Coutzac
- Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Gustave Roussy Cancer Campus, Villejuif.,Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre
| | - E Soularue
- Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Gustave Roussy Cancer Campus, Villejuif.,Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre.,Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre
| | - K Le Roux
- Micalis Institute, INRA, AgroParisTech, Paris
| | - C Monot
- Micalis Institute, INRA, AgroParisTech, Paris
| | - L Boselli
- Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Gustave Roussy Cancer Campus, Villejuif
| | - E Routier
- Dermatology Unit, Department of Medicine, Gustave Roussy, Cancer Campus, Villejuif
| | - L Cassard
- Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Gustave Roussy Cancer Campus, Villejuif
| | - M Collins
- Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre.,Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre
| | - T Vaysse
- Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre.,Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre
| | - L Marthey
- Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre.,Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre
| | - A Eggermont
- Dermatology Unit, Department of Medicine, Gustave Roussy, Cancer Campus, Villejuif.,INSERM U1015, Gustave Roussy, Cancer Campus, Villejuif
| | - V Asvatourian
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus (GRCC), Villejuif.,University Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
| | - E Lanoy
- Biostatistics and Epidemiology Unit, Gustave Roussy Cancer Campus (GRCC), Villejuif.,University Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
| | - C Mateus
- Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre
| | - C Robert
- Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre.,Dermatology Unit, Department of Medicine, Gustave Roussy, Cancer Campus, Villejuif
| | - F Carbonnel
- Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre.,Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre
| |
Collapse
|
11
|
De Pelsmaeker S, Devriendt B, Leclercq G, Favoreel HW. Porcine NK cells display features associated with antigen-presenting cells. J Leukoc Biol 2017; 103:129-140. [DOI: 10.1002/jlb.4a0417-163rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Steffi De Pelsmaeker
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine; Ghent University; Ghent Belgium
| | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine; Ghent University; Ghent Belgium
| | - Georges Leclercq
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
| | - Herman W. Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine; Ghent University; Ghent Belgium
| |
Collapse
|
12
|
Young A, Ngiow SF, Gao Y, Patch AM, Barkauskas DS, Messaoudene M, Lin G, Coudert JD, Stannard KA, Zitvogel L, Degli-Esposti MA, Vivier E, Waddell N, Linden J, Huntington ND, Souza-Fonseca-Guimaraes F, Smyth MJ. A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment. Cancer Res 2017; 78:1003-1016. [PMID: 29229601 DOI: 10.1158/0008-5472.can-17-2826] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/31/2017] [Accepted: 12/06/2017] [Indexed: 12/25/2022]
Abstract
Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell-based therapies may heighten therapeutic benefits by augmenting NK cell-mediated antitumor immunity.Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003-16. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Heterografts
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptor, Adenosine A2A/deficiency
- Receptor, Adenosine A2A/immunology
- Receptor, Adenosine A2A/metabolism
- Signal Transduction/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Arabella Young
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Shin Foong Ngiow
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yulong Gao
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Ann-Marie Patch
- Medical Genomics, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Deborah S Barkauskas
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Gene Lin
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, and Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Jerome D Coudert
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kimberley A Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Laurence Zitvogel
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- University Paris-Saclay, Kremlin Bicêtre, France
- CIC1428, Gustave Roussy Cancer Campus, Villejuif, France
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, France
| | - Nicola Waddell
- Medical Genomics, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, and Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Nicholas D Huntington
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
13
|
Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A, Ngiow SF, Rautela J, Straube J, Waddell N, Blake SJ, Yan J, Bartholin L, Lee JS, Vivier E, Takeda K, Messaoudene M, Zitvogel L, Teng MWL, Belz GT, Engwerda CR, Huntington ND, Nakamura K, Hölzel M, Smyth MJ. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol 2017; 18:1004-1015. [PMID: 28759001 DOI: 10.1038/ni.3800] [Citation(s) in RCA: 498] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022]
Abstract
Avoiding destruction by immune cells is a hallmark of cancer, yet how tumors ultimately evade control by natural killer (NK) cells remains incompletely defined. Using global transcriptomic and flow-cytometry analyses and genetically engineered mouse models, we identified the cytokine-TGF-β-signaling-dependent conversion of NK cells (CD49a-CD49b+Eomes+) into intermediate type 1 innate lymphoid cell (intILC1) (CD49a+CD49b+Eomes+) populations and ILC1 (CD49a+CD49b-Eomesint) populations in the tumor microenvironment. Strikingly, intILC1s and ILC1s were unable to control local tumor growth and metastasis, whereas NK cells favored tumor immunosurveillance. Experiments with an antibody that neutralizes the cytokine TNF suggested that escape from the innate immune system was partially mediated by TNF-producing ILC1s. Our findings provide new insight into the plasticity of group 1 ILCs in the tumor microenvironment and suggest that the TGF-β-driven conversion of NK cells into ILC1s is a previously unknown mechanism by which tumors escape surveillance by the innate immune system.
Collapse
Affiliation(s)
- Yulong Gao
- Immunology in Cancer and Infection, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Immunology in Cancer and Infection, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology and The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tobias Bald
- Immunology in Cancer and Infection, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Susanna S Ng
- Immunology and Infection, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Natural Sciences, Griffith University, Nathan, Queensland, Australia
| | - Arabella Young
- Immunology in Cancer and Infection, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Shin Foong Ngiow
- Immunology in Cancer and Infection, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jai Rautela
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology and The University of Melbourne, Parkville, Victoria, Australia
| | - Jasmin Straube
- Medical Genomics, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nic Waddell
- Medical Genomics, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Stephen J Blake
- Cancer Immunoregulation and Immunotherapy, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Juming Yan
- School of Medicine, The University of Queensland, Herston, Queensland, Australia
- Cancer Immunoregulation and Immunotherapy, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Laurent Bartholin
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Jason S Lee
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center and Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Meriem Messaoudene
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- University Paris-Saclay, Kremlin Bicêtre, Paris, France
- CIC1428, Gustave Roussy Cancer Campus, Villejuif, France
| | - Michele W L Teng
- School of Medicine, The University of Queensland, Herston, Queensland, Australia
- Cancer Immunoregulation and Immunotherapy, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Gabrielle T Belz
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology and The University of Melbourne, Parkville, Victoria, Australia
| | - Christian R Engwerda
- Immunology and Infection, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology and The University of Melbourne, Parkville, Victoria, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michael Hölzel
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Mark J Smyth
- Immunology in Cancer and Infection, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
14
|
Streltsova MA, Barsov E, Erokhina SA, Kovalenko EI. Retroviral gene transfer into primary human NK cells activated by IL-2 and K562 feeder cells expressing membrane-bound IL-21. J Immunol Methods 2017; 450:90-94. [PMID: 28802832 DOI: 10.1016/j.jim.2017.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/18/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Natural killer (NK) cells are capable of rapidly recognizing and efficiently killing tumor cells. This makes them a potentially promising agent for cancer immunotherapy. Additional genetic modifications of NK cells may further improve their anti-tumor efficacy. Numerous technical challenges associated with gene delivery into NK cells have significantly tempered this approach. We achieved efficient retroviral vector transduction of primary human NK cells that were stimulated by a combination of IL-2 and engineered K562 cells expressing membrane-bound IL-21. The activated NK cells were in less differentiated state and expressed NK cell activation receptors NKG2D, NKp30, CD16, and were highly HLA-DR-positive. This NK cell population was highly susceptible to the transduction by both GFP- and NGFR-expressing retroviral vectors, with transduction efficiency exceeding 50%. More mature CD57+ NK cell population was generally resistant to retroviral vector transduction because of poor response to the stimulation. Our findings may facilitate retroviral vector-mediated genetic engineering of human primary NK cells for future immunotherapies.
Collapse
Affiliation(s)
- Maria A Streltsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, Moscow 117997, Russia.
| | | | - Sofia A Erokhina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, Moscow 117997, Russia
| | - Elena I Kovalenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, Moscow 117997, Russia.
| |
Collapse
|
15
|
|
16
|
Rosinsky C, Antony PA. A role for pre-mNK cells in tumor progression. J Immunother Cancer 2016; 4:16. [PMID: 26981246 PMCID: PMC4791770 DOI: 10.1186/s40425-016-0120-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/19/2016] [Indexed: 11/10/2022] Open
Abstract
The innate and adaptive immune systems have evolved together to fight infection and cancerous tissues. The innate immune system emerges first with the adaptive immune system following, both ostensibly being bridged by dendritic cells (DC). Recently cells have emerged that possess characteristics of both innate and adaptive immune cell qualities, termed interferon-producing killer dendritic cells (IKDCs). These cells have an indistinct origin that is not well understood. They appear to have more NK cell attributes than DC but purportedly can regulate the immune system similar to immunoregulatory NK cells. Because of this, they have been renamed pre-mNK cells (pre-mature NK cells). We argue in this commentary that pre-mNK cells may contribute to cancer recurrence.
Collapse
Affiliation(s)
- Carolyn Rosinsky
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA ; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Paul Andrew Antony
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201 USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine, 10 South Pine Street, 734D MSTF, Baltimore, MD 21201 USA ; Tumor Immunology and Immunotherapy Program, University of Maryland Cancer Center, Baltimore, MD 21201 USA
| |
Collapse
|
17
|
Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, Seja E, Kivork C, Siebert J, Kaplan-Lefko P, Wang X, Chmielowski B, Glaspy JA, Tumeh PC, Chodon T, Pe'er D, Comin-Anduix B. PD-1 Blockade Expands Intratumoral Memory T Cells. Cancer Immunol Res 2016. [PMID: 26787823 DOI: 10.1158/2326-6066.cir-15-0210.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor responses to programmed cell death protein 1 (PD-1) blockade therapy are mediated by T cells, which we characterized in 102 tumor biopsies obtained from 53 patients treated with pembrolizumab, an antibody to PD-1. Biopsies were dissociated, and single-cell infiltrates were analyzed by multicolor flow cytometry using two computational approaches to resolve the leukocyte phenotypes at the single-cell level. There was a statistically significant increase in the frequency of T cells in patients who responded to therapy. The frequency of intratumoral B cells and monocytic myeloid-derived suppressor cells significantly increased in patients' biopsies taken on treatment. The percentage of cells with a regulatory T-cell phenotype, monocytes, and natural killer cells did not change while on PD-1 blockade therapy. CD8(+) memory T cells were the most prominent phenotype that expanded intratumorally on therapy. However, the frequency of CD4(+) effector memory T cells significantly decreased on treatment, whereas CD4(+) effector T cells significantly increased in nonresponding tumors on therapy. In peripheral blood, an unusual population of blood cells expressing CD56 was detected in two patients with regressing melanoma. In conclusion, PD-1 blockade increases the frequency of T cells, B cells, and myeloid-derived suppressor cells in tumors, with the CD8(+) effector memory T-cell subset being the major T-cell phenotype expanded in patients with a response to therapy.
Collapse
Affiliation(s)
- Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California. Division of Surgical-Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, California. Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, Los Angeles, California.
| | - Daniel Sanghoon Shin
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jesse Zaretsky
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Juliet Frederiksen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Andrew Cornish
- Departments of Biological Sciences and Systems Biology, Columbia University, New York, New York
| | - Earl Avramis
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Elizabeth Seja
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Christine Kivork
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | | | - Paula Kaplan-Lefko
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Xiaoyan Wang
- Department of General Internal Medicine and Healthy Services Research, University of California Los Angeles, Los Angeles, California
| | - Bartosz Chmielowski
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - John A Glaspy
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Paul C Tumeh
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, Los Angeles, California. Department of Medicine, Division of Dermatology. University of California Los Angeles, Los Angeles, California
| | - Thinle Chodon
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Dana Pe'er
- Departments of Biological Sciences and Systems Biology, Columbia University, New York, New York
| | - Begoña Comin-Anduix
- Division of Surgical-Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
18
|
Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, Seja E, Kivork C, Siebert J, Kaplan-Lefko P, Wang X, Chmielowski B, Glaspy JA, Tumeh PC, Chodon T, Pe'er D, Comin-Anduix B. PD-1 Blockade Expands Intratumoral Memory T Cells. Cancer Immunol Res 2016; 4:194-203. [PMID: 26787823 DOI: 10.1158/2326-6066.cir-15-0210] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023]
Abstract
Tumor responses to programmed cell death protein 1 (PD-1) blockade therapy are mediated by T cells, which we characterized in 102 tumor biopsies obtained from 53 patients treated with pembrolizumab, an antibody to PD-1. Biopsies were dissociated, and single-cell infiltrates were analyzed by multicolor flow cytometry using two computational approaches to resolve the leukocyte phenotypes at the single-cell level. There was a statistically significant increase in the frequency of T cells in patients who responded to therapy. The frequency of intratumoral B cells and monocytic myeloid-derived suppressor cells significantly increased in patients' biopsies taken on treatment. The percentage of cells with a regulatory T-cell phenotype, monocytes, and natural killer cells did not change while on PD-1 blockade therapy. CD8(+) memory T cells were the most prominent phenotype that expanded intratumorally on therapy. However, the frequency of CD4(+) effector memory T cells significantly decreased on treatment, whereas CD4(+) effector T cells significantly increased in nonresponding tumors on therapy. In peripheral blood, an unusual population of blood cells expressing CD56 was detected in two patients with regressing melanoma. In conclusion, PD-1 blockade increases the frequency of T cells, B cells, and myeloid-derived suppressor cells in tumors, with the CD8(+) effector memory T-cell subset being the major T-cell phenotype expanded in patients with a response to therapy.
Collapse
Affiliation(s)
- Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California. Division of Surgical-Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, California. Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, Los Angeles, California.
| | - Daniel Sanghoon Shin
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jesse Zaretsky
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Juliet Frederiksen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Andrew Cornish
- Departments of Biological Sciences and Systems Biology, Columbia University, New York, New York
| | - Earl Avramis
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Elizabeth Seja
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Christine Kivork
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | | | - Paula Kaplan-Lefko
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Xiaoyan Wang
- Department of General Internal Medicine and Healthy Services Research, University of California Los Angeles, Los Angeles, California
| | - Bartosz Chmielowski
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - John A Glaspy
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Paul C Tumeh
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, Los Angeles, California. Department of Medicine, Division of Dermatology. University of California Los Angeles, Los Angeles, California
| | - Thinle Chodon
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Dana Pe'er
- Departments of Biological Sciences and Systems Biology, Columbia University, New York, New York
| | - Begoña Comin-Anduix
- Division of Surgical-Oncology, Department of Surgery, University of California Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
19
|
Semeraro M, Rusakiewicz S, Zitvogel L, Kroemer G. Natural killer cell mediated immunosurveillance of pediatric neuroblastoma. Oncoimmunology 2015; 4:e1042202. [PMID: 26451315 DOI: 10.1080/2162402x.2015.1042202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022] Open
Abstract
Until recently, the pathophysiological impact of natural killer (NK) lymphocytes has been largely elusive. Capitalizing on our previous discovery that NK cells mediate immunosurveillance against gastrointestinal stromal tumors (GISTs), we have now investigated the potential influence of immunostimulatory and immunosuppressive isoforms of the NK receptor NKp30 on the fate of infants with neuroblastoma. In three independent cohorts of high-risk neuroblastoma, we observed a similar prognostic impact of the ratio of immunostimulatory vs. immunosuppressive NKp30 isoforms. Patients with high-risk neuroblastoma that are in remission after induction chemotherapy have a higher risk of relapse if their circulating and bone marrow NK cells express the preponderantly immunosuppressive NKp30 C isoform, as determined by a robust RT-PCR-based assay. We also found that neuroblastoma cells express the NKp30 ligand B7-H6, which can be shed from the tumor cells. Elevated soluble B7-H6 levels contained in patient sera inhibited NK functions in vitro and correlated with downregulation of NK-p30 on NK cells, as well as with bone marrow metastasis and chemoresistance. Altogether, these results support the contention that NK cells play a decisive role in the immunosurveillance of neuroblastoma. In light of these results, efforts should be undertaken to investigate NK cell functions in all major cancer types, with the obvious expectation of identifying additional NK cell-related prognostic or predictive biomarkers and improving NK cell based immunotherapeutic strategies against cancer.
Collapse
Affiliation(s)
- Michaela Semeraro
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC) ; Villejuif, France ; INSERM U1015; GRCC ; Villejuif, France ; Department of Pediatric Oncology; GRCC ; Villejuif, France ; University of Paris Sud XI ; Villejuif, France ; Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; INSERM U1138; 94805 Centre de Recherche des Cordeliers ; Paris, France ; Center of Clinical Investigations in Biotherapies of Cancer; CICBT507; GRCC , Villejuif, France
| | - Sylvie Rusakiewicz
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC) ; Villejuif, France ; INSERM U1015; GRCC ; Villejuif, France ; Department of Pediatric Oncology; GRCC ; Villejuif, France ; University of Paris Sud XI ; Villejuif, France ; Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; INSERM U1138; 94805 Centre de Recherche des Cordeliers ; Paris, France ; Center of Clinical Investigations in Biotherapies of Cancer; CICBT507; GRCC , Villejuif, France
| | - Laurence Zitvogel
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC) ; Villejuif, France ; INSERM U1015; GRCC ; Villejuif, France ; Department of Pediatric Oncology; GRCC ; Villejuif, France ; University of Paris Sud XI ; Villejuif, France ; Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; INSERM U1138; 94805 Centre de Recherche des Cordeliers ; Paris, France ; Center of Clinical Investigations in Biotherapies of Cancer; CICBT507; GRCC , Villejuif, France
| | - Guido Kroemer
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC) ; Villejuif, France ; INSERM U1015; GRCC ; Villejuif, France ; Department of Pediatric Oncology; GRCC ; Villejuif, France ; University of Paris Sud XI ; Villejuif, France ; Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; INSERM U1138; 94805 Centre de Recherche des Cordeliers ; Paris, France ; Center of Clinical Investigations in Biotherapies of Cancer; CICBT507; GRCC , Villejuif, France ; Sorbonne Paris Cité; University of Paris Descartes ; Paris, France ; University of Paris Pierre & Marie Curie ; Paris, France ; ; Pôle de Biologie; Hôpital Européen Georges Pompidou ; Paris, France ; Metabolomics and Cell Biology Platforms; GRCC ; Villejuif, France
| |
Collapse
|
20
|
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fučíková J, Galon J, Tartour E, Spisek R, Dhodapkar MV, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424. [PMID: 25941593 DOI: 10.4161/21624011.2014.963424] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics.
Collapse
Key Words
- DC, dendritic cell
- DC-based vaccination
- FDA, Food and Drug Administration
- IFN, interferon
- MRC1, mannose receptor, C type 1
- MUC1, mucin 1
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- Toll-like receptor agonists
- Treg, regulatory T cell
- WT1, Wilms tumor 1
- antigen cross-presentation
- autophagy
- iDC, immature DC
- immunogenic cell death
- mDC, mature DC
- pDC, plasmacytoid DC
- regulatory T cells
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris-Sud/Paris XI ; Orsay, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | | | - Isabelle Cremer
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Wolf Hervé Fridman
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Jitka Fučíková
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM , U1138; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; INSERM , U970; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France
| | - Radek Spisek
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Madhav V Dhodapkar
- Department of Medicine; Immunobiology and Yale Cancer Center; Yale University ; New Haven, CT USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015, CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| |
Collapse
|
21
|
Murray JC, Aldeghaither D, Wang S, Nasto RE, Jablonski SA, Tang Y, Weiner LM. c-Abl modulates tumor cell sensitivity to antibody-dependent cellular cytotoxicity. Cancer Immunol Res 2014; 2:1186-98. [PMID: 25300860 DOI: 10.1158/2326-6066.cir-14-0083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAb) can modulate cancer cell signal transduction and recruit antitumor immune effector mechanisms-including antibody-dependent cellular cytotoxicity (ADCC). Although several clinically effective antibodies can promote ADCC, therapeutic resistance is common. We hypothesized that oncogenic signaling networks within tumor cells affect their sensitivity to ADCC. We developed a screening platform and targeted 60 genes derived from an EGFR gene network using RNAi in an in vitro ADCC model system. Knockdown of GRB7, PRKCE, and ABL1 enhanced ADCC by primary and secondary screens. ABL1 knockdown also reduced cell proliferation, independent of its ADCC enhancement effects. c-Abl overexpression decreased ADCC sensitivity and rescued the effects of ABL1 knockdown. Imatinib inhibition of c-Abl kinase activity also enhanced ADCC-phenocopying ABL1 knockdown-against several EGFR-expressing head-and-neck squamous cell carcinoma cell lines by ex vivo primary natural killer cells. Our findings suggest that combining c-Abl inhibition with ADCC-promoting antibodies, such as cetuximab, could translate into increased therapeutic efficacy of mAbs.
Collapse
Affiliation(s)
- Joseph C Murray
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Dalal Aldeghaither
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Shangzi Wang
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Rochelle E Nasto
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC. School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania. Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sandra A Jablonski
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Yong Tang
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Louis M Weiner
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.
| |
Collapse
|
22
|
Bruno A, Ferlazzo G, Albini A, Noonan DM. A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J Natl Cancer Inst 2014; 106:dju200. [PMID: 25178695 PMCID: PMC4344546 DOI: 10.1093/jnci/dju200] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This “polarization” has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as “TINKs”) and tumor-associated NK (altered peripheral NK cells, which here we call “TANKs”) are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology.
Collapse
Affiliation(s)
- Antonino Bruno
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| | - Guido Ferlazzo
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| | - Adriana Albini
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| | - Douglas M Noonan
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| |
Collapse
|
23
|
Kreutzman A, Ilander M, Porkka K, Vakkila J, Mustjoki S. Dasatinib promotes Th1-type responses in granzyme B expressing T-cells. Oncoimmunology 2014; 3:e28925. [PMID: 25083322 PMCID: PMC4106168 DOI: 10.4161/onci.28925] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 02/08/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have dramatically improved the outcome of chronic myeloid leukemia (CML). Besides inhibiting target kinases in leukemic cells, 2nd generation TKI dasatinib also inhibits off-targets in immune effector cells resulting in atypical immune responses in some patients. Dasatinib has been described to increase the proportion of late effector memory T-cells, however, to date no follow-up studies have been performed in first-line patients. In this study, we explored the functional properties of T-cells using primary samples from CML patients (n = 28) on TKI therapy. Granzyme B (GrB) was used as a marker for late phase antigen experienced CD4+ and CD8+ T-cells. Dasatinib treatment increased the numbers of both GrB expressing memory CD4+ and CD8+ T-cells when compared with healthy controls. Functionally, the GrB+CD4+ T-cells were highly active and differentiated into Th1-type T-cells capable of producing IFN-γ, which is important for tumor control. Similar kind of increase was not observed during imatinib or nilotinib therapy. These data support the dual mode of action of dasatinib: potent BCR-ABL1 inhibition in leukemic cells is accompanied by the enhancement of cellular immunity, which may have implications in the long-term control of leukemia.
Collapse
Affiliation(s)
- Anna Kreutzman
- Hematology Research Unit Helsinki; University of Helsinki; Helsinki, Finland ; Department of Hematology; Helsinki University Central Hospital Cancer Center; Helsinki, Finland
| | - Mette Ilander
- Hematology Research Unit Helsinki; University of Helsinki; Helsinki, Finland ; Department of Hematology; Helsinki University Central Hospital Cancer Center; Helsinki, Finland
| | - Kimmo Porkka
- Hematology Research Unit Helsinki; University of Helsinki; Helsinki, Finland ; Department of Hematology; Helsinki University Central Hospital Cancer Center; Helsinki, Finland
| | - Jukka Vakkila
- Hematology Research Unit Helsinki; University of Helsinki; Helsinki, Finland ; Department of Hematology; Helsinki University Central Hospital Cancer Center; Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki; University of Helsinki; Helsinki, Finland ; Department of Hematology; Helsinki University Central Hospital Cancer Center; Helsinki, Finland
| |
Collapse
|
24
|
GEISLER K, REISCHER A, KROEGER I, JACOBS B, MEINHARDT K, BAUER R, RYFFEL B, MACKENSEN A, ULLRICH E. Nilotinib combined with interleukin-2 mediates antitumor and immunological effects in a B16 melanoma model. Oncol Rep 2014; 31:2015-20. [DOI: 10.3892/or.2014.3070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/23/2013] [Indexed: 11/05/2022] Open
|
25
|
Vacchelli E, Aranda F, Eggermont A, Galon J, Sautès-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 3:e27878. [PMID: 24800173 PMCID: PMC4008470 DOI: 10.4161/onci.27878] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence suggests that the clinical efficacy of selected anticancer drugs, including conventional chemotherapeutics as well as targeted anticancer agents, originates (at least in part) from their ability to elicit a novel or reinstate a pre-existing tumor-specific immune response. One of the mechanisms whereby chemotherapy can stimulate the immune system to recognize and destroy malignant cells is commonly known as immunogenic cell death (ICD). Cancer cells succumbing to ICD are de facto converted into an anticancer vaccine and as such elicit an adaptive immune response. Several common chemotherapeutics share the ability of triggering ICD, as demonstrated in vaccination experiments relying on immunocompetent mice and syngeneic cancer cells. A large number of ongoing clinical trials involve such ICD inducers, often (but not always) as they are part of the gold standard therapeutic approach against specific neoplasms. In this Trial Watch, we summarize the latest advances on the use of cyclophosphamide, doxorubicin, epirubicin, oxaliplatin, and mitoxantrone in cancer patients, discussing high-impact studies that have been published during the last 13 months as well as clinical trials that have been initiated in the same period to assess the antineoplastic profile of these immunogenic drugs as off-label therapeutic interventions.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris-Sud/Paris XI; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | - Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris-Sud/Paris XI; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
26
|
Guimont-Desrochers F, Lesage S. Revisiting the Prominent Anti-Tumoral Potential of Pre-mNK Cells. Front Immunol 2013; 4:446. [PMID: 24376447 PMCID: PMC3858890 DOI: 10.3389/fimmu.2013.00446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/26/2013] [Indexed: 01/06/2023] Open
Abstract
Interferon-producing killer dendritic cells (IKDC) were first described for their outstanding anti-tumoral properties. The “IKDC” terminology implied the description of a novel DC subset and initiated a debate on their cellular lineage origin. This debate shifted the focus away from their notable anti-tumoral potential. IKDC were recently redefined as precursors to mature NK (mNK) cells and consequently renamed pre-mNK cells. Importantly, a putative human equivalent of pre-mNK cells was recently associated with improved disease outcome in cancer patients. It is thus timely to revisit the functional attributes as well as the therapeutic potential of pre-mNK cells in line with their newly defined NK-cell precursor function.
Collapse
Affiliation(s)
- Fanny Guimont-Desrochers
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| |
Collapse
|