1
|
Mechanistic insights into the efficacy of cell penetrating peptide-based cancer vaccines. Cell Mol Life Sci 2018; 75:2887-2896. [PMID: 29508006 PMCID: PMC6061156 DOI: 10.1007/s00018-018-2785-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/15/2017] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
Immunotherapies are increasingly used to treat cancer, with some outstanding results. Immunotherapy modalities include therapeutic vaccination to eliminate cancer cells through the activation of patient’s immune system against tumor-derived antigens. Nevertheless, the full potential of therapeutic vaccination has yet to be demonstrated clinically because many early generation vaccines elicited low-level immune responses targeting only few tumor antigens. Cell penetrating peptides (CPPs) are highly promising tools to advance the field towards clinical success. CPPs efficiently penetrate cell membranes, even when linked to antigenic cargos, which can induce both CD8 and CD4 T-cell responses. Pre-clinical studies demonstrated that targeting multiple tumor antigens, even those considered to be poorly immunogenic, led to tumor regression. Therefore, CPP-based cancer vaccines represent a flexible and powerful means to extend therapeutic vaccination to many cancer indications. Here, we review recent findings in CPP development and discuss their use in next generation immunotherapies.
Collapse
|
2
|
Dutoit V, Migliorini D, Dietrich PY, Walker PR. Immunotherapy of Malignant Tumors in the Brain: How Different from Other Sites? Front Oncol 2016; 6:256. [PMID: 28003994 PMCID: PMC5141244 DOI: 10.3389/fonc.2016.00256] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/24/2016] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy is now advancing at remarkable pace for tumors located in various tissues, including the brain. Strategies launched decades ago, such as tumor antigen-specific therapeutic vaccines and adoptive transfer of tumor-infiltrating lymphocytes are being complemented by molecular engineering approaches allowing the development of tumor-specific TCR transgenic and chimeric antigen receptor T cells. In addition, the spectacular results obtained in the last years with immune checkpoint inhibitors are transfiguring immunotherapy, these agents being used both as single molecules, but also in combination with other immunotherapeutic modalities. Implementation of these various strategies is ongoing for more and more malignancies, including tumors located in the brain, raising the question of the immunological particularities of this site. This may necessitate cautious selection of tumor antigens, minimizing the immunosuppressive environment and promoting efficient T cell trafficking to the tumor. Once these aspects are taken into account, we might efficiently design immunotherapy for patients suffering from tumors located in the brain, with beneficial clinical outcome.
Collapse
Affiliation(s)
- Valérie Dutoit
- Laboratory of Tumor Immunology, Center of Oncology, Geneva University Hospitals and University of Geneva , Geneva , Switzerland
| | - Denis Migliorini
- Oncology, Center of Oncology, Geneva University Hospitals and University of Geneva , Geneva , Switzerland
| | - Pierre-Yves Dietrich
- Oncology, Center of Oncology, Geneva University Hospitals and University of Geneva , Geneva , Switzerland
| | - Paul R Walker
- Laboratory of Tumor Immunology, Center of Oncology, Geneva University Hospitals and University of Geneva , Geneva , Switzerland
| |
Collapse
|
3
|
Walker PR, Belnoue E, Dietrich PY, Derouazi M. Cell-penetrating peptides-the Swiss Army knife of cancer vaccines. Oncoimmunology 2015; 5:e1095435. [PMID: 27141358 PMCID: PMC4839312 DOI: 10.1080/2162402x.2015.1095435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/24/2022] Open
Abstract
Therapeutic cancer vaccination is an attractive treatment modality for cancer, but with limitations using existing whole-cell, peptide, or protein vaccines. We propose that a cell-penetrating peptide (CPP)-based vaccine delivering multi-epitopic antigens into antigen-presenting cells (APCs) offers great potential to induce an integrated antitumor immune response and robust, sustained therapeutic effect.
Collapse
Affiliation(s)
- Paul R Walker
- Centre of Oncology, Geneva University Hospitals and University of Geneva , Geneva, Switzerland
| | | | - Pierre-Yves Dietrich
- Centre of Oncology, Geneva University Hospitals and University of Geneva , Geneva, Switzerland
| | | |
Collapse
|
4
|
Goyvaerts C, Broos K, Escors D, Heirman C, Raes G, De Baetselier P, Thielemans K, Breckpot K. The transduction pattern of IL-12-encoding lentiviral vectors shapes the immunological outcome. Eur J Immunol 2015; 45:3351-61. [PMID: 26377033 DOI: 10.1002/eji.201545559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 01/31/2023]
Abstract
In situ modification of antigen-presenting cells garnered interest in cancer immunotherapy. Therefore, we developed APC-targeted lentiviral vectors (LVs). Unexpectedly, these LVs were inferior vaccines to broad tropism LVs. Since IL-12 is a potent mediator of antitumor immunity, we evaluated whether this proinflammatory cytokine could enhance antitumor immunity of an APC-targeted LV-based vaccine. Therefore, we compared subcutaneous administration of broad tropism LVs (VSV-G-LV) with APC-targeted LVs (DC2.1-LV)-encoding enhanced GFP and ovalbumin, or IL-12 and ovalbumin in mice. We show that codelivery of IL-12 by VSV-G-LVs or DC2.1-LVs augments CD4(+) or CD8(+) T-cell proliferation, respectively. Furthermore, we demonstrate that codelivery of IL-12 enhances the CD4(+) TH 1 profile irrespective of its delivery mode, while an increase in cytotoxic and therapeutic CD8(+) T cells was only induced upon VSV-G-LV injection. While codelivery of IL-12 by DC2.1-LVs did not enhance CD8(+) T-cell performance, it increased expression of inhibitory checkpoint markers Lag3, Tim3, and PD-1. Finally, the discrepancy between CD4(+) T-cell stimulation with and without functional CD8(+) T-cell stimulation by VSV-G- and DC2.1-LVs is partly explained by the observation that IL-12 relieves CD8(+) T cells from CD4(+) T-cell help, implying that a T(H)1 profile is of minor importance for antitumor immunotherapy if IL-12 is exogenously delivered.
Collapse
Affiliation(s)
- Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrijn Broos
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Escors
- Navarrabiomed-Fundación Miguel Servet, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,VIB Laboratory of Myeloid Cell Immunology, Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,VIB Laboratory of Myeloid Cell Immunology, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|