1
|
Iwaya N, Sakudo A, Kanda T, Furusaki K, Onishi R, Onodera T, Yoshikawa Y. Degradation and/or Dissociation of Neurodegenerative Disease-Related Factor Amyloid-β by a Suspension Containing Calcium Hydrogen Carbonate Mesoscopic Crystals. Int J Mol Sci 2024; 25:12761. [PMID: 39684482 DOI: 10.3390/ijms252312761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Amyloid-β (Aβ) aggregates accumulate in the brains of individuals with Alzheimer's disease and are thought to potentially act as prions, promoting further aggregation. Consequently, the biochemistry of Aβ has emerged as a promising target for Alzheimer's disease. CAC-717, a suspension of calcium bicarbonate mesoscopic structures derived from natural sources, has been shown to inactivate various pathogens, including prions. This study examined the effects of CAC-717 on both the formation and degradation/dissociation of Aβ aggregates using thioflavin T fluorescence and enzyme-linked immunosorbent assays. Aggregates of Aβ(1-42) peptide were generated by incubation at 37 °C for 24 h, and the effect of introducing CAC-717 on the aggregates was evaluated after further incubation at 25 °C for 30 min. Moreover, CAC-717 was also tested for its ability to inhibit the initial aggregation of Aβ. The results showed that CAC-717 significantly degraded and/or dissociated Aβ aggregates in a concentration-dependent manner. Specifically, CAC-717 treatment for 5 min disrupted Aβ aggregates to give Aβ monomer and oligomer concentrations as high as 130 nM compared to ~10 nM for the water control. In addition, CAC-717 degraded and/or dissociated aggregates within 10 s at 37 °C, and pre-treatment with CAC-717 significantly inhibited aggregation. These results suggest that CAC-717 not only degrades and/or dissociates Aβ aggregates but also inhibits their formation, highlighting its potential as a disinfectant for Alzheimer's disease.
Collapse
Affiliation(s)
- Nodoka Iwaya
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan
| | - Akikazu Sakudo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan
| | - Takuya Kanda
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan
| | - Koichi Furusaki
- Mineral Activation Technical Research Center, Omuta 836-0041, Fukuoka, Japan
| | - Rumiko Onishi
- Santa Mineral Co., Ltd., Minato-ku 105-0013, Tokyo, Japan
| | - Takashi Onodera
- Research Center for Food Safety, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan
| | - Yasuhiro Yoshikawa
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan
- Institute of Environmental Microbiology, Kyowa-Kako, Machida 194-0035, Tokyo, Japan
| |
Collapse
|
2
|
Kell DB, Pretorius E. Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots. Int J Mol Sci 2024; 25:10809. [PMID: 39409138 PMCID: PMC11476703 DOI: 10.3390/ijms251910809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots' resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
3
|
Rathee S, Sen D, Pandey V, Jain SK. Advances in Understanding and Managing Alzheimer's Disease: From Pathophysiology to Innovative Therapeutic Strategies. Curr Drug Targets 2024; 25:752-774. [PMID: 39039673 DOI: 10.2174/0113894501320096240627071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles, leading to cognitive and physical decline. Representing the majority of dementia cases, AD poses a significant burden on healthcare systems globally, with onset typically occurring after the age of 65. While most cases are sporadic, about 10% exhibit autosomal forms associated with specific gene mutations. Neurofibrillary tangles and Aβ plaques formed by misfolded tau proteins and Aβ peptides contribute to neuronal damage and cognitive impairment. Currently, approved drugs, such as acetylcholinesterase inhibitors and N-methyl D-aspartate receptor agonists, offer only partial symptomatic relief without altering disease progression. A promising development is using lecanemab, a humanized IgG1 monoclonal antibody, as an immune therapeutic approach. Lecanemab demonstrates selectivity for polymorphic Aβ variants and binds to large soluble Aβ aggregates, providing a potential avenue for targeted treatment. This shift in understanding the role of the adaptive immune response in AD pathogenesis opens new possibilities for therapeutic interventions aiming to address the disease's intricate mechanisms. This review aims to summarize recent advancements in understanding Alzheimer's disease pathophysiology and innovative therapeutic approaches, providing valuable insights for both researchers and clinicians.
Collapse
Affiliation(s)
- Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
4
|
Kothekar H, Chaudhary K. Kuru Disease: Bridging the Gap Between Prion Biology and Human Health. Cureus 2024; 16:e51708. [PMID: 38313950 PMCID: PMC10838565 DOI: 10.7759/cureus.51708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
This article explores the intriguing case of Kuru disease, a rare and fatal prion disease that once afflicted the Fore people of Papua New Guinea. Scientists are still perplexed as to the origins of Kuru because efforts to discover infectious agents like viruses have been ineffective. Initial research revealed similarities between Kuru and scrapie, a neurological disorder that affects sheep, suggesting potential similarities between the two diseases. In further research, experiments in which chimpanzee brain tissue from Kuru patients was implanted led to the development of Kuru-like symptoms in the animals, suggesting a transmissible component to the condition. Furthermore, data collected from epidemiological studies highlights a drop in Kuru transmission, especially after the Fore people stopped engaging in cannibalism, and the disease showed different incubation times that affected persons within particular age groups. Neuropathological tests in the infected brain tissue have found typical intracellular vacuoles, spongiform alterations, and amyloid plaques. According to studies, Kuru susceptibility has been linked genetically to particular PRNP gene variations. Kuru and other prion disorders have few effective treatments currently, underlining the vital need for early identification. Scientists have created sensitive detection techniques to stop the spread of prion diseases and looked into possible inhibitors. Hypochlorous acid, in particular, has shown potential in cleaning processes. Besides making great progress in understanding Kuru, there are still many unresolved issues surrounding its causes, transmission, and management. The terms "kuru disease," "human prion disease," "transmissible spongiform encephalopathies," and "Creutzfeldt-Jakob syndrome" were used to search the studies; papers unrelated to the review article were removed. Eighty-four articles are included in the review text to fully understand the complexities of this puzzling disease and its consequences for prion biology and human health; additional study is essential.
Collapse
Affiliation(s)
- Himanshu Kothekar
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kirti Chaudhary
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
6
|
Dai X, Zhao D, Matsumura K, Rajan R. Polyampholytes and Their Hydrophobic Derivatives as Excipients for Suppressing Protein Aggregation. ACS APPLIED BIO MATERIALS 2023. [PMID: 37314858 DOI: 10.1021/acsabm.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein aggregation, which occurs under various physiological conditions, can affect cell function and is a major issue in the field of protein therapeutics. In this study, we developed a polyampholyte composed of ε-poly-l-lysine and succinic anhydride and evaluated its protein protection efficacy. This polymer was able to protect different proteins from thermal stress and its performance significantly exceeded that of previously reported zwitterionic polymers. In addition, we synthesized derivatives with varying degrees of hydrophobicity, which exhibited remarkably enhanced efficiency; thus, the polymer concentration required for protein protection was very low. By facilitating the retention of protein enzymatic activity and stabilizing the higher-order structure, these polymers enabled the protein to maintain its native state, even after being subjected to extreme thermal stress. Thus, such polyampholytes are extremely effective in protecting proteins from extreme stress and may find applications in protein biopharmaceuticals and drug delivery systems.
Collapse
Affiliation(s)
- Xianda Dai
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Dandan Zhao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
7
|
Vogt ACS, Jennings GT, Mohsen MO, Vogel M, Bachmann MF. Alzheimer's Disease: A Brief History of Immunotherapies Targeting Amyloid β. Int J Mol Sci 2023; 24:3895. [PMID: 36835301 PMCID: PMC9961492 DOI: 10.3390/ijms24043895] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and may contribute to 60-70% of cases. Worldwide, around 50 million people suffer from dementia and the prediction is that the number will more than triple by 2050, as the population ages. Extracellular protein aggregation and plaque deposition as well as accumulation of intracellular neurofibrillary tangles, all leading to neurodegeneration, are the hallmarks of brains with Alzheimer's disease. Therapeutic strategies including active and passive immunizations have been widely explored in the last two decades. Several compounds have shown promising results in many AD animal models. To date, only symptomatic treatments are available and because of the alarming epidemiological data, novel therapeutic strategies to prevent, mitigate, or delay the onset of AD are required. In this mini-review, we focus on our understanding of AD pathobiology and discuss current active and passive immunomodulating therapies targeting amyloid-β protein.
Collapse
Affiliation(s)
- Anne-Cathrine S. Vogt
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | | | - Mona O. Mohsen
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
| | - Monique Vogel
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Centre for Cellular and Molecular Physiology (CCMP), Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
8
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
9
|
Bello-Corral L, Sánchez-Valdeón L, Casado-Verdejo I, Seco-Calvo JÁ, Antonio Fernández-Fernández J, Nélida Fernández-Martínez M. The Influence of Nutrition in Alzheimer's Disease: Neuroinflammation and the Microbiome vs. Transmissible Prion. Front Neurosci 2021; 15:677777. [PMID: 34489620 PMCID: PMC8417586 DOI: 10.3389/fnins.2021.677777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is a primary, progressive, neurodegenerative disorder. Many risk factors for the development of AD have been investigated, including nutrition. Although it has been proven that nutrition plays a role in AD, the precise mechanisms through which nutrition exerts its influence remain undefined. The object of this study is to address this issue by elucidating some of the mechanisms through which nutrition interacts with AD. This work is a qualitative systematic bibliographic review of the current literature searchable on various available databases, including PubMed, Web of Science, and Google Scholar. Our evidence comprises 31 articles selected after a systematic search process. Patients suffering with AD present a characteristic microbiome that promotes changes in microglia generating a proinflammatory state. Many similarities exist between AD and prion diseases, both in terms of symptoms and in the molecular mechanisms of pathogenesis. Changes in the composition of the gut microbiome due to dietary habits could be one of the environmental factors affecting the development of AD; however, this is probably not the only factor. Similarly, the mechanism for self-propagation of beta-amyloid seen in AD is similar to that seen in prions.
Collapse
Affiliation(s)
- Laura Bello-Corral
- Department of Nursing and Physical Therapy, University of León, León, Spain
| | | | | | - Jesús Ángel Seco-Calvo
- Institute of Biomedicine, University of León, León, Spain.,University of the Basque Country, Leioa, Spain
| | | | | |
Collapse
|
10
|
Billant O, Friocourt G, Roux P, Voisset C. p53, A Victim of the Prion Fashion. Cancers (Basel) 2021; 13:E269. [PMID: 33450819 PMCID: PMC7828285 DOI: 10.3390/cancers13020269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
Identified in the late 1970s as an oncogene, a driving force leading to tumor development, p53 turned out to be a key tumor suppressor gene. Now p53 is considered a master gene regulating the transcription of over 3000 target genes and controlling a remarkable number of cellular functions. The elevated prevalence of p53 mutations in human cancers has led to a recurring questioning about the roles of mutant p53 proteins and their functional consequences. Both mutants and isoforms of p53 have been attributed dominant-negative and gain of function properties among which is the ability to form amyloid aggregates and behave in a prion-like manner. This report challenges the ongoing "prion p53" hypothesis by reviewing evidence of p53 behavior in light of our current knowledge regarding amyloid proteins, prionoids and prions.
Collapse
Affiliation(s)
| | - Gaëlle Friocourt
- Inserm, Université de Bretagne Occidentale, EFS, UMR 1078, GGB, F-29200 Brest, France;
| | - Pierre Roux
- CRBM, CNRS, UMR5234, 34293 Montpellier, France;
| | - Cécile Voisset
- Inserm, Université de Bretagne Occidentale, EFS, UMR 1078, GGB, F-29200 Brest, France;
| |
Collapse
|
11
|
Criddle RS, Lin HJL, James I, Park JS, Hansen LD, Price JC. Proposing a minimal set of metrics and methods to predict probabilities of amyloidosis disease and onset age in individuals. Aging (Albany NY) 2020; 12:22356-22369. [PMID: 33203794 PMCID: PMC7746394 DOI: 10.18632/aging.202208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Many amyloid-driven pathologies have both genetic and stochastic components where assessing risk of disease development requires a multifactorial assessment where many of the variables are poorly understood. Risk of transthyretin-mediated amyloidosis is enhanced by age and mutation of the transthyretin (TTR) gene, but amyloidosis is not directly initiated by mutated TTR proteins. Nearly all of the 150+ known mutations increase dissociation of the homotetrameric protein structure and increase the probability of an individual developing a TTR amyloid disease late in life. TTR amyloidosis is caused by dissociated monomers that are destabilized and refold into an amyloidogenic form. Therefore, monomer concentration, monomer proteolysis rate, and structural stability are key variables that may determine the rate of development of amyloidosis. Here we develop a unifying biophysical model that quantifies the relationships among these variables in plasma and suggest the probability of an individual developing a TTR amyloid disease can be estimated. This may allow quantification of risk for amyloidosis and provide the information necessary for development of methods for early diagnosis and prevention. Given the similar observation of genetic and sporadic amyloidoses for other diseases, this model and the measurements to assess risk may be applicable to more proteins than just TTR.
Collapse
Affiliation(s)
- Richard S. Criddle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Hsien-Jung L. Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Isabella James
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Ji Sun Park
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Lee D. Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - John C. Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
12
|
Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiol Dis 2020; 144:105010. [PMID: 32682954 PMCID: PMC7365083 DOI: 10.1016/j.nbd.2020.105010] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) and tau proteins currently represent the two most promising targets to treat Alzheimer's disease. The most extensively developed method to treat the pathologic forms of these proteins is through the administration of exogenous antibodies, or passive immunotherapy. In this review, we discuss the molecular-level strategies that researchers are using to design an effective therapeutic antibody, given the challenges in treating this disease. These challenges include selectively targeting a protein that has misfolded or is pathological rather than the more abundant, healthy protein, designing strategic constructs for immunizing an animal to raise an antibody that has the appropriate conformational selectivity to achieve this end, and clearing the pathological protein species before prion-like cell-to-cell spread of misfolded protein has irreparably damaged neurons, without invoking damaging inflammatory responses in the brain that naturally arise when the innate immune system is clearing foreign agents. The various solutions to these problems in current clinical trials will be discussed.
Collapse
Affiliation(s)
- Steven S Plotkin
- University of British Columbia, Department of Physics and Astronomy and Genome Sciences and Technology Program, Vancouver, BC V6T 1Z1, Canada.
| | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
13
|
Abstract
Amyloids are implicated in many protein misfolding diseases. Amyloid folds, however, also display a range of functional roles particularly in the microbial world. The templating ability of these folds endows them with specific properties allowing their self-propagation and protein-to-protein transmission in vivo. This property, the prion principle, is exploited by specific signaling pathways that use transmission of the amyloid fold as a way to convey information from a receptor to an effector protein. I describe here amyloid signaling pathways involving fungal nucleotide binding and oligomerization domain (NOD)-like receptors that were found to control nonself recognition and programmed cell death processes. Studies on these fungal amyloid signaling motifs stem from the characterization of the fungal [Het-s] prion protein and have led to the identification in fungi but also in multicellular bacteria of several distinct families of signaling motifs, one of which is related to RHIM [receptor-interacting protein (RIP) homotypic interaction motif], an amyloid motif regulating mammalian necroptosis.
Collapse
Affiliation(s)
- Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 33077 Bordeaux CEDEX, France
| |
Collapse
|
14
|
Del Rio JA, Ferrer I. Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of " prion-like" Protein Assembly and Behavior. Front Bioeng Biotechnol 2020; 8:570692. [PMID: 33015021 PMCID: PMC7506036 DOI: 10.3389/fbioe.2020.570692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Human aging is accompanied by a relevant increase in age-associated chronic pathologies, including neurodegenerative and metabolic diseases. The appearance and evolution of numerous neurodegenerative diseases is paralleled by the appearance of intracellular and extracellular accumulation of misfolded proteins in affected brains. In addition, recent evidence suggests that most of these amyloid proteins can behave and propagate among neural cells similarly to infective prions. In order to improve understanding of the seeding and spreading processes of these "prion-like" amyloids, microfluidics and 3D lab-on-chip approaches have been developed as highly valuable tools. These techniques allow us to monitor changes in cellular and molecular processes responsible for amyloid seeding and cell spreading and their parallel effects in neural physiology. Their compatibility with new optical and biochemical techniques and their relative availability have increased interest in them and in their use in numerous laboratories. In addition, recent advances in stem cell research in combination with microfluidic platforms have opened new humanized in vitro models for myriad neurodegenerative diseases affecting different cellular targets of the vascular, muscular, and nervous systems, and glial cells. These new platforms help reduce the use of animal experimentation. They are more reproducible and represent a potential alternative to classical approaches to understanding neurodegeneration. In this review, we summarize recent progress in neurobiological research in "prion-like" protein using microfluidic and 3D lab-on-chip approaches. These approaches are driven by various fields, including chemistry, biochemistry, and cell biology, and they serve to facilitate the development of more precise human brain models for basic mechanistic studies of cell-to-cell interactions and drug discovery.
Collapse
Affiliation(s)
- Jose A Del Rio
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
15
|
|
16
|
Drummond E, Goñi F, Liu S, Prelli F, Scholtzova H, Wisniewski T. Potential Novel Approaches to Understand the Pathogenesis and Treat Alzheimer's Disease. J Alzheimers Dis 2019; 64:S299-S312. [PMID: 29562516 DOI: 10.3233/jad-179909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing genetic and proteomic data highlighting the complexity of Alzheimer's disease (AD) pathogenesis. Greater use of unbiased "omics" approaches is being increasingly recognized as essential for the future development of effective AD research, that need to better reflect the multiple distinct pathway abnormalities that can drive AD pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. We highlight our recent efforts to increase use of human tissue to gain a better understanding of the AD pathogenesis subtype variety and to develop several distinct therapeutic approaches tailored to address this diversity. These therapeutic approaches include the blocking of the Aβ/apoE interaction, stimulation of innate immunity, and the simultaneous blocking of Aβ/tau oligomer toxicity. We believe that future successful therapeutic approaches will need to be combined to better reflect the complexity of the abnormal pathways triggered in AD pathogenesis.
Collapse
Affiliation(s)
- Eleanor Drummond
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Fernando Goñi
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Shan Liu
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Frances Prelli
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Henrieta Scholtzova
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Kuru, the First Human Prion Disease. Viruses 2019; 11:v11030232. [PMID: 30866511 PMCID: PMC6466359 DOI: 10.3390/v11030232] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
Kuru, the first human prion disease was transmitted to chimpanzees by D. Carleton Gajdusek (1923–2008). In this review, we summarize the history of this seminal discovery, its anthropological background, epidemiology, clinical picture, neuropathology, and molecular genetics. We provide descriptions of electron microscopy and confocal microscopy of kuru amyloid plaques retrieved from a paraffin-embedded block of an old kuru case, named Kupenota. The discovery of kuru opened new vistas of human medicine and was pivotal in the subsequent transmission of Creutzfeldt–Jakob disease, as well as the relevance that bovine spongiform encephalopathy had for transmission to humans. The transmission of kuru was one of the greatest contributions to biomedical sciences of the 20th century.
Collapse
|
18
|
Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Hamano N, Li SD, Chougule M, Shoyele SA, Gupta U, Ajazuddin, Alexander A. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin Drug Deliv 2018; 15:589-617. [DOI: 10.1080/17425247.2018.1471058] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Swarnlata Saraf
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Shailendra Saraf
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
- Durg University, Govt. Vasudev Vaman Patankar Girls’ P.G. College Campus, Raipur Naka, Durg, Chhattisgarh, India
| | - Sophia G. Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio, 26510, Greece
- Department of Pharmacy, FORTH/ICE-HT, Institute of Chemical Engineering, Rio, Patras, 25104, Greece
| | - Nobuhito Hamano
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British columbia V6T 1Z3, Canada
| | - Mahavir Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Sunday A. Shoyele
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer – 305817, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| |
Collapse
|
19
|
Stoffel W, Jenke B, Schmidt-Soltau I, Binczek E, Brodesser S, Hammels I. SMPD3 deficiency perturbs neuronal proteostasis and causes progressive cognitive impairment. Cell Death Dis 2018; 9:507. [PMID: 29725009 PMCID: PMC5938706 DOI: 10.1038/s41419-018-0560-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 11/15/2022]
Abstract
Neutral sphingomyelinase smpd3 is most abundantly expressed in neurons of brain. The function of SMPD3 has remained elusive. Here, we report a pathogenetic nexus between absence of SMPD3 in the Golgi compartment (GC) of neurons of the smpd3-/- mouse brain, inhibition of Golgi vesicular protein transport and progressive cognitive impairment. Absence of SMPD3 activity in the Golgi sphingomyelin cycle impedes remodeling of the lipid bilayer, essential for budding and multivesicular body formation. Importantly, we show that inhibition of the Golgi vesicular protein transport causes accumulation of neurotoxic proteins APP, Aβ and phosphorylated Tau, dysproteostasis, unfolded protein response, and apoptosis, which ultimately manifests in progressive cognitive decline, similar to the pathognomonic signatures of familial and sporadic forms of Alzheimer´s disease. This discovery might contribute to the search for other primary pathogenic mechanisms, which link perturbed lipid bilayer structures and protein processing and transport in the neuronal Golgi compartment and neurodegeneration and cognitive deficits.
Collapse
Affiliation(s)
- Wilhelm Stoffel
- Laboratory of Molecular Neuroscience, Institute of Biochemistry, University of Cologne, 50931, Cologne, Germany. .,CMMC (Centre for Molecular Medicine), University of Cologne, 50931, Cologne, Germany. .,CECAD (Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases), University of Cologne, 50931, Cologne, Germany.
| | - Britta Jenke
- CMMC (Centre for Molecular Medicine), University of Cologne, 50931, Cologne, Germany
| | - Inga Schmidt-Soltau
- CMMC (Centre for Molecular Medicine), University of Cologne, 50931, Cologne, Germany
| | - Erika Binczek
- Laboratory of Molecular Neuroscience, Institute of Biochemistry, University of Cologne, 50931, Cologne, Germany
| | - Susanne Brodesser
- CECAD (Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases), University of Cologne, 50931, Cologne, Germany
| | - Ina Hammels
- Laboratory of Molecular Neuroscience, Institute of Biochemistry, University of Cologne, 50931, Cologne, Germany
| |
Collapse
|
20
|
Abstract
Several studies have indicated that certain misfolded amyloids composed of tau, β-amyloid or α-synuclein can be transferred from cell to cell, suggesting the contribution of mechanisms reminiscent of those by which infective prions spread through the brain. This process of a 'prion-like' spreading between cells is also relevant as a novel putative therapeutic target that could block the spreading of proteinaceous aggregates throughout the brain which may underlie the progressive nature of neurodegenerative diseases. The relevance of β-amyloid oligomers and cellular prion protein (PrPC) binding has been a focus of interest in Alzheimer's disease (AD). At the molecular level, β-amyloid/PrPC interaction takes place in two differently charged clusters of PrPC. In addition to β-amyloid, participation of PrPC in α-synuclein binding and brain spreading also appears to be relevant in α-synucleopathies. This review summarizes current knowledge about PrPC as a putative receptor for amyloid proteins and the physiological consequences of these interactions.
Collapse
Affiliation(s)
- José A Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain; Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Goñi F, Martá-Ariza M, Herline K, Peyser D, Boutajangout A, Mehta P, Drummond E, Prelli F, Wisniewski T. Anti-β-sheet conformation monoclonal antibody reduces tau and Aβ oligomer pathology in an Alzheimer's disease model. ALZHEIMERS RESEARCH & THERAPY 2018; 10:10. [PMID: 29378642 PMCID: PMC5789573 DOI: 10.1186/s13195-018-0337-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023]
Abstract
Background Oligomeric forms of amyloid-β (Aβ) and tau are increasing being recognized as key toxins in the pathogenesis of Alzheimer’s disease (AD). Methods We developed a novel monoclonal antibody (mAb), GW-23B7, that recognizes β-sheet secondary structure on pathological oligomers of neurodegenerative diseases. Results The pentameric immunoglobulin M kappa chain (IgMκp) we developed specifically distinguishes intra- and extracellular pathology in human AD brains. Purified GW-23B7 showed a dissociation constant in the nanomolar range for oligomeric Aβ and did not bind monomeric Aβ. In enzyme-linked immunosorbent assays, it recognized oligomeric forms of both Aβ and hyperphosphorylated tau. Aged triple-transgenic AD mice with both Aβ and tau pathology infused intraperitoneally for 2 months showed IgMκp in the soluble brain homogenate, peaking at 24 h postinoculation. Treated mice exhibited significant cognitive rescue on radial arm maze testing compared with vehicle control-infused mice. Immunohistochemically, treatment resulted in a significant decrease of extracellular pathology. Biochemically, treatment resulted in significant reductions of oligomeric forms of Aβ and tau. Conclusions These results suggest that GW-23B7, an anti-β-sheet conformational mAb humanized for clinical trials, may be an effective therapeutic agent for human AD. Electronic supplementary material The online version of this article (10.1186/s13195-018-0337-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando Goñi
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA.
| | - Mitchell Martá-Ariza
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Krystal Herline
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Daniel Peyser
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Allal Boutajangout
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Pankaj Mehta
- Department of Immunology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Eleanor Drummond
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Frances Prelli
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA. .,Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Liu W, Sun F, Wan M, Jiang F, Bo X, Lin L, Tang H, Xu S. β-Sheet Breaker Peptide-HPYD for the Treatment of Alzheimer's Disease: Primary Studies on Behavioral Test and Transcriptional Profiling. Front Pharmacol 2018; 8:969. [PMID: 29358920 PMCID: PMC5766670 DOI: 10.3389/fphar.2017.00969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 01/18/2023] Open
Abstract
Background: Alzheimer's disease (AD), is a progressive neurodegenerative disease that is characterized by cognitive loss. Most researchers believe that aggregation and accumulation of β-amyloid peptides (Aβ) in brain cells are the central pathological hallmark of this disease. Methods: Based on the amyloid hypothesis, a 10 amino acids β-sheet breaker peptide HPYD (His-Lys-Gln-Leu-Pro-Phe-Tyr-Glu-Glu-Asp) was designed according to the structure and sequence of the previous designed peptide H102. Accelerated stability test, thioflavine T (ThT) fluorescence spectral analysis and transmission electron microscopy (TEM) imaging were performed to detect the stability and inhibitory effects on the aggregation of Aβ1−42 by H102 and HPYD. FITC-labeled HPYD was first tested to determine whether it could be transferred along the olfactory pathway to the brain after nasal administration to mice. Subsequently, the Morris Water Maze (MWM) test for behavioral analysis was used to investigate the learning and memory ability of APP/PS1 transgenic mice by HPYD. Immunohistochemistry and western blot analysis was performed to determine the role of HPYD on Aβ and APP protein levels. In addition, microarray analysis was used to evaluate the effect of HPYD on gene expression in AD mouse models. Results: Our in vitro results demonstrated that HPYD had enhanced stability and inhibitory effects on Aβ1−42 aggregation compared to H102. HPYD could be delivered into the brain through nasal administration and improved the learning and memory ability in APP/PS1 transgenic mouse models by reducing Aβ and APP protein levels. In addition, microarray analyses suggested that several genes related to the inflammatory pathway, AD and gluco-lipid metabolism were dysregulated and could be restored to almost normal levels after HPYD administration to mice. Conclusions: Our results demonstrated that HPYD could be a potential therapeutic drug candidate for the treatment of AD.
Collapse
Affiliation(s)
- Weiying Liu
- Department of Pathogen Biology, Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fengxian Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Moxin Wan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fang Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiangyu Bo
- Department of Pathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Laixiang Lin
- Key Laboratory of Hormone and Development (Ministry of Health), 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Department of Pathogen Biology, Tianjin Life Science Research Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shumei Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
23
|
Production of Monoclonal Antibodies to Pathologic β-sheet Oligomeric Conformers in Neurodegenerative Diseases. Sci Rep 2017; 7:9881. [PMID: 28852189 PMCID: PMC5575137 DOI: 10.1038/s41598-017-10393-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023] Open
Abstract
We describe a novel approach to produce conformational monoclonal antibodies selected to specifically react with the β-sheet secondary structure of pathological oligomeric conformers, characteristic of many neurodegenerative diseases. Contrary to past and current efforts, we utilize a mammalian non-self-antigen as an immunogen. The small, non-self peptide selected was covalently polymerized with glutaraldehyde until it reached a high β-sheet secondary structure content, and species between 10–100kDa that are immunogenic, stable and soluble (p13Bri). Inoculation of p13Bri in mice elicited antibodies to the peptide and the β-sheet secondary structure conformation. Hybridomas were produced and clones selected for their reactivity with at least two different oligomeric conformers from Alzheimer’s, Parkinson and/or Prion diseases. The resulting conformational monoclonals are able to detect pathological oligomeric forms in different human neurodegenerative diseases by ELISA, immunohistochemistry and immunoblots. This technological approach may be useful to develop tools for detection, monitoring and treatment of multiple misfolding disorders.
Collapse
|
24
|
Kell DB, Pretorius E. To What Extent Are the Terminal Stages of Sepsis, Septic Shock, Systemic Inflammatory Response Syndrome, and Multiple Organ Dysfunction Syndrome Actually Driven by a Prion/Amyloid Form of Fibrin? Semin Thromb Hemost 2017; 44:224-238. [PMID: 28778104 PMCID: PMC6193370 DOI: 10.1055/s-0037-1604108] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A well-established development of increasing disease severity leads from sepsis through systemic inflammatory response syndrome, septic shock, multiple organ dysfunction syndrome, and cellular and organismal death. Less commonly discussed are the equally well-established coagulopathies that accompany this. We argue that a lipopolysaccharide-initiated (often disseminated intravascular) coagulation is accompanied by a proteolysis of fibrinogen such that formed fibrin is both inflammatory and resistant to fibrinolysis. In particular, we argue that the form of fibrin generated is amyloid in nature because much of its normal α-helical content is transformed to β-sheets, as occurs with other proteins in established amyloidogenic and prion diseases. We hypothesize that these processes of amyloidogenic clotting and the attendant coagulopathies play a role in the passage along the aforementioned pathways to organismal death, and that their inhibition would be of significant therapeutic value, a claim for which there is considerable emerging evidence.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.,Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
25
|
Mulder CK, Dong Y, Brugghe HF, Timmermans HAM, Tilstra W, Westdijk J, van Riet E, van Steeg H, Hoogerhout P, Eisel ULM. Immunization with Small Amyloid-β-derived Cyclopeptide Conjugates Diminishes Amyloid-β-Induced Neurodegeneration in Mice. J Alzheimers Dis 2017; 52:1111-23. [PMID: 27060957 PMCID: PMC4927839 DOI: 10.3233/jad-151136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Soluble oligomeric (misfolded) species of amyloid-β (Aβ) are the main mediators of toxicity in Alzheimer’s disease (AD). These oligomers subsequently form aggregates of insoluble fibrils that precipitate as extracellular and perivascular plaques in the brain. Active immunization against Aβ is a promising disease modifying strategy. However, eliciting an immune response against Aβ in general may interfere with its biological function and was shown to cause unwanted side-effects. Therefore, we have developed a novel experimental vaccine based on conformational neo-epitopes that are exposed in the misfolded oligomeric Aβ, inducing a specific antibody response. Objective: Here we investigate the protective effects of the experimental vaccine against oligomeric Aβ1-42-induced neuronal fiber loss in vivo. Methods: C57BL/6 mice were immunized or mock-immunized. Antibody responses were measured by enzyme-linked immunosorbent assay. Next, mice received a stereotactic injection of oligomeric Aβ1-42 into the nucleus basalis of Meynert (NBM) on one side of the brain (lesion side), and scrambled Aβ1-42 peptide in the contralateral NBM (control side). The densities of choline acetyltransferase-stained cholinergic fibers origination from the NBM were measured in the parietal neocortex postmortem. The percentage of fiber loss in the lesion side was determined relative to the control side of the brain. Results: Immunized responders (79%) showed 23% less cholinergic fiber loss (p = 0.01) relative to mock-immunized mice. Moreover, fiber loss in immunized responders correlated negatively with the measured antibody responses (R2 = 0.29, p = 0.02). Conclusion: These results may provide a lead towards a (prophylactic) vaccine to prevent or at least attenuate (early onset) AD symptoms.
Collapse
Affiliation(s)
- Cornelis K Mulder
- University of Groningen, Groningen Institute of Evolutionary Life Sciences, Groningen, The Netherlands
| | - Yun Dong
- University of Groningen, Groningen Institute of Evolutionary Life Sciences, Groningen, The Netherlands
| | - Humphrey F Brugghe
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Hans A M Timmermans
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Wichard Tilstra
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Janny Westdijk
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Elly van Riet
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Harry van Steeg
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Peter Hoogerhout
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Ulrich L M Eisel
- University of Groningen, Groningen Institute of Evolutionary Life Sciences, Groningen, The Netherlands
| |
Collapse
|
26
|
Urrea L, Ferrer I, Gavín R, del Río JA. The cellular prion protein (PrP C) as neuronal receptor for α-synuclein. Prion 2017; 11:226-233. [PMID: 28759332 PMCID: PMC5553301 DOI: 10.1080/19336896.2017.1334748] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022] Open
Abstract
The term 'prion-like' is used to define some misfolded protein species that propagate intercellularly, triggering protein aggregation in recipient cells. For cell binding, both direct plasma membrane interaction and membrane receptors have been described for particular amyloids. In this respect, emerging evidence demonstrates that several β-sheet enriched proteins can bind to the cellular prion protein (PrPC). Among other interactions, the physiological relevance of the binding between β-amyloid and PrPC has been a relevant focus of numerous studies. At the molecular level, published data point to the second charged cluster domain of the PrPC molecule as the relevant binding domain of the β-amyloid/PrPC interaction. In addition to β-amyloid, participation of PrPC in binding α-synuclein, responsible for neurodegenerative synucleopathies, has been reported. Although results indicate relevant participation of PrPC in the spreading of α-synuclein in living mice, the physiological relevance of the interaction remains elusive. In this comment, we focus our attention on summarizing current knowledge of PrPC as a receptor for amyloid proteins and its physiological significance, with particular focus on α-synuclein.
Collapse
Affiliation(s)
- Laura Urrea
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidro Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
- Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Chaperone-like activity of synthetic polyanions can be higher than the activity of natural chaperones at elevated temperature. Biochem Biophys Res Commun 2017; 489:200-205. [DOI: 10.1016/j.bbrc.2017.05.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/23/2017] [Indexed: 11/21/2022]
|
28
|
Schwarzman AL, Sarantseva SV. Transmission of pathogenic protein aggregates in Alzheimer’s disease. Mol Biol 2017. [DOI: 10.1134/s0026893317030141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Sofronova AA, Izumrudov VA, Muronetz VI, Semenyuk PI. Similarly charged polyelectrolyte can be the most efficient suppressor of the protein aggregation. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.11.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
31
|
Structural Modeling of Human Prion Protein's Point Mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:105-122. [DOI: 10.1016/bs.pmbts.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Fainstein N, Dori D, Frid K, Fritz AT, Shapiro I, Gabizon R, Ben-Hur T. Chronic Progressive Neurodegeneration in a Transgenic Mouse Model of Prion Disease. Front Neurosci 2016; 10:510. [PMID: 27891071 PMCID: PMC5104746 DOI: 10.3389/fnins.2016.00510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases present pathologically with progressive structural destruction of neurons and accumulation of mis-folded proteins specific for each condition leading to brain atrophy and functional disability. Many animal models exert deposition of pathogenic proteins without an accompanying neurodegeneration pattern. The lack of a comprehensive model hinders efforts to develop treatment. We performed longitudinal quantification of cellular, neuronal and synaptic density, as well as of neurogenesis in brains of mice mimicking for genetic Creutzfeldt-Jacob disease as compared to age-matched wild-type mice. Mice exhibited a neurodegenerative process of progressive reduction in cortical neurons and synapses starting at age of 4-6 months, in accord with neurologic disability. This was accompanied by significant decrease in subventricular/subependymal zone neurogenesis. Although increased hippocampal neurogenesis was detected in mice, a neurodegenerative process of CA1 and CA3 regions associated with impaired hippocampal-dependent memory function was observed. In conclusion, mice exhibit pathological neurodegeneration concomitant with neurological disease progression, indicating these mice can serve as a model for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center Jerusalem, Israel
| | - Dvir Dori
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center Jerusalem, Israel
| | - Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center Jerusalem, Israel
| | - Alexa T Fritz
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center Jerusalem, Israel
| | - Ilona Shapiro
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center Jerusalem, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center Jerusalem, Israel
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center Jerusalem, Israel
| |
Collapse
|
33
|
Gallardo R, Ramakers M, De Smet F, Claes F, Khodaparast L, Khodaparast L, Couceiro JR, Langenberg T, Siemons M, Nyström S, Young LJ, Laine RF, Young L, Radaelli E, Benilova I, Kumar M, Staes A, Desager M, Beerens M, Vandervoort P, Luttun A, Gevaert K, Bormans G, Dewerchin M, Van Eldere J, Carmeliet P, Vande Velde G, Verfaillie C, Kaminski CF, De Strooper B, Hammarström P, Nilsson KPR, Serpell L, Schymkowitz J, Rousseau F. De novo design of a biologically active amyloid. Science 2016; 354:aah4949. [PMID: 27846578 DOI: 10.1126/science.aah4949] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2024]
Abstract
Most human proteins possess amyloidogenic segments, but only about 30 are associated with amyloid-associated pathologies, and it remains unclear what determines amyloid toxicity. We designed vascin, a synthetic amyloid peptide, based on an amyloidogenic fragment of vascular endothelial growth factor receptor 2 (VEGFR2), a protein that is not associated to amyloidosis. Vascin recapitulates key biophysical and biochemical characteristics of natural amyloids, penetrates cells, and seeds the aggregation of VEGFR2 through direct interaction. We found that amyloid toxicity is observed only in cells that both express VEGFR2 and are dependent on VEGFR2 activity for survival. Thus, amyloid toxicity here appears to be both protein-specific and conditional-determined by VEGFR2 loss of function in a biological context in which target protein function is essential.
Collapse
Affiliation(s)
- Rodrigo Gallardo
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Meine Ramakers
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Frederik De Smet
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Filip Claes
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Ladan Khodaparast
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Laleh Khodaparast
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Belgium
| | - José R Couceiro
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Tobias Langenberg
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Maxime Siemons
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Sofie Nyström
- IFM Department of Chemistry, Linköping University, Linköping, Sweden
| | - Laurence J Young
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, UK
| | - Romain F Laine
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, UK
| | - Lydia Young
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Enrico Radaelli
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Iryna Benilova
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Manoj Kumar
- Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - An Staes
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Matyas Desager
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Manu Beerens
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology Research Unit, Endothelial Cell Biology Unit, KU Leuven, B-3000 Leuven, Belgium
| | - Petra Vandervoort
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology Research Unit, Endothelial Cell Biology Unit, KU Leuven, B-3000 Leuven, Belgium
| | - Aernout Luttun
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology Research Unit, Endothelial Cell Biology Unit, KU Leuven, B-3000 Leuven, Belgium
| | - Kris Gevaert
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Guy Bormans
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | - Johan Van Eldere
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | - Greetje Vande Velde
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, UK
| | - Bart De Strooper
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Per Hammarström
- IFM Department of Chemistry, Linköping University, Linköping, Sweden
| | - K Peter R Nilsson
- IFM Department of Chemistry, Linköping University, Linköping, Sweden
| | - Louise Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Joost Schymkowitz
- VIB Switch Laboratory, Leuven, Belgium.
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, Leuven, Belgium.
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| |
Collapse
|
34
|
Cheng L, Zhang J, Li XY, Yuan L, Pan YF, Chen XR, Gao TM, Qiao JT, Qi JS. A novel antibody targeting sequence 31-35 in amyloid β protein attenuates Alzheimer's disease-related neuronal damage. Hippocampus 2016; 27:122-133. [PMID: 27784133 DOI: 10.1002/hipo.22676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022]
Abstract
Amyloid β protein (Aβ) plays a critical role in pathogenesis of Alzheimer's disease (AD). Our previous studies indicated that the sequence 31-35 in Aβ molecule is an effective active center responsible for Aβ neurotoxicity in vivo and in vitro. In the present study, we prepared a novel antibody specifically targeting the sequence 31-35 of amyloid β protein, and investigated the neuroprotection of the anti-Aβ31-35 antibody against Aβ1-42 -induced impairments in neuronal viability, spatial memory, and hippocampal synaptic plasticity in rats. The results showed that the anti-Aβ31-35 antibody almost equally bound to both Aβ31-35 and Aβ1-42 , and pretreatment with the antibody dose-dependently prevented Aβ1-42 -induced cytotoxicity on cultured primary cortical neurons. In behavioral study, intracerebroventricular (i.c.v.) injection of anti-Aβ31-35 antibody efficiently attenuated Aβ1-42 -induced impairments in spatial learning and memory of rats. In vivo electrophysiological experiments further indicated that Aβ1-42 -induced suppression of hippocampal synaptic plasticity was effectively reversed by the antibody. These results demonstrated that the sequence 31-35 of Aβ may be a new therapeutic target, and the anti-Aβ31-35 antibody could be a novel immunotheraputic approach for the treatment of AD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li Cheng
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.,The General Hospital of TISCO Affiliated to Shanxi Medical University, Taiyuan, 030003, China
| | - Jun Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin-Yi Li
- Department of Neurology, Shanxi Dayi Hospital, Taiyuan, 030032, China
| | - Li Yuan
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yan-Fang Pan
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Rong Chen
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Tian-Ming Gao
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.,Department of Neurobiology, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Tian Qiao
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin-Shun Qi
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
35
|
Lixisenatide attenuates the detrimental effects of amyloid β protein on spatial working memory and hippocampal neurons in rats. Behav Brain Res 2016; 318:28-35. [PMID: 27776993 DOI: 10.1016/j.bbr.2016.10.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes mellitus(T2DM) is a risk factor of Alzheimer's disease (AD), which is most likely linked to impairments of insulin signaling in the brain. Hence, drugs enhancing insulin signaling may have therapeutic potential for AD. Lixisenatide, a novel long-lasting glucagon-like peptide 1 (GLP-1) analogue, facilitates insulin signaling and has neuroprotective properties. We previously reported the protective effects of lixisenatide on memory formation and synaptic plasticity. Here, we describe additional key neuroprotective properties of lixisenatide and its possible molecular and cellular mechanisms against AD-related impairments in rats. The results show that lixisenatide effectively alleviated amyloid β protein (Aβ) 25-35-induced working memory impairment, reversed Aβ25-35-triggered cytotoxicity on hippocampal cell cultures, and prevented against Aβ25-35-induced suppression of the Akt-MEK1/2 signaling pathway. Lixisenatide also reduced the Aβ25-35 acute application induced intracellular calcium overload, which was abolished by U0126, a specific MEK1/2 inhibitor. These results further confirmed the neuroprotective and cytoprotective action of lixisenatide against Aβ-induced impairments, suggesting that the protective effects of lixisenatide may involve the activation of the Akt-MEK1/2 signaling pathway and the regulation of intracellular calcium homeostasis.
Collapse
|
36
|
Walsh DM, Selkoe DJ. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 2016; 17:251-60. [PMID: 26988744 DOI: 10.1038/nrn.2016.13] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion in the number of papers discussing the hypothesis of 'pathogenic spread' in neurodegenerative disease - the idea that abnormal forms of disease-associated proteins, such as tau or α-synuclein, physically move from neuron to neuron to induce disease progression. However, whether inter-neuronal spread of protein aggregates actually occurs in humans and, if so, whether it causes symptom onset remain uncertain. Even if pathogenic spread is proven in humans, it is unclear how much this would alter the specific therapeutic approaches that are in development. A critical appraisal of this increasingly popular hypothesis thus seems both important and timely.
Collapse
Affiliation(s)
- Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
Iljina M, Garcia GA, Dear AJ, Flint J, Narayan P, Michaels TCT, Dobson CM, Frenkel D, Knowles TPJ, Klenerman D. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms. Sci Rep 2016; 6:28658. [PMID: 27346247 PMCID: PMC4921824 DOI: 10.1038/srep28658] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023] Open
Abstract
Multiple isoforms of aggregation-prone proteins are present under physiological conditions and have the propensity to assemble into co-oligomers with different properties from self-oligomers, but this process has not been quantitatively studied to date. We have investigated the amyloid-β (Aβ) peptide, associated with Alzheimer’s disease, and the aggregation of its two major isoforms, Aβ40 and Aβ42, using a statistical mechanical modelling approach in combination with in vitro single-molecule fluorescence measurements. We find that at low concentrations of Aβ, corresponding to its physiological abundance, there is little free energy penalty in forming co-oligomers, suggesting that the formation of both self-oligomers and co-oligomers is possible under these conditions. Our model is used to predict the oligomer concentration and size at physiological concentrations of Aβ and suggests the mechanisms by which the ratio of Aβ42 to Aβ40 can affect cell toxicity. An increased ratio of Aβ42 to Aβ40 raises the fraction of oligomers containing Aβ42, which can increase the hydrophobicity of the oligomers and thus promote deleterious binding to the cell membrane and increase neuronal damage. Our results suggest that co-oligomers are a common form of aggregate when Aβ isoforms are present in solution and may potentially play a significant role in Alzheimer’s disease.
Collapse
Affiliation(s)
- Marija Iljina
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Gonzalo A Garcia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Alexander J Dear
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jennie Flint
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Priyanka Narayan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Thomas C T Michaels
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
38
|
Wang DD, Li J, Yu LP, Wu MN, Sun LN, Qi JS. Desipramine improves depression-like behavior and working memory by up-regulating p-CREB in Alzheimer’s disease associated mice. J Integr Neurosci 2016; 15:247-60. [DOI: 10.1142/s021963521650014x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
39
|
Requena JR, Kristensson K, Korth C, Zurzolo C, Simmons M, Aguilar-Calvo P, Aguzzi A, Andreoletti O, Benestad SL, Böhm R, Brown K, Calgua B, del Río JA, Espinosa JC, Girones R, Godsave S, Hoelzle LE, Knittler MR, Kuhn F, Legname G, Laeven P, Mabbott N, Mitrova E, Müller-Schiffmann A, Nuvolone M, Peters PJ, Raeber A, Roth K, Schmitz M, Schroeder B, Sonati T, Stitz L, Taraboulos A, Torres JM, Yan ZX, Zerr I. The Priority position paper: Protecting Europe's food chain from prions. Prion 2016; 10:165-81. [PMID: 27220820 PMCID: PMC4981192 DOI: 10.1080/19336896.2016.1175801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu ) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for strains and the basis for adaptation of a strain to a new host will require continued fundamental research, also needed to understand mechanisms of prion transmission, replication and how they cause nervous system dysfunction and death. Early detection of prion infection, ideally at a preclinical stage, also remains crucial for development of effective treatment strategies.
Collapse
Affiliation(s)
- Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sue Godsave
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | - Paul Laeven
- University of Maastricht, Maastricht, The Netherlands
| | | | - Eva Mitrova
- Medical University of Slovakia, Bratislava, Slovakia
| | | | | | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | - Lothar Stitz
- Friedrich Löffler Institut, Insel Reims, Germany
| | | | | | | | - Inga Zerr
- Universitätmedizin Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
40
|
Wisniewski T, Drummond E. Developing therapeutic vaccines against Alzheimer's disease. Expert Rev Vaccines 2015; 15:401-15. [PMID: 26577574 PMCID: PMC4940858 DOI: 10.1586/14760584.2016.1121815] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. It is characterized by an imbalance between the production and clearance of amyloid β (Aβ) and tau proteins. In AD these normal proteins accumulate, leading to aggregation and a conformational change forming oligomeric and fibrillary species with a high β-sheet content. Active and passive immunotherapeutic approaches result in dramatic reduction of Aβ pathology in AD animal models. However, there is much more limited evidence in human studies of significant clinical benefits from these strategies and it is becoming apparent that they may only be effective very early in AD. Vaccination targeting only tau pathology has shown benefits in some mouse studies but human studies are limited. Greater therapeutic efficacy for the next generation of vaccine approaches will likely benefit from specifically targeting the most toxic species of Aβ and tau, ideally simultaneously.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Pathology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
| | - Eleanor Drummond
- Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
| |
Collapse
|
41
|
Abstract
Proteins were described as distinct biological molecules and their significance in cellular processes was recognized as early as the 18th century. At the same time, Spanish shepherds observed a disease that compelled their Merino sheep to pathologically scrape against fences, a defining clinical sign that led to the disease being named scrapie. In the late 19th century, Robert Koch published his postulates for defining causative agents of disease. In the early 20th century, pathologists Creutzfeldt and Jakob described a neurodegenerative disease that would later be included with scrapie into a group of diseases known as transmissible spongiform encephalopathies (TSEs). Later that century, mounting evidence compelled a handful of scientists to betray the prevailing biological dogma governing pathogen replication that Watson and Crick so convincingly explained by cracking the genetic code just two decades earlier. Because TSEs seemed to defy these new rules, J.S. Griffith theorized mechanisms by which a pathogenic protein could encipher its own replication blueprint without a genetic code. Stanley Prusiner called this proteinaceous infectious pathogen a prion. Here we offer a concise account of the discovery of prions, the causative agent of TSEs, in the wider context of protein biochemistry and infectious disease. We highlight the discovery of prions in yeast and discuss the implication of prions as epigenomic carriers of biological and pathological information. We also consider expanding the prion hypothesis to include other proteins whose alternate isoforms confer new biological or pathological properties.
Collapse
Affiliation(s)
- Mark D Zabel
- Prion Research Center at Colorado State University, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO 80521, USA
| | - Crystal Reid
- Prion Research Center at Colorado State University, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO 80521, USA
| |
Collapse
|
42
|
Rational approach to an antiprion compound with a multiple mechanism of action. Future Med Chem 2015; 7:2113-20. [DOI: 10.4155/fmc.15.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The main pathogenic event of prion disorders has been identified in the deposition of the disease-associated prion protein (PrPSc), which is accompanied by metal dyshomeostasis. Results: The multitarget-directed ligand 1, designed by combining a heteroaromatic prion recognition motif to an 8-hydroxyquinoline metal chelator, has been developed as a potential antiprion disease-modifying agent. Importantly, 1 was found to effectively clear PrPSc from scrapie-infected cells, and, at the same time, inhibit metal-induced prion aggregation and reactive oxygen species generation. 1 was also characterized in terms of pharmacokinetic properties in a preliminary in vitro investigation. Conclusion: Compound 1 has emerged as a suitable lead candidate against prion diseases and as a good starting point for a further optimization process.
Collapse
|
43
|
Grüninger F. Invited review: Drug development for tauopathies. Neuropathol Appl Neurobiol 2015; 41:81-96. [PMID: 25354646 DOI: 10.1111/nan.12192] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Many different approaches to treating tauopathies are currently being explored, with a few compounds already in clinical development (including small molecules such as anti-aggregation compound LMTX and active vaccines AADvac1 and ACI-35). This review aims to summarize the status of the clinical candidates and to highlight the emerging areas of research that hold promise for drug development. Tau is post-translationally modified in several different ways (phosphorylated, acetylated, glycosylated and truncated). The extent of these modifications can be manipulated to influence tau aggregation state and pathogenesis and the enzymes involved provide tractable targets for drug intervention. In addition, modulation of tau expression levels is an attractive therapeutic approach. Finally, the recently described prion-like spreading of tau between cells opens up novel avenues from the tau drug development perspective. The review compares the merits of small-molecule and antibody-based therapies and emphasizes the need for amenable clinical biomarkers for drug development, particularly PET imaging.
Collapse
Affiliation(s)
- F Grüninger
- Pharmaceutical Research and Early Development, NORD Disease & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, CH-4070, Basel, Switzerland
| |
Collapse
|
44
|
Daus ML. Techniques to elucidate the conformation of prions. World J Biol Chem 2015; 6:218-222. [PMID: 26322176 PMCID: PMC4549762 DOI: 10.4331/wjbc.v6.i3.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/04/2015] [Accepted: 06/16/2015] [Indexed: 02/05/2023] Open
Abstract
Proteinaceous infectious particles (prions) are unique pathogens as they are devoid of any coding nucleic acid. Whilst it is assumed that prion disease is transmitted by a misfolded isoform of the cellular prion protein, the structural insight of prions is still vague and research for high resolution structural information of prions is still ongoing. In this review, techniques that may contribute to the clarification of the conformation of prions are presented and discussed.
Collapse
|
45
|
Abstract
Our understanding of the molecular structures of amyloid fibrils that are associated with neurodegenerative diseases, of mechanisms by which disease-associated peptides and proteins aggregate into fibrils, and of structural properties of aggregation intermediates has advanced considerably in recent years. Detailed molecular structural models for certain fibrils and aggregation intermediates are now available. It is now well established that amyloid fibrils are generally polymorphic at the molecular level, with a given peptide or protein being capable of forming a variety of distinct, self-propagating fibril structures. Recent results from structural studies and from studies involving cell cultures, transgenic animals, and human tissue provide initial evidence that molecular structural variations in amyloid fibrils and related aggregates may correlate with or even produce variations in disease development. This article reviews our current knowledge of the structural and mechanistic aspects of amyloid formation, as well as current evidence for the biological relevance of structural variations.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
46
|
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is an emerging global epidemic. It is characterized by an imbalance between production and clearance of amyloid β (Aβ) and tau proteins. Oligomeric forms of Aβ and tau are believed to be the most toxic. Dramatic results from AD animal models showed great promise for active and passive immune therapies targeting Aβ. However, there is very limited evidence in human studies of the clinical benefits from these approaches. Immunotherapies targeting only tau pathology have had some success but are limited so far to mouse models. The majority of current methods is based on immunological targeting of a self-protein; hence, benefits need to be balanced against risks of stimulating excessive autoimmune toxic inflammation. For greater efficacy the next generation of vaccines needs to focus more on concurrently targeting all the intermediate toxic conformers of oligomeric Aβ and tau species.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA.
| | - Fernando Goñi
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29(th) Street, New York, NY 10016, USA
| |
Collapse
|
47
|
Zambrano R, Conchillo-Sole O, Iglesias V, Illa R, Rousseau F, Schymkowitz J, Sabate R, Daura X, Ventura S. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Nucleic Acids Res 2015; 43:W331-7. [PMID: 25977297 PMCID: PMC4489250 DOI: 10.1093/nar/gkv490] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/02/2015] [Indexed: 11/12/2022] Open
Abstract
Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/.
Collapse
Affiliation(s)
- Rafael Zambrano
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Oscar Conchillo-Sole
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Ricard Illa
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Frederic Rousseau
- VIB Switch Laboratory and Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Switch Laboratory and Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raimon Sabate
- Institut de Nanociència i Nanotecnologia (INUB) and Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
48
|
Fernández-Borges N, Eraña H, Venegas V, Elezgarai SR, Harrathi C, Castilla J. Animal models for prion-like diseases. Virus Res 2015; 207:5-24. [PMID: 25907990 DOI: 10.1016/j.virusres.2015.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022]
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species being Creutzfeldt-Jacob Disease (CJD) the most representative in human beings, scrapie in ovine, Bovine Spongiform Encephalopathy (BSE) in bovine and Chronic Wasting Disease (CWD) in cervids. As stated by the "protein-only hypothesis", the causal agent of TSEs is a self-propagating aberrant form of the prion protein (PrP) that through a misfolding event acquires a β-sheet rich conformation known as PrP(Sc) (from scrapie). This isoform is neurotoxic, aggregation prone and induces misfolding of native cellular PrP. Compelling evidence indicates that disease-specific protein misfolding in amyloid deposits could be shared by other disorders showing aberrant protein aggregates such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS) and systemic Amyloid A amyloidosis (AA amyloidosis). Evidences of shared mechanisms of the proteins related to each disease with prions will be reviewed through the available in vivo models. Taking prion research as reference, typical prion-like features such as seeding and propagation ability, neurotoxic species causing disease, infectivity, transmission barrier and strain evidences will be analyzed for other protein-related diseases. Thus, prion-like features of amyloid β peptide and tau present in AD, α-synuclein in PD, SOD-1, TDP-43 and others in ALS and serum α-amyloid (SAA) in systemic AA amyloidosis will be reviewed through models available for each disease.
Collapse
Affiliation(s)
| | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Saioa R Elezgarai
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Chafik Harrathi
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain.
| |
Collapse
|
49
|
Onodera T, Sakudo A, Tsubone H, Itohara S. Review of studies that have used knockout mice to assess normal function of prion protein under immunological or pathophysiological stress. Microbiol Immunol 2015; 58:361-74. [PMID: 24866463 DOI: 10.1111/1348-0421.12162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/29/2022]
Abstract
Deletion of cellular isoform of prion protein (PrP(C)) increases neuronal predisposition to damage by modulating apoptosis and the negative consequences of oxidative stress. In vivo studies have demonstrated that PrP(C)-deficient mice are more prone to seizure, depression, and induction of epilepsy and experience extensive cerebral damage following ischemic challenge or viral infection. In addition, adenovirus-mediated overexpression of PrP(C) reduces brain damage in rat models of cerebral ischemia. In experimental autoimmune encephalomyelitis, PrP(C)-deficient mice reportedly have a more aggressive disease onset and less clinical improvement during the chronic phase than wild-type mice mice. In mice given oral dextran sulfate, PrP(C) has a potential protective role against inflammatory bowel disease. PrP(C)-deficient mice demonstrate significantly greater increases in blood glucose concentrations after intraperitoneal injection of glucose than wild-type mice. Further in vivo challenges to PrP gene-deficient models and conditional knockout models with siRNA and in vivo administration of PrP-ligating agents may assist in refining knowledge of the lymphoid function of PrP(C) and predicting the effects of anti-PrP treatment on the immune system. Together, these findings indicate that PrP(C) may have multiple neuroprotective and anti-inflammatory roles, which explains why this protein is so widely expressed.
Collapse
Affiliation(s)
- Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657
| | | | | | | |
Collapse
|
50
|
Espargaró A, Busquets MA, Estelrich J, Sabate R. Predicting the aggregation propensity of prion sequences. Virus Res 2015; 207:127-35. [PMID: 25747492 DOI: 10.1016/j.virusres.2015.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 02/19/2015] [Accepted: 03/02/2015] [Indexed: 11/19/2022]
Abstract
The presence of prions can result in debilitating and neurodegenerative diseases in mammals and protein-based genetic elements in fungi. Prions are defined as a subclass of amyloids in which the self-aggregation process becomes self-perpetuating and infectious. Like all amyloids, prions polymerize into fibres with a common core formed of β-sheet structures oriented perpendicular to the fibril axes which form a structure known as a cross-β structure. The intermolecular β-sheet propensity, a characteristic of the amyloid pattern, as well as other key parameters of amyloid fibril formation can be predicted. Mathematical algorithms have been proposed to predict both amyloid and prion propensities. However, it has been shown that the presence of amyloid-prone regions in a polypeptide sequence could be insufficient for amyloid formation. It has also often been stated that the formation of amyloid fibrils does not imply that these are prions. Despite these limitations, in silico prediction of amyloid and prion propensities should help detect potential new prion sequences in mammals. In addition, the determination of amyloid-prone regions in prion sequences could be very useful in understanding the effect of sporadic mutations and polymorphisms as well as in the search for therapeutic targets.
Collapse
Affiliation(s)
- Alba Espargaró
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII 27-31, E-08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN(2)UB), Spain
| | - Maria Antònia Busquets
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII 27-31, E-08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN(2)UB), Spain
| | - Joan Estelrich
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII 27-31, E-08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN(2)UB), Spain
| | - Raimon Sabate
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII 27-31, E-08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN(2)UB), Spain.
| |
Collapse
|