1
|
Shoup D, Priola SA. Cell biology of prion strains in vivo and in vitro. Cell Tissue Res 2023; 392:269-283. [PMID: 35107622 PMCID: PMC11249200 DOI: 10.1007/s00441-021-03572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
The properties of infectious prions and the pathology of the diseases they cause are dependent upon the unique conformation of each prion strain. How the pathology of prion disease correlates with different strains and genetic backgrounds has been investigated via in vivo assays, but how interactions between specific prion strains and cell types contribute to the pathology of prion disease has been dissected more effectively using in vitro cell lines. Observations made through in vivo and in vitro assays have informed each other with regard to not only how genetic variation influences prion properties, but also how infectious prions are taken up by cells, modified by cellular processes and propagated, and the cellular components they rely on for persistent infection. These studies suggest that persistent cellular infection results from a balance between prion propagation and degradation. This balance may be shifted depending upon how different cell lines process infectious prions, potentially altering prion stability, and how fast they can be transported to the lysosome. Thus, in vitro studies have given us a deeper understanding of the interactions between different prions and cell types and how they may influence prion disease phenotypes in vivo.
Collapse
Affiliation(s)
- Daniel Shoup
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA.
| |
Collapse
|
2
|
Alves Conceição C, Assis de Lemos G, Barros CA, Vieira TCRG. What is the role of lipids in prion conversion and disease? Front Mol Neurosci 2023; 15:1032541. [PMID: 36704327 PMCID: PMC9871914 DOI: 10.3389/fnmol.2022.1032541] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular cause of transmissible spongiform encephalopathies (TSEs) involves the conversion of the cellular prion protein (PrPC) into its pathogenic form, called prion scrapie (PrPSc), which is prone to the formation of amorphous and amyloid aggregates found in TSE patients. Although the mechanisms of conversion of PrPC into PrPSc are not entirely understood, two key points are currently accepted: (i) PrPSc acts as a seed for the recruitment of native PrPC, inducing the latter's conversion to PrPSc; and (ii) other biomolecules, such as DNA, RNA, or lipids, can act as cofactors, mediating the conversion from PrPC to PrPSc. Interestingly, PrPC is anchored by a glycosylphosphatidylinositol molecule in the outer cell membrane. Therefore, interactions with lipid membranes or alterations in the membranes themselves have been widely investigated as possible factors for conversion. Alone or in combination with RNA molecules, lipids can induce the formation of PrP in vitro-produced aggregates capable of infecting animal models. Here, we discuss the role of lipids in prion conversion and infectivity, highlighting the structural and cytotoxic aspects of lipid-prion interactions. Strikingly, disorders like Alzheimer's and Parkinson's disease also seem to be caused by changes in protein structure and share pathogenic mechanisms with TSEs. Thus, we posit that comprehending the process of PrP conversion is relevant to understanding critical events involved in a variety of neurodegenerative disorders and will contribute to developing future therapeutic strategies for these devastating conditions.
Collapse
Affiliation(s)
- Cyntia Alves Conceição
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Assis de Lemos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Augusto Barros
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Tuane C. R. G. Vieira, ✉
| |
Collapse
|
3
|
Shen P, Dang J, Wang Z, Zhang W, Yuan J, Lang Y, Ding M, Mitchell M, Kong Q, Feng J, Rozemuller AJM, Cui L, Petersen RB, Zou WQ. Characterization of Anchorless Human PrP With Q227X Stop Mutation Linked to Gerstmann-Sträussler-Scheinker Syndrome In Vivo and In Vitro. Mol Neurobiol 2020; 58:21-33. [PMID: 32889654 PMCID: PMC7695670 DOI: 10.1007/s12035-020-02098-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
Alteration in cellular prion protein (PrPC) localization on the cell surface through mediation of the glycosylphosphatidylinositol (GPI) anchor has been reported to dramatically affect the formation and infectivity of its pathological isoform (PrPSc). A patient with Gerstmann-Sträussler-Scheinker (GSS) syndrome was previously found to have a nonsense heterozygous PrP-Q227X mutation resulting in an anchorless PrP. However, the allelic origin of this anchorless PrPSc and cellular trafficking of PrPQ227X remain to be determined. Here, we show that PrPSc in the brain of this GSS patient is mainly composed of the mutant but not wild-type PrP (PrPWt), suggesting pathological PrPQ227X is incapable of recruiting PrPWt in vivo. This mutant anchorless protein, however, is able to recruit PrPWt from humanized transgenic mouse brain but not from autopsied human brain homogenates to produce a protease-resistant PrPSc-like form in vitro by protein misfolding cyclic amplification (PMCA). To further investigate the characteristics of this mutation, constructs expressing human PrPQ227X or PrPWt were transfected into neuroblastoma cells (M17). Fractionation of the M17 cells demonstrated that most PrPWt is recovered in the cell lysate fraction, while most of the mutant PrPQ227X is recovered in the medium fraction, consistent with the results obtained by immunofluorescence microscopy. Two-dimensional gel-electrophoresis and Western blotting showed that cellular PrPQ227X spots clustered at molecular weights of 22–25 kDa with an isoelectric point (pI) of 3.5–5.5, whereas protein spots from the medium are at 18–26 kDa with a pI of 7–10. Our findings suggest that the role of GPI anchor in prion propagation between the anchorless mutant PrP and wild-type PrP relies on the cellular distribution of the protein.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Johnny Dang
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Zerui Wang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Weiguanliu Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Jue Yuan
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Yue Lang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Mingxuan Ding
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Marcus Mitchell
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Qingzhong Kong
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, USA
| | - Jiachun Feng
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Annemiek J M Rozemuller
- Dutch Surveillance Center for Prion Diseases, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| | - Robert B Petersen
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA. .,Foundation Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA.
| | - Wen-Quan Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA. .,National Prion Disease Pathology Surveillance Center, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, USA. .,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
4
|
Esmaili M, Tancowny BP, Wang X, Moses A, Cortez LM, Sim VL, Wille H, Overduin M. Native nanodiscs formed by styrene maleic acid copolymer derivatives help recover infectious prion multimers bound to brain-derived lipids. J Biol Chem 2020; 295:8460-8469. [PMID: 32358064 DOI: 10.1074/jbc.ra119.012348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Indexed: 11/06/2022] Open
Abstract
Prions are lipidated proteins that interact with endogenous lipids and metal ions. They also assemble into multimers and propagate into the infectious scrapie form known as PrPSc The high-resolution structure of the infectious PrPSc state remains unknown, and its analysis largely relies on detergent-based preparations devoid of endogenous ligands. Here we designed polymers that allow isolation of endogenous membrane:protein assemblies in native nanodiscs without exposure to conventional detergents that destabilize protein structures and induce fibrillization. A set of styrene-maleic acid (SMA) polymers including a methylamine derivative facilitated gentle release of the infectious complexes for resolution of multimers, and a thiol-containing version promoted crystallization. Polymer extraction from brain homogenates from Syrian hamsters infected with Hyper prions and WT mice infected with Rocky Mountain Laboratories prions yielded infectious prion nanoparticles including oligomers and microfilaments bound to lipid vesicles. Lipid analysis revealed the brain phospholipids that associate with prion protofilaments, as well as those that are specifically enriched in prion assemblies captured by the methylamine-modified copolymer. A comparison of the infectivity of PrPSc attached to SMA lipid particles in mice and hamsters indicated that these amphipathic polymers offer a valuable tool for high-yield production of intact, detergent-free prions that retain in vivo activity. This native prion isolation method provides an avenue for producing relevant prion:lipid targets and potentially other proteins that form multimeric assemblies and fibrils on membranes.
Collapse
Affiliation(s)
- Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Brian P Tancowny
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Xiongyao Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Audric Moses
- Lipidomics Core Facility, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leonardo M Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Division of Neurology, Department of Medicine, Centre for Prions and Protein Folding Diseases, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie L Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Division of Neurology, Department of Medicine, Centre for Prions and Protein Folding Diseases, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Hackl S, Becker CFW. Prion protein-Semisynthetic prion protein (PrP) variants with posttranslational modifications. J Pept Sci 2019; 25:e3216. [PMID: 31713950 PMCID: PMC6899880 DOI: 10.1002/psc.3216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.
Collapse
Affiliation(s)
- Stefanie Hackl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| |
Collapse
|
6
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Burke CM, Walsh DJ, Steele AD, Agrimi U, Di Bari MA, Watts JC, Supattapone S. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog 2019; 15:e1007662. [PMID: 30908557 PMCID: PMC6448948 DOI: 10.1371/journal.ppat.1007662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Alexander D. Steele
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
8
|
The soluble domains of Gpi8 and Gaa1, two subunits of glycosylphosphatidylinositol transamidase (GPI-T), assemble into a complex. Arch Biochem Biophys 2017; 633:58-67. [DOI: 10.1016/j.abb.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022]
|
9
|
Sarnataro D, Pepe A, Zurzolo C. Cell Biology of Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:57-82. [PMID: 28838675 DOI: 10.1016/bs.pmbts.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The precise function of PrPC remains elusive but may depend upon its cellular localization. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. Nonetheless some forms of prion disease develop in the apparent absence of infectious PrPSc, suggesting that molecular species of PrP distinct from PrPSc may represent the primary neurotoxic culprits. Indeed, in some inherited cases of human prion disease, the predominant form of PrP detectable in the brain is not PrPSc but rather CtmPrP, a transmembrane form of the protein. The relationship between the neurodegeneration occurring in prion diseases involving PrPSc and that associated with CtmPrP remains unclear. However, the different membrane topology of the PrP mutants, as well as the presence of the GPI anchor, could influence both the function and the intracellular localization and trafficking of the protein, all being potentially very important in the pathophysiological mechanism that ultimately causes the disease. Here, we review the latest findings on the fundamental aspects of prions biology, from the PrPC biosynthesis, function, and structure up to its intracellular traffic and analyze the possible roles of the different topological isoforms of the protein, as well as the GPI anchor, in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Daniela Sarnataro
- University of Naples "Federico II", Naples, Italy; Ceinge-Biotecnologie avanzate, s.c.a r.l., Naples, Italy.
| | - Anna Pepe
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| |
Collapse
|
10
|
Araman C, Thompson RE, Wang S, Hackl S, Payne RJ, Becker CFW. Semisynthetic prion protein (PrP) variants carrying glycan mimics at position 181 and 197 do not form fibrils. Chem Sci 2017; 8:6626-6632. [PMID: 28989689 PMCID: PMC5625290 DOI: 10.1039/c7sc02719b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
Semisynthesis and characterization of homogeneously mono- and di-PEGylated full length PrP variants to study the impact of PEGylation (as N-glycan mimics) on protein folding and aggregation.
The prion protein (PrP) is an N-glycosylated protein attached to the outer leaflet of eukaryotic cell membranes via a glycosylphosphatidylinositol (GPI) anchor. Different prion strains have distinct glycosylation patterns and the extent of glycosylation of potentially pathogenic misfolded prion protein (PrPSc) has a major impact on several prion-related diseases (transmissible spongiform encephalopathies, TSEs). Based on these findings it is hypothesized that posttranslational modifications (PTMs) of PrP influence conversion of cellular prion protein (PrPC) into PrPSc and, as such, modified PrP variants are critical tools needed to investigate the impact of PTMs on the pathogenesis of TSEs. Here we report a semisynthetic approach to generate PrP variants modified with monodisperse polyethyleneglycol (PEG) units as mimics of N-glycans. Incorporating PEG at glycosylation sites 181 and 197 in PrP induced only small changes to the secondary structure when compared to unmodified, wildtype PrP. More importantly, in vitro aggregation was abrogated for all PEGylated PrP variants under conditions at which wildtype PrP aggregated. Furthermore, the addition of PEGylated PrP as low as 10 mol% to wildtype PrP completely blocked aggregation. A similar effect was observed for synthetic PEGylated PrP segments comprising amino acids 179–231 alone if these were added to wildtype PrP in aggregation assays. This behavior raises the question if large N-glycans interfere with aggregation in vivo and if PEGylated PrP peptides could serve as potential therapeutics.
Collapse
Affiliation(s)
- Can Araman
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| | - Robert E Thompson
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Siyao Wang
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Stefanie Hackl
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| | - Richard J Payne
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Christian F W Becker
- Institute of Biological Chemistry , Department of Chemistry , University of Vienna , Waehringer Strasse 38 , 1090 , Vienna-AT , Austria .
| |
Collapse
|
11
|
Linsenmeier L, Altmeppen HC, Wetzel S, Mohammadi B, Saftig P, Glatzel M. Diverse functions of the prion protein - Does proteolytic processing hold the key? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2128-2137. [PMID: 28693923 DOI: 10.1016/j.bbamcr.2017.06.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Proteolytic processing of the cellular and disease-associated form of the prion protein leads to generation of bioactive soluble prion protein fragments and modifies the structure and function of its cell-bound form. The nature of proteases responsible for shedding, α-, β-, and γ-cleavage of the prion protein are only partially identified and their regulation is largely unknown. Here, we provide an overview of the increasingly multifaceted picture of prion protein proteolysis and shed light on physiological and pathological roles associated with these cleavages. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian Albrechts University Kiel, Kiel, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University Kiel, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Endogenous Brain Lipids Inhibit Prion Amyloid Formation In Vitro. J Virol 2017; 91:JVI.02162-16. [PMID: 28202758 DOI: 10.1128/jvi.02162-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 01/22/2023] Open
Abstract
The normal cellular prion protein (PrPC) resides in detergent-resistant outer membrane lipid rafts in which conversion to the pathogenic misfolded form is believed to occur. Once misfolding occurs, the pathogenic isoform polymerizes into highly stable amyloid fibrils. In vitro assays have demonstrated an intimate association between prion conversion and lipids, specifically phosphatidylethanolamine, which is a critical cofactor in the formation of synthetic infectious prions. In the current work, we demonstrate an alternative inhibitory function of lipids in the prion conversion process as assessed in vitro by real-time quaking-induced conversion (RT-QuIC). Using an alcohol-based extraction technique, we removed the lipid content from chronic wasting disease (CWD)-infected white-tailed deer brain homogenates and found that lipid extraction enabled RT-QuIC detection of CWD prions in a 2-log10-greater concentration of brain sample. Conversely, addition of brain-derived lipid extracts to CWD prion brain or lymph node samples inhibited amyloid formation in a dose-dependent manner. Subsequent lipid analysis demonstrated that this inhibitory function was restricted to the polar lipid fraction in brain. We further investigated three phospholipids commonly found in lipid membranes, phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol, and found all three similarly inhibited RT-QuIC. These results demonstrating polar-lipid, and specifically phospholipid, inhibition of prion-seeded amyloid formation highlight the diverse roles lipid constituents may play in the prion conversion process.IMPORTANCE Prion conversion is likely influenced by lipid interactions, given the location of normal prion protein (PrPC) in lipid rafts and lipid cofactors generating infectious prions in in vitro models. Here, we use real-time quaking-induced conversion (RT-QuIC) to demonstrate that endogenous brain polar lipids can inhibit prion-seeded amyloid formation, suggesting that prion conversion is guided by an environment of proconversion and anticonversion lipids. These experiments also highlight the applicability of RT-QuIC to identify potential therapeutic inhibitors of prion conversion.
Collapse
|
13
|
Hackl S, Schmid A, Becker CFW. Semisynthesis of Membrane-Attached Proteins Using Split Inteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2016; 1495:93-109. [PMID: 27714612 DOI: 10.1007/978-1-4939-6451-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The site-selective installation of lipid modifications on proteins is critically important in our understanding of how membrane association influences the biophysical properties of proteins as well as to study certain proteins in their native environment. Here, we describe the use of split inteins for the C-terminal attachment of lipid-modified peptides to virtually any protein of interest (POI) via protein trans-splicing (PTS). To achieve this, the protein of interest is expressed in fusion with the N-terminal split intein segment and the C-terminal split intein segment is prepared by solid phase peptide synthesis. A synthetic peptide carrying two lipid chains is also made chemically to serve as a membrane anchor and subsequently linked to the C-terminal split intein by native chemical ligation. Proteins of interest for our work are the prion protein as well as small GTPases; however, extensions to other POIs are possible. Detailed information for the C-terminal introduction of a lipidated membrane anchor (MA) peptide using split intein systems from Synechocystis spp. and Nostoc punctiforme for the Prion protein (PrP, as a challenging protein of interest) and the enhanced green-fluorescent protein (eGFP, as an easily trackable target protein) are provided here.
Collapse
Affiliation(s)
- Stefanie Hackl
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Alanca Schmid
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Christian F W Becker
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Glatzel M, Linsenmeier L, Dohler F, Krasemann S, Puig B, Altmeppen HC. Shedding light on prion disease. Prion 2016; 9:244-56. [PMID: 26186508 DOI: 10.1080/19336896.2015.1065371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proteolytic processing regulates key processes in health and disease. The cellular prion protein (PrP(C)) is subject to at least 3 cleavage events, α-cleavage, β-cleavage and shedding. In contrast to α- and β-cleavage where there is an ongoing controversy on the identity of relevant proteases, the metalloprotease ADAM10 represents the only relevant PrP sheddase. Here we focus on the roles that ADAM10-mediated shedding of PrP(C) and its pathogenic isoform (PrP(Sc)) might play in regulating their physiological and pathogenic functions, respectively. As revealed by our recent study using conditional ADAM10 knockout mice (Altmeppen et al., 2015), shedding of PrP seems to be involved in key processes of prion diseases. These aspects and several open questions arising from them are discussed. Increased knowledge on this topic can shed new light on prion diseases and other neurodegenerative conditions as well.
Collapse
Affiliation(s)
- Markus Glatzel
- a Institute of Neuropathology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | | | | | | | | | | |
Collapse
|
15
|
Kaczmarczyk L, Mende Y, Zevnik B, Jackson WS. Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One 2016; 11:e0154604. [PMID: 27128441 PMCID: PMC4851410 DOI: 10.1371/journal.pone.0154604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023] Open
Abstract
The mammalian prion protein (PrP, encoded by Prnp) is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer's disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9), have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs). It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program.
Collapse
Affiliation(s)
- Lech Kaczmarczyk
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ylva Mende
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Branko Zevnik
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Walker S. Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- * E-mail:
| |
Collapse
|
16
|
Prion 2016 Poster Abstracts. Prion 2016; 10 Suppl 1:S37-S127. [PMID: 27088811 DOI: 10.1080/19336896.2016.1162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
17
|
Stocki P, Sawicki M, Mays CE, Hong SJ, Chapman DC, Westaway D, Williams DB. Inhibition of the FKBP family of peptidyl prolyl isomerases induces abortive translocation and degradation of the cellular prion protein. Mol Biol Cell 2016; 27:757-67. [PMID: 26764098 PMCID: PMC4803302 DOI: 10.1091/mbc.e15-10-0729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/04/2016] [Indexed: 11/11/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders for which there is no effective treatment. Because the cellular prion protein (PrP(C)) is required for propagation of the infectious scrapie form of the protein, one therapeutic strategy is to reduce PrP(C) expression. Recently FK506, an inhibitor of the FKBP family of peptidyl prolyl isomerases, was shown to increase survival in animal models of prion disease, with proposed mechanisms including calcineurin inhibition, induction of autophagy, and reduced PrP(C) expression. We show that FK506 treatment results in a profound reduction in PrP(C) expression due to a defect in the translocation of PrP(C) into the endoplasmic reticulum with subsequent degradation by the proteasome. These phenotypes could be bypassed by replacing the PrP(C) signal sequence with that of prolactin or osteopontin. In mouse cells, depletion of ER luminal FKBP10 was almost as potent as FK506 in attenuating expression of PrP(C). However, this occurred at a later stage, after translocation of PrP(C) into the ER. Both FK506 treatment and FKBP10 depletion were effective in reducing PrP(Sc) propagation in cell models. These findings show the involvement of FKBP proteins at different stages of PrP(C) biogenesis and identify FKBP10 as a potential therapeutic target for the treatment of prion diseases.
Collapse
Affiliation(s)
- Pawel Stocki
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maxime Sawicki
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Charles E Mays
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| | - Seo Jung Hong
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Daniel C Chapman
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada Division of Neurology and Departments of Chemistry and Biochemistry, University of Alberta, Edmonton, AB T6G 2M8, Canada
| | - David B Williams
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
18
|
Race B, Phillips K, Meade-White K, Striebel J, Chesebro B. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein. J Virol 2015; 89:6022-32. [PMID: 25810548 PMCID: PMC4442444 DOI: 10.1128/jvi.00362-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. IMPORTANCE Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by mice expressing only anchorless PrP were more infectious than prions produced in mice expressing anchored PrP. Thus, the lack of the GPI anchor on prions reduced the effect of the mouse-human species barrier. Our results suggest that prion diseases that produce higher levels of anchorless PrP may pose an increased risk for cross-species infection.
Collapse
Affiliation(s)
- Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Katie Phillips
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kimberly Meade-White
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - James Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
19
|
Puig B, Altmeppen H, Glatzel M. The GPI-anchoring of PrP: implications in sorting and pathogenesis. Prion 2015; 8:11-8. [PMID: 24509692 DOI: 10.4161/pri.27892] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cellular prion protein (PrP(C)) is an N-glycosylated GPI-anchored protein usually present in lipid rafts with numerous putative functions. When it changes its conformation to a pathological isoform (then referred to as PrP(Sc)), it is an essential part of the prion, the agent causing fatal and transmissible neurodegenerative prion diseases. There is growing evidence that toxicity and neuronal damage on the one hand and propagation/infectivity on the other hand are two distinct processes of the disease and that the GPI-anchor attachment of PrP(C) and PrP(Sc) plays an important role in protein localization and in neurotoxicity. Here we review how the signal sequence of the GPI-anchor matters in PrP(C) localization, how an altered cellular localization of PrP(C) or differences in GPI-anchor composition can affect prion infection, and we discuss through which mechanisms changes on the anchorage of PrP(C) can modify the disease process.
Collapse
|
20
|
Chu NK, Shabbir W, Bove-Fenderson E, Araman C, Lemmens-Gruber R, Harris DA, Becker CFW. A C-terminal membrane anchor affects the interactions of prion proteins with lipid membranes. J Biol Chem 2014; 289:30144-60. [PMID: 25217642 DOI: 10.1074/jbc.m114.587345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Membrane attachment via a C-terminal glycosylphosphatidylinositol anchor is critical for conversion of PrP(C) into pathogenic PrP(Sc). Therefore the effects of the anchor on PrP structure and function need to be deciphered. Three PrP variants, including full-length PrP (residues 23-231, FL_PrP), N-terminally truncated PrP (residues 90-231, T_PrP), and PrP missing its central hydrophobic region (Δ105-125, ΔCR_PrP), were equipped with a C-terminal membrane anchor via a semisynthesis strategy. Analyses of the interactions of lipidated PrPs with phospholipid membranes demonstrated that C-terminal membrane attachment induces a different binding mode of PrP to membranes, distinct from that of non-lipidated PrPs, and influences the biochemical and conformational properties of PrPs. Additionally, fluorescence-based assays indicated pore formation by lipidated ΔCR_PrP, a variant that is known to be highly neurotoxic in transgenic mice. This finding was supported by using patch clamp electrophysiological measurements of cultured cells. These results provide new evidence for the role of the membrane anchor in PrP-lipid interactions, highlighting the importance of the N-terminal and the central hydrophobic domain in these interactions.
Collapse
Affiliation(s)
- Nam K Chu
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Waheed Shabbir
- the Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria, and
| | - Erin Bove-Fenderson
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Can Araman
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rosa Lemmens-Gruber
- the Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria, and
| | - David A Harris
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Christian F W Becker
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria,
| |
Collapse
|
21
|
Haïk S, Brandel JP. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses. INFECTION GENETICS AND EVOLUTION 2014; 26:303-12. [PMID: 24956437 DOI: 10.1016/j.meegid.2014.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/24/2022]
Abstract
In contrast with other neurodegenerative disorders associated to protein misfolding, human prion diseases include infectious forms (also called transmitted forms) such as kuru, iatrogenic Creutzfeldt-Jakob disease and variant Creutzfeldt-Jakob disease. The transmissible agent is thought to be solely composed of the abnormal isoform (PrP(Sc)) of the host-encoded prion protein that accumulated in the central nervous system of affected individuals. Compared to its normal counterpart, PrP(Sc) is β-sheet enriched and aggregated and its propagation is based on an autocatalytic conversion process. Increasing evidence supports the view that conformational variations of PrP(Sc) encoded the biological properties of the various prion strains that have been isolated by transmission studies in experimental models. Infectious forms of human prion diseases played a pivotal role in the emergence of the prion concept and in the characterization of the very unconventional properties of prions. They provide a unique model to understand how prion strains are selected and propagate in humans. Here, we review and discuss how genetic factors interplay with strain properties and route of transmission to influence disease susceptibility, incubation period and phenotypic expression in the light of the kuru epidemics due to ritual endocannibalism, the various series iatrogenic diseases secondary to extractive growth hormone treatment or dura mater graft and the epidemics of variant Creutzfeldt-Jakob disease linked to dietary exposure to the agent of bovine spongiform encephalopathy.
Collapse
Affiliation(s)
- Stéphane Haïk
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm, U 1127, CNRS UMR 7225, ICM, F-75013 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, F-75013 Paris, France; Centre National de Référence des Agents Transmissibles Non Conventionnels, F-75013 Paris, France.
| | - Jean-Philippe Brandel
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm, U 1127, CNRS UMR 7225, ICM, F-75013 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, F-75013 Paris, France; Centre National de Référence des Agents Transmissibles Non Conventionnels, F-75013 Paris, France
| |
Collapse
|
22
|
Lin SJ, Yu KH, Wu JR, Lee CF, Jheng CP, Chen HR, Lee CI. Liberation of GPI-anchored prion from phospholipids accelerates amyloidogenic conversion. Int J Mol Sci 2013; 14:17943-57. [PMID: 24005859 PMCID: PMC3794761 DOI: 10.3390/ijms140917943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies are a rare group of fatal neurodegenerative illnesses in humans and animals caused by misfolding of prion protein (PrP). Prion protein is a cell-surface glycosylphosphatidylinositol (GPI)-anchored glycoprotein expressed mostly in the central and peripheral nervous system, and this membrane-bound protein can be cleaved from the cell membranes by phosphoinositide phospholipase C. Numerous studies have investigated GPI-free recombinant PrP, but the role of GPI on misfolding of PrP is not well known. In this study, we synthesized a GPI analog that was covalently linking to a PrP S230C mutant, resulting in S230C-GPI. The structural changes in S230C-GPI upon binding to lipid vesicles composed of mixtures of the zwitterionic lipid (POPC) and the anionic lipid (POPG) were analyzed by circular dichroism spectroscopy, and the amyloid aggregation of S230C-GPI in the liberation from phospholipid vesicles was monitored by proteinase K-digestion assay. Our results indicate that S230C-GPI in the liberation of lipid vesicles has high tendency to misfold into amyloid fibrils, while the membrane-bound S230C-GPI proteins are highly stable and rarely convert into amyloid forms. In addition, the role of cholesterol in S230C-GPI was studied. The effect of GPI, cholesterol and phospholipid vesicles on misfolding of PrP is further discussed.
Collapse
Affiliation(s)
- Shen-Jie Lin
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan; E-Mails: (S.-J.L.); (K.-H.Y.); (C.-P.J.); (H.-R.C.)
| | - Kun-Hua Yu
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan; E-Mails: (S.-J.L.); (K.-H.Y.); (C.-P.J.); (H.-R.C.)
| | - Jhih-Ru Wu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; E-Mails: (J.-R.W.); (C.-F.L.)
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; E-Mails: (J.-R.W.); (C.-F.L.)
| | - Cheng-Ping Jheng
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan; E-Mails: (S.-J.L.); (K.-H.Y.); (C.-P.J.); (H.-R.C.)
| | - Hau-Ren Chen
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan; E-Mails: (S.-J.L.); (K.-H.Y.); (C.-P.J.); (H.-R.C.)
| | - Cheng-I Lee
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan; E-Mails: (S.-J.L.); (K.-H.Y.); (C.-P.J.); (H.-R.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-5-272-0411 (ext. 66511); Fax: +886-5-272-2871
| |
Collapse
|
23
|
Vilches S, Vergara C, Nicolás O, Sanclimens G, Merino S, Varón S, Acosta GA, Albericio F, Royo M, Río JAD, Gavín R. Neurotoxicity of prion peptides mimicking the central domain of the cellular prion protein. PLoS One 2013; 8:e70881. [PMID: 23940658 PMCID: PMC3733940 DOI: 10.1371/journal.pone.0070881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022] Open
Abstract
The physiological functions of PrP(C) remain enigmatic, but the central domain, comprising highly conserved regions of the protein may play an important role. Indeed, a large number of studies indicate that synthetic peptides containing residues 106-126 (CR) located in the central domain (CD, 95-133) of PrP(C) are neurotoxic. The central domain comprises two chemically distinct subdomains, the charge cluster (CC, 95-110) and a hydrophobic region (HR, 112-133). The aim of the present study was to establish the individual cytotoxicity of CC, HR and CD. Our results show that only the CD peptide is neurotoxic. Biochemical, Transmission Electron Microscopy and Atomic Force Microscopy experiments demonstrated that the CD peptide is able to activate caspase-3 and disrupt the cell membrane, leading to cell death.
Collapse
Affiliation(s)
- Silvia Vilches
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Cristina Vergara
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Oriol Nicolás
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gloria Sanclimens
- Combinatorial Chemistry Unit, Scientific Park of Barcelona, Barcelona, Spain
| | - Sandra Merino
- Department of Physicochemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Sonia Varón
- Combinatorial Chemistry Unit, Scientific Park of Barcelona, Barcelona, Spain
| | - Gerardo A. Acosta
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
- Department of Organic Chemistry, Faculty of Chemistry, University of Barcelona, Barcelona, Spain
| | - Miriam Royo
- Combinatorial Chemistry Unit, Scientific Park of Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - José A. Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Campisi E, Cardone F, Graziano S, Galeno R, Pocchiari M. Role of proteomics in understanding prion infection. Expert Rev Proteomics 2013; 9:649-66. [PMID: 23256675 DOI: 10.1586/epr.12.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases are fatal neurodegenerative pathologies characterized by the autocatalytic misfolding and polymerization of a cellular glycoprotein (cellular prion protein [PrP(C)]) that accumulates in the CNS and leads to neurodegeneration. The detailed mechanics of PrP(C) conversion to its pathological isoform (PrP(TSE)) are unclear but one or more exogenous factors are likely involved in the process of PrP misfolding. In the last 20 years, proteomic investigations have identified several endogenous proteins that interact with PrP(C), PrP(TSE) or both, which are possibly involved in the prion pathogenetic process. However, current approaches have not yet produced convincing conclusions on the biological value of such PrP interactors. Future advancements in the comprehension of the molecular pathogenesis of prion diseases, in experimental techniques and in data analysis procedures, together with a boost in more productive international collaborations, are therefore needed to improve the understanding on the role of PrP interactors. Finally, the advancement of 'omics' techniques in prion diseases will contribute to the development of novel diagnostic tests and effective drugs.
Collapse
Affiliation(s)
- Edmondo Campisi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
25
|
Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl 2012; 51:11438-56. [PMID: 23086912 DOI: 10.1002/anie.201203912] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are covalently linked to the C-terminus of proteins as a posttranslational modification. They anchor the attached protein to the cell membrane and are essential for normal functioning of eukaryotic cells. GPI-anchored proteins are structurally and functionally diverse. Many GPIs have been structurally characterized but comprehension of their biological functions, beyond the simple physical anchoring, remains largely speculative. Work on functional elucidation at a molecular level is still limited. This Review focuses on the roles of GPI unraveled by using synthetic molecules and summarizes the structural diversity of GPIs, as well as their biological and chemical syntheses.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | | | | |
Collapse
|
26
|
Tsai YH, Liu X, Seeberger PH. Chemische Biologie der Glycosylphosphatidylinosit-Anker. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Mahal SP, Jablonski J, Suponitsky-Kroyter I, Oelschlegel AM, Herva ME, Oldstone M, Weissmann C. Propagation of RML prions in mice expressing PrP devoid of GPI anchor leads to formation of a novel, stable prion strain. PLoS Pathog 2012; 8:e1002746. [PMID: 22685404 PMCID: PMC3369955 DOI: 10.1371/journal.ppat.1002746] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/27/2012] [Indexed: 12/03/2022] Open
Abstract
PrP(C), a host protein which in prion-infected animals is converted to PrP(Sc), is linked to the cell membrane by a GPI anchor. Mice expressing PrP(C) without GPI anchor (tgGPI⁻ mice), are susceptible to prion infection but accumulate anchorless PrP(Sc) extra-, rather than intracellularly. We investigated whether tgGPI⁻ mice could faithfully propagate prion strains despite the deviant structure and location of anchorless PrP(Sc). We found that RML and ME7, but not 22L prions propagated in tgGPI⁻ brain developed novel cell tropisms, as determined by the Cell Panel Assay (CPA). Surprisingly, the levels of proteinase K-resistant PrP(Sc) (PrP(res)) in RML- or ME7-infected tgGPI⁻ brain were 25-50 times higher than in wild-type brain. When returned to wild-type brain, ME7 prions recovered their original properties, however RML prions had given rise to a novel prion strain, designated SFL, which remained unchanged even after three passages in wild-type mice. Because both RML PrP(Sc) and SFL PrP(Sc) are stably propagated in wild-type mice we propose that the two conformations are separated by a high activation energy barrier which is abrogated in tgGPI⁻ mice.
Collapse
Affiliation(s)
- Sukhvir Paul Mahal
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | - Joseph Jablonski
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | | | | | - Maria Eugenia Herva
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | - Michael Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Charles Weissmann
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
28
|
Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 2011; 50:411-24. [PMID: 21658410 DOI: 10.1016/j.plipres.2011.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid that is covalently attached to proteins as a post-translational modification. Such modification leads to the anchoring of the protein to the outer leaflet of the plasma membrane. Proteins that are decorated with GPIs have unique properties in terms of their physical nature. In particular, these proteins tend to accumulate in lipid rafts, which are critical for the functions and trafficking of GPI-anchored proteins (GPI-APs). Recent studies mainly using mutant cells revealed that various structural remodeling reactions occur to GPIs present in GPI-APs as they are transported from the endoplasmic reticulum to the cell surface. This review examines the recent progress describing the mechanisms of structural remodeling of mammalian GPI-anchors, such as inositol deacylation, glycan remodeling and fatty acid remodeling, with particular focus on their trafficking and functions, as well as the pathogenesis involving GPI-APs and their deficiency.
Collapse
|
29
|
John F, Hendrickson TL. Synthesis of truncated analogues for studying the process of glycosyl phosphatidylinositol modification. Org Lett 2010; 12:2080-3. [PMID: 20380381 DOI: 10.1021/ol100575q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many eukaryotic proteins are modified with a glycosylphosphatidylinositol (GPI) anchor at their C-termini. This post-translational modification causes these proteins to be noncovalently tethered to the plasma membrane. The synthesis of truncated GPI anchor analogues is reported; these compounds were designed for use as soluble substrates for GPI transamidase (GPI-T), the enzyme that appends the GPI anchor onto proteins.
Collapse
Affiliation(s)
- Franklin John
- Department of Chemistry, 5101 Cass Avenue, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
30
|
|