1
|
Zhou L, Zhang W, Li Q, Cui M, Shen D, Shu J, Mo R, Liu Y. Evaluation of Lipid Quality in Fruit: Utilizing Lipidomic Approaches for Assessing the Impact of Biotic Stress on Pecans ( Carya illinoinensis). Foods 2024; 13:974. [PMID: 38611280 PMCID: PMC11011906 DOI: 10.3390/foods13070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
There is a scarcity of data on how the lipid composition of oily seeds changes in response to biotic stress. Yellow peach moth (Conogethes punctiferalis) has caused massive economic losses on the pecan (Carya illinoinensis) industry. Lipidomics is used in this study to determine the lipid composition of pecan and how it changes in response to insect attack. Pecan had 167 lipids, including 34 glycerolipids (GL), 62 glycerophospholipids (GP), 17 fatty acyls (FA), 41 sphingolipids (SP), and 13 saccharolipids (SL). The effects of biotic stress on lipids, particularly GL and GP, were significant. Biotic stress significantly reduced the lipid content of chains longer than 48. Forty-four significantly different lipids were discovered as potential biomarkers for distinguishing non-infected pecans from infested pecans. In addition, we used bioinformatics to identify the five most important metabolic pathways in order to investigate the processes underlying the changes. Our discoveries may offer valuable insights for enhancing pecan production in the future and contribute novel perspectives towards enhancing the nutritional value of pecans.
Collapse
Affiliation(s)
- Lingyuan Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Wei Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Maokai Cui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Danyu Shen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Jinping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Runhong Mo
- Quality Testing Center for Non-Wood Forest Products of National Forestry and Grassland Administration, Chinese Academy of Forestry, Fuyang 311400, China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| |
Collapse
|
2
|
Zhang XL, Zhu QQ, Chen CY, Xie B, Tang BG, Fan MH, Hu QJ, Liao Z, Yan XJ. The growth inhibitory effects and non-targeted metabolomic profiling of Microcystis aeruginosa treated by Scenedesmus sp. CHEMOSPHERE 2023; 338:139446. [PMID: 37423414 DOI: 10.1016/j.chemosphere.2023.139446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The health of the aquatic ecosystem has recently been severely affected by cyanobacterial blooms brought on by eutrophication. Therefore, it is critical to develop efficient and secure methods to control dangerous cyanobacteria, such as Microcystis aeruginosa. In this research, we tested the inhibition of M. aeruginosa growth by a Scenedesmus sp. strain isolated from a culture pond. Scenedesmus sp. culture filtrate that had been lyophilized was added to M. aeruginosa, and cultivation for seven days, the cell density, chlorophyll a (Chl-a) concentration, maximum quantum yield of photosystem II (Fv/Fm), the activities of superoxide dismutase (SOD), catalase (CAT), and the concentration of malondialdehyde (MDA) and glutathione (GSH) were measured. Moreover, non-targeted metabolomics was carried out to provide light on the inhibitory mechanism in order to better understand the metabolic response. According to the results, M. aeruginosa is effectively inhibited by the lyophilized Scenedesmus sp. culture filtrate at a rate of 51.2%. Additionally, the lyophilized Scenedesmus sp. clearly inhibit the photosystem and damages the antioxidant defense system of M. aeruginosa cells, resulting in oxidative damage, which worsens membrane lipid peroxidation, according to changes in Chl-a, Fv/Fm, SOD, CAT enzyme activities and MDA, GSH. Metabolomics analysis revealed that the secondary metabolites of Scenedesmus sp. significantly interfere with the metabolism of M. aeruginosa involved in amino acid synthesis, membrane creation and oxidative stress, which is coherent with the morphology and physiology outcomes. These results demonstrate that the secondary metabolites of Scenedesmus sp. exert algal inhibition effect by breaked the membrane structure, destroyed the photosynthetic system of microalgae, inhibited amino acid synthesis, reduced antioxidant capacity, and eventually caused algal cell lysis and death. Our research provides a reliable basis for the biological control of cyanobacterial blooms on the one hand, and on other hand supply application of non-targeted metabolome on the study of microalgae allelochemicals.
Collapse
Affiliation(s)
- Xiao-Lin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China.
| | - Qian-Qian Zhu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Chuan-Yue Chen
- College of Marine Sciences, Ningbo University, Ningbo City, 315211, Zhejiang, China
| | - Bing Xie
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Bin-Guo Tang
- Beijing Water Century Biotechnology Limited Company, Wuhan City, 430223, Hubei, China
| | - Mei-Hua Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Qun-Ju Hu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiao-Jun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China.
| |
Collapse
|
3
|
Peng L, He J, Yao H, Yu Q, Zhang Q, Li K, Huang Y, Chen L, Li X, Yang Y, Li X. CARK3-mediated ADF4 regulates hypocotyl elongation and soil drought stress in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1065677. [PMID: 36618656 PMCID: PMC9811263 DOI: 10.3389/fpls.2022.1065677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Actin depolymerization factors (ADFs), as actin-binding proteins, act a crucial role in plant development and growth, as well as in response to abiotic and biotic stresses. Here, we found that CARK3 plays a role in regulating hypocotyl development and links a cross-talk between actin filament and drought stress through interaction with ADF4. By using bimolecular fluorescence complementation (BiFC) and GST pull-down, we confirmed that CARK3 interacts with ADF4 in vivo and in vitro. Next, we generated and characterized double mutant adf4cark3-4 and OE-ADF4:cark3-4. The hypocotyl elongation assay indicated that the cark3-4 mutant seedlings were slightly longer hypocotyls when compared with the wild type plants (WT), while CARK3 overexpressing seedlings had no difference with WT. In addition, overexpression of ADF4 significantly inhibited long hypocotyls of cark3-4 mutants. Surprisingly, we found that overexpression of ADF4 markedly enhance drought resistance in soil when compared with WT. On the other hand, drought tolerance analysis showed that overexpression of CARK3 could rescue adf4 drought susceptibility. Taken together, our results suggest that CARK3 acts as a regulator in hypocotyl elongation and drought tolerance likely via regulating ADF4 phosphorylation.
Collapse
|
4
|
Kumar P, Singh S, Pranaw K, Kumar S, Singh B, Poria V. Bioinoculants as mitigators of multiple stresses: A ray of hope for agriculture in the darkness of climate change. Heliyon 2022; 8:e11269. [PMID: 36339753 PMCID: PMC9634370 DOI: 10.1016/j.heliyon.2022.e11269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022] Open
Abstract
Plant encounters various biotic and abiotic stresses, that affect agricultural productivity and reduce farmer's income especially under changing global climate. These environmental stresses can advance plant senescence by inducing osmotic stress, nutrient stress, hormonal imbalance, production of oxygen radicals, and ion toxicity, etc. Additionally, these stresses are not limited to plant health but also deteriorate soil health by affecting the microbial diversity of soil. To tackle this global delinquent of agriculture, several methods are suggested to ameliorate the negative effect of different types of stresses, the application of beneficial microorganisms or bioinoculants is one of them. Beneficial microorganisms that are used as bioinoculants not only facilitate plant growth by fulfilling the nutrient requirements but also assist the plant to withstand these stresses. These microorganisms produce certain chemicals such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, phytohormones, antioxidants, extracellular polysaccharide (EPS), siderophores, antibiotics, and volatile organic compounds (VOCs), etc. which help the plants to mitigate various stresses. Besides, these microbes also activate plant defence responses. Thus, these bioinoculants can effectively replace chemical inputs to supplement nutrient requirements and mitigation of multiple stresses in plants.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland
| | - Sandeep Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Balkar Singh
- Department of Botany, Arya PG College, Panipat, Haryana, 132103, India
| | - Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| |
Collapse
|
5
|
Dubas E, Castillo AM, Żur I, Krzewska M, Vallés MP. Microtubule organization changes severely after mannitol and n-butanol treatments inducing microspore embryogenesis in bread wheat. BMC PLANT BIOLOGY 2021; 21:586. [PMID: 34886809 PMCID: PMC8656030 DOI: 10.1186/s12870-021-03345-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND A mannitol stress treatment and a subsequent application of n-butanol, known as a microtubule-disrupting agent, enhance microspore embryogenesis (ME) induction and plant regeneration in bread wheat. To characterize changes in cortical (CMT) and endoplasmic (EMT) microtubules organization and dynamics, associated with ME induction treatments, immunocytochemistry studies complemented by confocal laser scanning microscopy (CLSM) were accomplished. This technique has allowed us to perform advanced 3- and 4D studies of MT architecture. The degree of MT fragmentation was examined by the relative fluorescence intensity quantification. RESULTS In uni-nucleated mannitol-treated microspores, severe CMT and EMT fragmentation occurs, although a complex network of short EMT bundles protected the nucleus. Additional treatment with n-butanol resulted in further depolymerization of both CMT and EMT, simultaneously with the formation of MT aggregates in the perinuclear region. Some aggregates resembled a preprophase band. In addition, a portion of the microspores progressed to the first mitotic division during the treatments. Bi-nucleate pollen-like structures showed a high MT depolymerization after mannitol treatment and numerous EMT bundles around the vegetative and generative nuclei after n-butanol. Interestingly, bi-nucleate symmetric structures showed prominent stabilization of EMT. CONCLUSIONS Fragmentation and stabilization of microtubules induced by mannitol- and n-butanol lead to new configurations essential for the induction of microspore embryogenesis in bread wheat. These results provide robust insight into MT dynamics during EM induction and open avenues to address newly targeted treatments to induce ME in recalcitrant species.
Collapse
Affiliation(s)
- E Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - A M Castillo
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain
| | - I Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M P Vallés
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
6
|
Han SH, Kim JY, Lee JH, Park CM. Safeguarding genome integrity under heat stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab355. [PMID: 34343307 DOI: 10.1093/jxb/erab355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Heat stress adversely affects an array of molecular and cellular events in plant cells, such as denaturation of protein and lipid molecules and malformation of cellular membranes and cytoskeleton networks. Genome organization and DNA integrity are also disturbed under heat stress, and accordingly, plants have evolved sophisticated adaptive mechanisms that either protect their genomes from deleterious heat-induced damages or stimulate genome restoration responses. In particular, it is emerging that DNA damage responses are a critical defense process that underlies the acquirement of thermotolerance in plants, during which molecular players constituting the DNA repair machinery are rapidly activated. In recent years, thermotolerance genes that mediate the maintenance of genome integrity or trigger DNA repair responses have been functionally characterized in various plant species. Furthermore, accumulating evidence supports that genome integrity is safeguarded through multiple layers of thermoinduced protection routes in plant cells, including transcriptome adjustment, orchestration of RNA metabolism, protein homeostasis, and chromatin reorganization. In this review, we summarize topical progresses and research trends in understanding how plants cope with heat stress to secure genome intactness. We focus on molecular regulatory mechanisms by which plant genomes are secured against the DNA-damaging effects of heat stress and DNA damages are effectively repaired. We will also explore the practical interface between heat stress response and securing genome integrity in view of developing biotechnological ways of improving thermotolerance in crop species under global climate changes, a worldwide ecological concern in agriculture.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Mwamba TM, Islam F, Ali B, Lwalaba JLW, Gill RA, Zhang F, Farooq MA, Ali S, Ulhassan Z, Huang Q, Zhou W, Wang J. Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. CHEMOSPHERE 2020; 250:126308. [PMID: 32135439 DOI: 10.1016/j.chemosphere.2020.126308] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 05/21/2023]
Abstract
Recently, oilseed rape has gathered interest for its ability to withstand elevated metal contents in plant, a key feature for remediation of contaminated soils. In this study, comparative and functional metabolomic analyses using liquid chromatography/mass spectrometry were undertaken to explore the metabolic basis of this attribute under cadmium (Cd) stress. Results revealed both conserved and differential metabolomic responses between genotype CB671 (tolerant Cd-accumulating) and its sensitive counterpart ZD622. CB671 responded to Cd stress by rearranging carbon flux towards production of compatible solutes, sugar storage forms and ascorbate, as well as jasmonates, ethylene and vitamin B6. Intriguingly, IAA abundance was reduced by 1.91-fold, which was in connection with tryptophan funnelling into serotonin (3.48-fold rise). In ZD622 by contrast, Cd provoked drastic depletion of carbohydrates and vitamins, but subtle hormones alteration. A striking accumulation of unsaturated fatty acids and oxylipins in CB671, paralleled by glycerophospholipids build-up and induction of inositol-derived signalling metabolites (up to 5.41-fold) suggested ability for prompt triggering of detoxifying mechanisms. Concomitantly, phytosteroids, monoterpenes and carotenoids were induced, denoting fine-tuned mechanisms for membrane maintenance, which was not evident in ZD622. Further, ZD622 markedly accumulated phenolics from upstream sub-classes of flavonoids; in CB671 however, a distinct phenolic wiring was activated, prioritizing anthocyanins and lignans instead. Along with cell wall (CW) saccharides, the activation of lignans evoked CW priming in CB671. Current results have demonstrated existence of notable metabolomic-based strategies for Cd tolerance in metal-accumulating oilseed rapes, and provided a holistic view of metabolites potentially contributing to Cd tolerance in this species.
Collapse
Affiliation(s)
- T M Mwamba
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China; Department of Crop Science, University of Lubumbashi, Lubumbashi, 1825, DR Congo
| | - F Islam
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - B Ali
- Department of Agronomy, University of Agriculture Faisalabad, 38040, Pakistan
| | - J L W Lwalaba
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China; Department of Crop Science, University of Lubumbashi, Lubumbashi, 1825, DR Congo
| | - R A Gill
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - F Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - M A Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - S Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Z Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Q Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - W Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - J Wang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Medvedev S, Voronina O, Tankelyun O, Bilova T, Suslov D, Bankin M, Mackievic V, Makavitskaya M, Shishova M, Martinec J, Smolikova G, Sharova E, Demidchik V. Phosphatidic acids mediate transport of Ca 2+ and H + through plant cell membranes. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:533-542. [PMID: 30940327 DOI: 10.1071/fp18242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Phosphatidic acids (PAs) are a key intermediate in phospholipid biosynthesis, and a central element in numerous signalling pathways. Functions of PAs are related to their fundamental role in molecular interactions within cell membranes modifying membrane bending, budding, fission and fusion. Here we tested the hypothesis that PAs are capable of direct transport of ions across bio-membranes. We have demonstrated that PAs added to the maize plasma membrane vesicles induced ionophore-like transmembrane transport of Ca2+, H+ and Mg2+. PA-induced Ca2+ fluxes increased with an increasing PAs acyl chain unsaturation. For all the PAs analysed, the effect on Ca2+ permeability increased with increasing pH (pH 8.0>pH 7.2>pH 6.0). The PA-induced Ca2+, Mg2+ and H+ permeability was also more pronounced in the endomembrane vesicles as compared with the plasma membrane vesicles. Addition of PA to protoplasts from Arabidopsis thaliana (L.) Heynh. roots constitutively expressing aequorin triggered elevation of the cytosolic Ca2+ activity, indicating that the observed PA-dependent Ca2+ transport occurs in intact plants.
Collapse
Affiliation(s)
- Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia; and Corresponding authors. Emails: ;
| | - Olga Voronina
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Olga Tankelyun
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Dmitry Suslov
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Mikhail Bankin
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Viera Mackievic
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
| | - Maryia Makavitskaya
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
| | - Maria Shishova
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Jan Martinec
- Institute of Experimental Botany AS CR, vvi, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Elena Sharova
- Department of Plant Physiology and Biochemistry, St Petersburg State University, Universitetskaya em. 7-9, 199034, St Petersburg, Russia
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus; and Corresponding authors. Emails: ;
| |
Collapse
|
9
|
Zhang Q, Qu Y, Wang Q, Song P, Wang P, Jia Q, Guo J. Arabidopsis phospholipase D alpha 1-derived phosphatidic acid regulates microtubule organization and cell development under microtubule-interacting drugs treatment. JOURNAL OF PLANT RESEARCH 2017; 130:193-202. [PMID: 27864640 DOI: 10.1007/s10265-016-0870-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/21/2023]
Abstract
Phospholipase D (PLD) and its product phosphatidic acid (PA) are emerging as essential regulators of cytoskeleton organization in plants. However, the underlying molecular mechanisms of PA-mediated microtubule reorganization in plants remain largely unknown. In this study, we used pharmacological and genetic approaches to analyze the function of Arabidopsis thaliana PLDα1 in the regulation of microtubule organization and cell development in response to microtubule-affecting drugs. Treatment with the microtubule-stabilizing drug paclitaxel resulted in less growth inhibition and decreased rightward slant of roots, longitudinal alignment of microtubules, and enhanced length of hypocotyl epidermal cells in the pldα1 mutant, the phenotype of which was rescued by exogenous application of PA. Moreover, the pldα1 mutant was sensitive to the microtubule-disrupting drugs oryzalin and propyzamide in terms of seedling survival ratio, left-skewing angle of roots and microtubule organization. In addition, both disruption and stabilization of microtubules induced by drugs activated PLDα1 activity. Our findings demonstrate that in A. thaliana, PLDα1/PA might regulate cell development by modulating microtubule organization in an activity-dependent manner.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qing Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ping Song
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Peipei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinhe Guo
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
10
|
Environmental and Endogenous Control of Cortical Microtubule Orientation. Trends Cell Biol 2016; 26:409-419. [DOI: 10.1016/j.tcb.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
11
|
Armendariz AL, Talano MA, Villasuso AL, Travaglia C, Racagni GE, Reinoso H, Agostini E. Arsenic stress induces changes in lipid signalling and evokes the stomata closure in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:45-52. [PMID: 26963899 DOI: 10.1016/j.plaphy.2016.02.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/18/2016] [Accepted: 02/26/2016] [Indexed: 05/20/2023]
Abstract
Soybean (Glycine max) is often exposed to high arsenic (As) level in soils or through irrigation with groundwater. In previous studies on As-treated soybean seedlings we showed deleterious effect on growth, structural alterations mainly in root vascular system and induction of antioxidant enzymes. However, there are not reports concerning signal transduction pathways triggered by the metalloid in order to develop adaptive mechanisms. Phosphatidic acid (PA), a key messenger in plants, can be generated via phospholipase D (PLD) or via phospholipase C (PLC) coupled to diacylglycerol kinase (DGK). Thus, changes in PA and in an enzyme involved in its metabolism (PLD) were analysed in soybean seedlings treated with 25 μM AsV or AsIII. The present study demonstrated that As triggers the PA signal by PLD and also via PLC/DGK mainly after 48 h of As treatment. DGPP, other lipid messenger produced by phosphorylation of PA by PAK increased in As treated roots. Arsenic also induced rapid and significant stomatal closure after 1.5 h of treatment, mainly with AsIII, probably as an adaptive response to the metalloid to reduce water loss by transpiration. This report constitute the first evidence that shows the effects of As on lipid signalling events in soybean seedlings which would be crucial in adaptation and survival of soybean seedlings under As stress.
Collapse
Affiliation(s)
- Ana L Armendariz
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Melina A Talano
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Ana L Villasuso
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Claudia Travaglia
- Departamento de Morfología Vegetal, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Graciela E Racagni
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Herminda Reinoso
- Departamento de Morfología Vegetal, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, CP 5800 Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
12
|
Chen Y, Chen C, Tan Z, Liu J, Zhuang L, Yang Z, Huang B. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:102. [PMID: 26904068 PMCID: PMC4746305 DOI: 10.3389/fpls.2016.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/19/2016] [Indexed: 05/25/2023]
Abstract
Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 10(6) clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance.
Collapse
Affiliation(s)
- Yu Chen
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Chuanming Chen
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhiqun Tan
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Jun Liu
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Lili Zhuang
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhimin Yang
- Department of Turfgrass Science, College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New JerseyNew Brunswick, NJ, USA
| |
Collapse
|
13
|
Zhang Q, Zhang W. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells. Protein Cell 2016; 7:81-8. [PMID: 26687389 PMCID: PMC4742386 DOI: 10.1007/s13238-015-0233-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/31/2015] [Indexed: 12/16/2022] Open
Abstract
Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|