1
|
Zhao Z, Zhang Y, Li W, Tang Y, Wang S. Transcriptomics and Physiological Analyses Reveal Changes in Paclitaxel Production and Physiological Properties in Taxus cuspidata Suspension Cells in Response to Elicitors. PLANTS (BASEL, SWITZERLAND) 2023; 12:3817. [PMID: 38005714 PMCID: PMC10674800 DOI: 10.3390/plants12223817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
In this research, the cell growth, physiological, and biochemical reactions, as well as the paclitaxel production, of Taxus cuspidata suspension cells after treatment with polyethylene glycol (PEG), cyclodextrin (CD), or salicylic acid (SA) (alone or in combination) were investigated. To reveal the paclitaxel synthesis mechanism of T. cuspidata suspension cells under elicitor treatment, the transcriptomics of the Control group and P + C + S group (PEG + CD + SA) were compared. The results show that there were no significant differences in cell biomass after 5 days of elicitor treatments. However, the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and the activities of phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) after elicitor combination treatments were decreased compared with the single-elicitor treatment. Meanwhile, the antioxidant enzyme activity (superoxide dismutase (SOD), catalase (CAT), and peroxidase (PO)) and the contents of soluble sugar and soluble protein were increased after combination elicitor treatments. Additionally, the paclitaxel yield after treatment with the combination of all three elicitors (P + C + S) was 6.02 times higher than that of the Control group, thus indicating that the combination elicitor treatments had a significant effect on paclitaxel production in T. cuspidata cell suspension culture. Transcriptomics analysis revealed 13,623 differentially expressed genes (DEGs) between the Control and P + C + S treatment groups. Both GO and KEGG analyses showed that the DEGs mainly affected metabolic processes. DEGs associated with antioxidant enzymes, paclitaxel biosynthesis enzymes, and transcription factors were identified. It can be hypothesized that the oxidative stress of suspension cells occurred with elicitor stimulation, thereby leading to a defense response and an up-regulation of the gene expression associated with antioxidant enzymes, paclitaxel synthesis enzymes, and paclitaxel synthesis transcription factors; this ultimately increased the production of paclitaxel.
Collapse
Affiliation(s)
| | | | | | | | - Shujie Wang
- College of Biology and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
2
|
Deboever E, Van Aubel G, Rondelli V, Koutsioubas A, Mathelie-Guinlet M, Dufrene YF, Ongena M, Lins L, Van Cutsem P, Fauconnier ML, Deleu M. Modulation of plant plasma membrane structure by exogenous fatty acid hydroperoxide is a potential perception mechanism for their eliciting activity. PLANT, CELL & ENVIRONMENT 2022; 45:1082-1095. [PMID: 34859447 DOI: 10.1111/pce.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Oxylipins are lipid-derived molecules that are ubiquitous in eukaryotes and whose functions in plant physiology have been widely reported. They appear to play a major role in plant immunity by orchestrating reactive oxygen species (ROS) and hormone-dependent signalling pathways. The present work focuses on the specific case of fatty acid hydroperoxides (HPOs). Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this study, the potential of 13(S)-hydroperoxy-(9Z, 11E)-octadecadienoic acid (13-HPOD) and 13(S)-hydroperoxy-(9Z, 11E, 15Z)-octadecatrienoic acid (13-HPOT), as plant defence elicitors and the underlying mechanism of action is investigated. Arabidopsis thaliana leaf resistance to Botrytis cinerea was observed after root application with HPOs. They also activate early immunity-related defence responses, like ROS. As previous studies have demonstrated their ability to interact with plant plasma membranes (PPM), we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. The relationship between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events.
Collapse
Affiliation(s)
- Estelle Deboever
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Laboratory of Natural Molecules Chemistry, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- FytoFend S.A., Isnes, Belgium
| | - Géraldine Van Aubel
- FytoFend S.A., Isnes, Belgium
- Research Unit in Plant Cellular and Molecular Biology, University of Namur, Namur, Belgium
| | - Valeria Rondelli
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Segrate, Italy
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Garching, Germany
| | | | - Yves F Dufrene
- Institute of Biomolecular Science and Technology (IBST), Louvain-la-Neuve, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Laurence Lins
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Pierre Van Cutsem
- FytoFend S.A., Isnes, Belgium
- Research Unit in Plant Cellular and Molecular Biology, University of Namur, Namur, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Natural Molecules Chemistry, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
3
|
Gilliard G, Huby E, Cordelier S, Ongena M, Dhondt-Cordelier S, Deleu M. Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. FRONTIERS IN PLANT SCIENCE 2021; 12:749581. [PMID: 34675954 PMCID: PMC8523952 DOI: 10.3389/fpls.2021.749581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 05/08/2023]
Abstract
Plants are constantly facing abiotic and biotic stresses. To continue to thrive in their environment, they have developed many sophisticated mechanisms to perceive these stresses and provide an appropriate response. There are many ways to study these stress signals in plant, and among them, protoplasts appear to provide a unique experimental system. As plant cells devoid of cell wall, protoplasts allow observations at the individual cell level. They also offer a prime access to the plasma membrane and an original view on the inside of the cell. In this regard, protoplasts are particularly useful to address essential biological questions regarding stress response, such as protein signaling, ion fluxes, ROS production, and plasma membrane dynamics. Here, the tools associated with protoplasts to comprehend plant stress signaling are overviewed and their potential to decipher plant defense mechanisms is discussed.
Collapse
Affiliation(s)
- Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Eloïse Huby
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Sylvain Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
4
|
Jiménez-Pérez R, Almagro L, González-Sánchez MI, Pedreño MÁ, Valero E. Non-enzymatic screen-printed sensor based on PtNPs@polyazure A for the real-time tracking of the H2O2 secreted from living plant cells. Bioelectrochemistry 2020; 134:107526. [DOI: 10.1016/j.bioelechem.2020.107526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
|
5
|
Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med 2018; 122:202-220. [PMID: 29627452 DOI: 10.1016/j.freeradbiomed.2018.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are by-products of aerobic metabolism, and excessive production can result in oxidative stress and cell damage. In addition, ROS function as cellular messengers, working as redox regulators in a multitude of biological processes. Understanding ROS signalling and stress responses requires methods for precise imaging and quantification to monitor local, subcellular and global ROS dynamics with high selectivity, sensitivity and spatiotemporal resolution. In this review, we summarize the present knowledge for in vivo plant ROS imaging and detection, using both chemical probes and fluorescent protein-based biosensors. Certain characteristics of plant tissues, for example high background autofluorescence in photosynthetic organs and the multitude of endogenous antioxidants, can interfere with ROS and redox potential detection, making imaging extra challenging. Novel methods and techniques to measure in vivo plant ROS and redox changes with better selectivity, accuracy, and spatiotemporal resolution are therefore desirable to fully acknowledge the remarkably complex plant ROS signalling networks.
Collapse
Affiliation(s)
- Cristina Ortega-Villasante
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Alfonso Blázquez-Castro
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ángel Barón-Sola
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis E Hernández
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Burra DD, Lenman M, Levander F, Resjö S, Andreasson E. Comparative Membrane-Associated Proteomics of Three Different Immune Reactions in Potato. Int J Mol Sci 2018; 19:ijms19020538. [PMID: 29439444 PMCID: PMC5855760 DOI: 10.3390/ijms19020538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved different types of immune reactions but large-scale proteomics about these processes are lacking, especially in the case of agriculturally important crop pathosystems. We have established a system for investigating PAMP-triggered immunity (PTI) and two different effector-triggered immunity (ETI; triggered by Avr2 or IpiO) responses in potato. The ETI responses are triggered by molecules from the agriculturally important Phytophthora infestans interaction. To perform large-scale membrane protein-based comparison of these responses, we established a method to extract proteins from subcellular compartments in leaves. In the membrane fractions that were subjected to quantitative proteomics analysis, we found that most proteins regulated during PTI were also regulated in the same way in ETI. Proteins related to photosynthesis had lower abundance, while proteins related to oxidative and biotic stress, as well as those related to general antimicrobial defense and cell wall degradation, were found to be higher in abundance. On the other hand, we identified a few proteins—for instance, an ABC transporter-like protein—that were only found in the PTI reaction. Furthermore, we also identified proteins that were regulated only in ETI interactions. These included proteins related to GTP binding and heterotrimeric G-protein signaling, as well as those related to phospholipase signaling.
Collapse
Affiliation(s)
- Dharani Dhar Burra
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, 221 00 Lund, Sweden.
| | - Svante Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| |
Collapse
|
7
|
Lima AS, Prieto KR, Santos CS, Paula Valerio H, Garcia-Ochoa EY, Huerta-Robles A, Beltran-Garcia MJ, Di Mascio P, Bertotti M. In-vivo electrochemical monitoring of H 2O 2 production induced by root-inoculated endophytic bacteria in Agave tequilana leaves. Biosens Bioelectron 2017; 99:108-114. [PMID: 28746900 DOI: 10.1016/j.bios.2017.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023]
Abstract
A dual-function platinum disc microelectrode sensor was used for in-situ monitoring of H2O2 produced in A. tequilana leaves after inoculation of their endophytic bacteria (Enterobacter cloacae). Voltammetric experiments were carried out from 0.0 to -1.0V, a potential range where H2O2 is electrochemically reduced. A needle was used to create a small cavity in the upper epidermis of A. tequilana leaves, where the fabricated electrochemical sensor was inserted by using a manual three-dimensional micropositioner. Control experiments were performed with untreated plants and the obtained electrochemical results clearly proved the formation of H2O2 in the leaves of plants 3h after the E. cloacae inoculation, according to a mechanism involving endogenous signaling pathways. In order to compare the sensitivity of the microelectrode sensor, the presence of H2O2 was detected in the root hairs by 3,3-diaminobenzidine (DAB) stain 72h after bacterial inoculation. In-situ pH measurements were also carried out with a gold disc microelectrode modified with a film of iridium oxide and lower pH values were found in A. tequilana leaves treated with bacteria, which may indicate the plant produces acidic substances by biosynthesis of secondary metabolites. This microsensor could be an advantageous tool for further studies on the understanding of the mechanism of H2O2 production during the plant-endophyte interaction.
Collapse
Affiliation(s)
- Alex S Lima
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil.
| | - Kátia R Prieto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Carla S Santos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Hellen Paula Valerio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Evelyn Y Garcia-Ochoa
- Department of Chemistry ICET, Universidad Autonoma de Guadalajara, Patria 1201, Lomas del Valle, Zapopan, Jalisco, Mexico
| | - Aurora Huerta-Robles
- Institute of Engineering, Universidad Autonoma de Baja California, Blvd. B. Juarez y Calle de la Normal s/n, Mexicali, BC, Mexico
| | - Miguel J Beltran-Garcia
- Department of Chemistry ICET, Universidad Autonoma de Guadalajara, Patria 1201, Lomas del Valle, Zapopan, Jalisco, Mexico
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Ruelland E, Pokotylo I, Djafi N, Cantrel C, Repellin A, Zachowski A. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome. FRONTIERS IN PLANT SCIENCE 2014; 5:608. [PMID: 25426125 PMCID: PMC4227474 DOI: 10.3389/fpls.2014.00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/19/2014] [Indexed: 05/05/2023]
Abstract
Basal phosphoinositide-dependent phospholipase C (PI-PLC) activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG) from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK) on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA) treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently.
Collapse
Affiliation(s)
- Eric Ruelland
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- *Correspondence: Eric Ruelland, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Université Paris-Est Créteil, Faculté des Sciences, 61 Avenue du Général de Gaulle, 94010 Créteil, France e-mail:
| | - Igor Pokotylo
- Molecular Mechanisms of Plant Cell Regulation, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of SciencesKyiv, Ukraine
| | - Nabila Djafi
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| | - Catherine Cantrel
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| | - Anne Repellin
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| | - Alain Zachowski
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| |
Collapse
|