1
|
Heydarian Z, Harrington M, Hegedus DD. Defects in Glabrous 3 (GL3) functionality underlie the absence of trichomes in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1703-1719. [PMID: 38967095 DOI: 10.1111/tpj.16878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Previously, expression of the Arabidopsis thaliana GLABRA3 (GL3) induced trichome formation in Brassica napus. GL3 orthologues were examined from glabrous (B. oleracea), semi-glabrous (B. napus), moderately hirsute (B. rapa), and very hirsute (B. villosa) Brassica species. Ectopic expression of BnGL3, BrGL3 alleles, or BvGL3 induced trichome formation in glabrous B. napus with the effect on trichome number commensurate with density in the original accessions. Chimeric GL3 proteins in which the B. napus amino terminal region, which interacts with MYB proteins, or the middle region, which interacts with the WD40 protein TTG1, was exchanged with corresponding regions from A. thaliana were as stimulatory to trichome production as AtGL3. Exchange of the carboxy-terminal region containing a bHLH domain and an ACT domain did not alter the trichome stimulatory activity, although modeling of the ACT domain identified differences that could affect GL3 dimerization. B. napus A- and C-genomes orthologues differed in their abilities to form homo- and heterodimers. Modeling of the amino-terminal region revealed a conserved domain that may represent the MYB factor binding pocket. This region interacted with the MYB factors GL1, CPC, and TRY, as well as with JAZ8, which is involved in jasmonic acid-mediated regulation of MYC-like transcription factors. Protein interaction studies indicated that GL1 interaction with GL3 from B. napus and A. thaliana may underlie the difference in their respective abilities to induce trichome formation.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
- Department of Biotechnology, School of Agriculture, University of Shiraz, Bajgah, Shiraz, Fars, Iran
| | - Myrtle Harrington
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
De-la-Cruz IM, Oyama K, Núñez-Farfán J. The chromosome-scale genome and the genetic resistance machinery against insect herbivores of the Mexican toloache, Datura stramonium. G3 (BETHESDA, MD.) 2024; 14:jkad288. [PMID: 38113048 PMCID: PMC10849327 DOI: 10.1093/g3journal/jkad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Plant resistance refers to the heritable ability of plants to reduce damage caused by natural enemies, such as herbivores and pathogens, either through constitutive or induced traits like chemical compounds or trichomes. However, the genetic architecture-the number and genome location of genes that affect plant defense and the magnitude of their effects-of plant resistance to arthropod herbivores in natural populations remains poorly understood. In this study, we aimed to unveil the genetic architecture of plant resistance to insect herbivores in the annual herb Datura stramonium (Solanaceae) through quantitative trait loci mapping. We achieved this by assembling the species' genome and constructing a linkage map using an F2 progeny transplanted into natural habitats. Furthermore, we conducted differential gene expression analysis between undamaged and damaged plants caused by the primary folivore, Lema daturaphila larvae. Our genome assembly resulted in 6,109 scaffolds distributed across 12 haploid chromosomes. A single quantitative trait loci region on chromosome 3 was associated with plant resistance, spanning 0 to 5.17 cM. The explained variance by the quantitative trait loci was 8.44%. Our findings imply that the resistance mechanisms of D. stramonium are shaped by the complex interplay of multiple genes with minor effects. Protein-protein interaction networks involving genes within the quantitative trait loci region and overexpressed genes uncovered the key role of receptor-like cytoplasmic kinases in signaling and regulating tropane alkaloids and terpenoids, which serve as powerful chemical defenses against D. stramonium herbivores. The data generated in our study constitute important resources for delving into the evolution and ecology of secondary compounds mediating plant-insect interactions.
Collapse
Affiliation(s)
- Ivan M De-la-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Alnarp 230 53, Sweden
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES), Universidad Nacional Autónoma de México (UNAM), Campus Morelia, Morelia, Michoacán 8701, Mexico
| | - Juan Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Watts S, Kariyat R. An attempt at fixing the oversimplification of Nightshades' (genus Solanum) epidermal hair complexity. FRONTIERS IN PLANT SCIENCE 2023; 14:1176674. [PMID: 37841602 PMCID: PMC10569493 DOI: 10.3389/fpls.2023.1176674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Sakshi Watts
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
4
|
Liu ZF, Ci XQ, Zhang SF, Zhang XY, Zhang X, Dong LN, Conran JG, Li J. Diverse Host Spectrum and the Parasitic Process in the Pantropical Hemiparasite Cassytha filiformis L. (Lauraceae) in China. DIVERSITY 2023. [DOI: 10.3390/d15040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Many hemiparasites attach to a range of different host species, resulting in complex parasite–host interactions. Comprehensive molecular phylogenies allow the investigation of evolutionary relationships between these host plants. We surveyed the hosts of the laurel dodder (Cassytha filiformis, Lauraceae) in China, representing 184 species from 146 genera, 67 families, and spanning flowering plants, conifers, and ferns, using host phylogenetic relationships to investigate the susceptibility to attack by this hemiparasitic plant among the vascular plants. The process of produced well-formed haustoria by C. filiformis was also observed in detail for six different hosts. Our results show that C. filiformis grows mainly on trees and shrubs from phylogenetically divergent members of the rosid and asterid eudicot clades, often attacking multiple adjacent hosts simultaneously, and forming extensive colonies. However, whether and to what extent transitions between C. filiformis and host plants occur remain unclear. Physiological evidence for the complex parasite–host species interactions need to be studied in the future.
Collapse
|
5
|
Albanova IA, Zagorchev LI, Teofanova DR, Odjakova MK, Kutueva LI, Ashapkin VV. Host Resistance to Parasitic Plants-Current Knowledge and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1447. [PMID: 37050073 PMCID: PMC10096732 DOI: 10.3390/plants12071447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Parasitic flowering plants represent a diverse group of angiosperms, ranging from exotic species with limited distribution to prominent weeds, causing significant yield losses in agricultural crops. The major damage caused by them is related to the extraction of water and nutrients from the host, thus decreasing vegetative growth, flowering, and seed production. Members of the root parasites of the Orobanchaceae family and stem parasites of the genus Cuscuta are among the most aggressive and damaging weeds, affecting both monocotyledonous and dicotyledonous crops worldwide. Their control and eradication are hampered by the extreme seed longevity and persistence in soil, as well as their taxonomic position, which makes it difficult to apply selective herbicides not damaging to the hosts. The selection of resistant cultivars is among the most promising approaches to deal with this matter, although still not widely employed due to limited knowledge of the molecular mechanisms of host resistance and inheritance. The current review aims to summarize the available information on host resistance with a focus on agriculturally important parasitic plants and to outline the future perspectives of resistant crop cultivar selection to battle the global threat of parasitic plants.
Collapse
Affiliation(s)
- Ivanela A. Albanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Lyuben I. Zagorchev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Denitsa R. Teofanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Mariela K. Odjakova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Lyudmila I. Kutueva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vasily V. Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
6
|
Zhou L, Zawaira A, Lu Q, Yang B, Li J. Transcriptome analysis reveals defense-related genes and pathways during dodder (Cuscuta australis) parasitism on white clover (Trifolium repens). Front Genet 2023; 14:1106936. [PMID: 37007956 PMCID: PMC10060986 DOI: 10.3389/fgene.2023.1106936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Dodders (Cuscuta australis R. Br.) are holo-parasitic stem angiosperms with an extensive host range that have significant ecological and economic potential impact on the ecosystem and the agricultural system. However, how the host plant responds to this biotic stress remains mostly unexplored. To identify the defense-related genes and the pathways in white clover (Trifolium repens L.) induced by dodder parasitism, we performed a comparative transcriptome analysis of the leaf and root tissues from white clover with and without dodder infection by high throughput sequencing. We identified 1,329 and 3,271 differentially expressed genes (DEGs) in the leaf and root tissues, respectively. Functional enrichment analysis revealed that plant-pathogen interaction, plant hormone signal transduction, and phenylpropanoid biosynthesis pathways were significantly enriched. Eight WRKY, six AP2/ERF, four bHLH, three bZIP, three MYB, and three NAC transcription factors showed a close relationship with lignin synthesis-related genes, which defended white clover against dodder parasitism. Real-time quantitative PCR (RT-qPCR) for nine DEGs, further validated the data obtained from transcriptome sequencing. Our results provide new insights into understanding the complex regulatory network behind these parasite-host plant interactions.
Collapse
Affiliation(s)
- Li Zhou
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Alexander Zawaira
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Qiuwei Lu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Beifen Yang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
- *Correspondence: Junmin Li,
| |
Collapse
|
7
|
Fan Y, Zhao Q, Duan H, Bi S, Hao X, Xu R, Bai R, Yu R, Lu W, Bao T, Wuriyanghan H. Large-scale mRNA transfer between Haloxylon ammodendron (Chenopodiaceae) and herbaceous root holoparasite Cistanche deserticola (Orobanchaceae). iScience 2022; 26:105880. [PMID: 36686392 PMCID: PMC9852350 DOI: 10.1016/j.isci.2022.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Exchanges of mRNA were shown between host and stem parasites but not root parasites. Cistanche deserticola (Orobanchaceae) is a holoparasitic herb which parasitizes on the roots of woody plant Haloxylon ammodendron (Chenopodiaceae). We used transcriptome sequencing and bioinformatic analyses to identify nearly ten thousand mobile mRNAs. Transcript abundance appears to be a driving force for transfer event and mRNA exchanges occur through haustorial junction. Mobility of selected mRNAs was confirmed in situ and in sunflower-Orobanche cumana heterologous parasitic system. Four C. deserticola →H. ammodendron mobile mRNAs appear to facilitate haustorium development. Of interest, two mobile mRNAs of putative resistance genes CdNLR1 and CdNLR2 cause root-specific hypersensitive response and retard parasite development, which might contribute to parasitic equilibrium. The present study provides evidence for the large-scale mRNA transfer event between a woody host and a root parasite, and demonstrates the functional relevance of six C. deserticola genes in host-parasite interactions.
Collapse
Affiliation(s)
- Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuxin Bi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaomin Hao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Rui Xu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Runyao Bai
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenting Lu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Tiejun Bao
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China,Corresponding author
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China,Corresponding author
| |
Collapse
|
8
|
Mudgal G, Kaur J, Chand K, Parashar M, Dhar SK, Singh GB, Gururani MA. Mitigating the Mistletoe Menace: Biotechnological and Smart Management Approaches. BIOLOGY 2022; 11:1645. [PMID: 36358346 PMCID: PMC9687506 DOI: 10.3390/biology11111645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2023]
Abstract
Mistletoes have been considered a keystone resource for biodiversity, as well as a remarkable source of medicinal attributes that attract pharmacologists. Due to their hemiparasitic nature, mistletoes leach water and nutrients, including primary and secondary metabolites, through the vascular systems of their plant hosts, primarily trees. As a result of intense mistletoe infection, the hosts suffer various growth and physiological detriments, which often lead to tree mortality. Because of their easy dispersal and widespread tropism, mistletoes have become serious pests for commercial fruit and timber plantations. A variety of physical and chemical treatment methods, along with silvicultural practices, have shaped conventional mistletoe management. Others, however, have either failed to circumvent the growing range and tropism of these parasitic plants or present significant environmental and public health risks. A biocontrol approach that could sidestep these issues has never achieved full proof of concept in real-field applications. Our review discusses the downsides of conventional mistletoe control techniques and explores the possibilities of biotechnological approaches using biocontrol agents and transgenic technologies. It is possible that smart management options will pave the way for technologically advanced solutions to mitigate mistletoes that are yet to be exploited.
Collapse
Affiliation(s)
- Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Jaspreet Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Kartar Chand
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manisha Parashar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Sanjoy K. Dhar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Gajendra B. Singh
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Mayank A. Gururani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
9
|
Jhu MY, Sinha NR. Parasitic Plants: An Overview of Mechanisms by Which Plants Perceive and Respond to Parasites. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:433-455. [PMID: 35363532 DOI: 10.1146/annurev-arplant-102820-100635] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In contrast to most autotrophic plants, which produce carbohydrates from carbon dioxide using photosynthesis, parasitic plants obtain water and nutrients by parasitizing host plants. Many important crop plants are infested by these heterotrophic plants, leading to severe agricultural loss and reduced food security. Understanding how host plants perceive and resist parasitic plants provides insight into underlying defense mechanisms and the potential for agricultural applications. In this review, we offer a comprehensive overview of the current understanding of host perception of parasitic plants and the pre-attachment and post-attachment defense responses mounted by the host. Since most current research overlooks the role of organ specificity in resistance responses, we also summarize the current understanding and cases of cross-organ parasitism, which indicates nonconventional haustorial connections on other host organs, for example, when stem parasitic plants form haustoria on their host roots. Understanding how different tissue types respond to parasitic plants could provide the potential for developing a universal resistance mechanism in crops against both root and stem parasitic plants.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Department of Plant Biology, University of California, Davis, California, USA;
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, California, USA;
| |
Collapse
|
10
|
Abstract
Plant epidermis are multifunctional surfaces that directly affect how plants interact with animals or microorganisms and influence their ability to harvest or protect from abiotic factors. To do this, plants rely on minuscule structures that confer remarkable properties to their outer layer. These microscopic features emerge from the hierarchical organization of epidermal cells with various shapes and dimensions combined with different elaborations of the cuticle, a protective film that covers plant surfaces. Understanding the properties and functions of those tridimensional elements as well as disentangling the mechanisms that control their formation and spatial distribution warrant a multidisciplinary approach. Here we show how interdisciplinary efforts of coupling modern tools of experimental biology, physics, and chemistry with advanced computational modeling and state-of-the art microscopy are yielding broad new insights into the seemingly arcane patterning processes that sculpt the outer layer of plants.
Collapse
Affiliation(s)
- Lucie Riglet
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Stefano Gatti
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Edwige Moyroud
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
- Department of Genetics, Downing Site, CB2 3EJ, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Bao G, Song M, Wang Y, Saikkonen K, Li C. Does Epichloë Endophyte Enhance Host Tolerance to Root Hemiparasite? MICROBIAL ECOLOGY 2021; 82:35-48. [PMID: 32086543 DOI: 10.1007/s00248-020-01496-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Epichloë endophytes have been shown to be mutualistic symbionts of cool-season grasses under most environmental conditions. Although pairwise interactions between hemiparasites and their hosts are heavily affected by host-associated symbiotic microorganisms, little attention has been paid to the effects of microbe-plant interactions, particularly endophytic symbiosis, in studies examining the effects of parasitic plants on host performance. In this study, we performed a greenhouse experiment to examine the effects of hereditary Epichloë endophyte symbiosis on the growth of two host grasses (Stipa purpurea and Elymus tangutorum) in the presence or absence of a facultative root hemiparasite (Pedicularis kansuensis Maxim). We observed parasitism of both hosts by P. kansuensis: when grown with a host plant, the hemiparasite decreased the performance of the host while improving its own biomass and survival rate of the hemiparasite. Parasitized endophyte-infected S. purpurea plants had higher biomass, tillers, root:shoot ratio, and photosynthetic parameters and a lower number of functional haustoria than the endophyte-free S. purpurea conspecifics. By contrast, parasitized endophyte-infected E. tangutorum had a lower biomass, root:shoot ratio, and photosynthetic parameters and a higher number of haustoria and functional haustoria than their endophyte-free counterparts. Our results reveal that the interactions between the endophytes and the host grasses are context dependent and that plant-plant interactions can strongly affect their mutualistic interactions. Endophytes originating from S. purpurea alleviate the host biomass reduction by P. kansuensis and growth depression in the hemiparasite. These findings shed new light on using grass-endophyte symbionts as biocontrol methods for the effective and sustainable management of this weedy hemiparasite.
Collapse
Affiliation(s)
- Gensheng Bao
- Academy of Animal and Veterinary Medicine, Qinghai University, Xining, 810016, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, 730020, Lanzhou, China
| | - Meiling Song
- Academy of Animal and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Yuqin Wang
- Academy of Animal and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
12
|
Pelagio-Flores R, Muñoz-Parra E, Barrera-Ortiz S, Ortiz-Castro R, Saenz-Mata J, Ortega-Amaro MA, Jiménez-Bremont JF, López-Bucio J. The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses. PLANTA 2019; 251:2. [PMID: 31776759 DOI: 10.1007/s00425-019-03296-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
CRK28, a cysteine-rich receptor-like kinase, plays a role in root organogenesis and overall growth of plants and antagonizes abscisic acid response in seed germination and primary root growth. Receptor-like kinases (RLK) orchestrate development and adaptation to environmental changes in plants. One of the largest RLK groups comprises cysteine-rich receptor-like kinases (CRKs), for which the function of most members remains unknown. In this report, we show that the loss of function of CRK28 led to the formation of roots that are longer and more branched than the parental (Col-0) plantlets, and this correlates with an enhanced domain of the mitotic reporter CycB1:uidA in primary root meristems, whereas CRK28 overexpressing lines had the opposite phenotype, including slow root growth and reduced lateral root formation. Epidermal cell analyses revealed that crk28 mutants had reduced root hair length and increased trichome number, whereas 35S::CRK28 lines present primary roots with longer root hairs but lesser trichomes in leaves. The overall growth in soil of crk28 mutant and CRK28 overexpressing lines was reduced or enhanced, respectively, when compared to the parental (Col-0) seedlings, while germination, root growth and expression analyses of ABI3 and ABI5 further showed that CRK28 modulates ABA responses, which may be important to fine-tune plant morphogenesis. Our study unravels the participation of RLK signaling in root growth and epidermal cell differentiation.
Collapse
Affiliation(s)
- Ramón Pelagio-Flores
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico
| | - Edith Muñoz-Parra
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, VER, Mexico
| | - Jorge Saenz-Mata
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n, Fracc. Filadelfia, 35010, Gómez Palacio, DGO, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico.
| |
Collapse
|
13
|
Furlan CM, Anselmo-Moreira F, Teixeira-Costa L, Ceccantini G, Salminen JP. Does Phoradendron perrottetii (mistletoe) alter polyphenols levels of Tapirira guianensis (host plant)? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:222-229. [PMID: 30703634 DOI: 10.1016/j.plaphy.2019.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/05/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The present study aimed to investigate the reciprocal effects of Phoradendron perrottetii (mistletoe) and T. guianensis (host plant) regarding their polyphenol composition. Taking into account that tannins are important molecules in plant defense and their biosynthesis tends to be enhanced when a species is exposed to stress, we address the following questions: (1) Are the tannins found in our model species important in the interaction between host and mistletoe? (2) Does the presence of mistletoe induce changes in the content of tannins and other polyphenols in the host plant? (3) Do we find differences between the tannin sub-groups in the responses of the host plant to mistletoe? (4) Could the observed differences reflect the relative importance of one tannin group over another as chemical defense against the mistletoe? Using a polyphenol and tannin group-specific MRM methods we quantified four different tannin sub-groups together with flavonoid and quinic acid derivatives by ultra-performance liquid chromatography tandem mass spectrometry together with the oxidative and protein precipitation activities of leaves and branches of Tapirira guianensis and Phoradendron perrottetii. We selected leaves and branches of six non-parasitized trees of T. guianensis. Leaves and branches of nine individuals of T. guianensis parasitized by P. perrottetii were also sampled. For each parasitized tree, we sampled an infested branch and its leaves, as well as a non-infested branch and its leaves. Infested branches were divided into three groups: gall (the host-parasite interface), proximal, and distal region. Both proanthocyanidins and ellagitanins seem to be important for plant-plant parasitism interaction: host infested tissues (gall and surrounding regions) have clearly less tannin contents than healthy tissues. Mistletoe showed high levels of quinic acid derivatives and flavonoids that could be important during hastorium formation and intrusion on host tissues, suggesting a defense mechanism that could promote oxidative stress together with an inhibition of mistletoe seed germination, consequently avoiding secondary infestations. Polyphenol detected in T. guianensis-P. perrottetii interaction could play different role as plant-mistletoe strategies of survival.
Collapse
Affiliation(s)
- Cláudia Maria Furlan
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil.
| | - Fernanda Anselmo-Moreira
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Luíza Teixeira-Costa
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Gregório Ceccantini
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
14
|
Anselmo-Moreira F, Teixeira-Costa L, Ceccantini G, Furlan CM. Mistletoe effects on the host tree Tapirira guianensis: insights from primary and secondary metabolites. CHEMOECOLOGY 2018. [DOI: 10.1007/s00049-018-0272-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Dalio RJD, Máximo HJ, Oliveira TS, Azevedo TDM, Felizatti HL, Campos MDA, Machado MA. Molecular Basis of Citrus sunki Susceptibility and Poncirus trifoliata Resistance Upon Phytophthora parasitica Attack. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:386-398. [PMID: 29125028 DOI: 10.1094/mpmi-05-17-0112-fi] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coevolution has shaped the molecular basis of an extensive number of defense mechanisms in plant-pathogen interactions. Phytophthora parasitica, a hemibiothrophic oomycete pathogen and the causal agent of citrus root rot and gummosis, interacts differently with Citrus sunki and Poncirus trifoliata, two commonly favored citrus rootstocks that are recognized as susceptible and resistant, respectively, to P. parasitica. The molecular core of these interactions remains elusive. Here, we provide evidence on the defense strategies employed by both susceptible and resistant citrus rootstocks, in parallel with P. parasitica deployment of effectors. Time course expression analysis (quantitative real-time polymerase chain reaction) of several defense-related genes were evaluated during i) plant disease development, ii) necrosis, and iii) pathogen effector gene expression. In C. sunki, P. parasitica deploys effectors, including elicitins, NPP1 (necrosis-inducing Phytophthora protein 1), CBEL (cellulose-binding elicitor and lectin activity), RxLR, and CRN (crinkler), and, consequently, this susceptible plant activates its main defense signaling pathways that result in the hypersensitive response and necrosis. Despite the strong plant-defense response, it fails to withstand P. parasitica invasion, confirming its hemibiothrophic lifestyle. In Poncirus trifoliata, the effectors were strongly expressed, nevertheless failing to induce any immunity manipulation and disease development, suggesting a nonhost resistance type, in which the plant relies on preformed biochemical and anatomical barriers.
Collapse
Affiliation(s)
| | - Heros José Máximo
- 1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil
| | - Tiago Silva Oliveira
- 1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil
| | | | - Henrique Leme Felizatti
- 2 Instituto de Matemática, Estatística e Computação Científica, Universidade de Campinas, Campinas-SP, Brazil; and
| | | | | |
Collapse
|
16
|
Aljbory Z, Chen MS. Indirect plant defense against insect herbivores: a review. INSECT SCIENCE 2018; 25:2-23. [PMID: 28035791 DOI: 10.1111/1744-7917.12436] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 05/09/2023]
Abstract
Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants.
Collapse
Affiliation(s)
- Zainab Aljbory
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
17
|
Farber DH, Mundt CC. Effect of Plant Age and Leaf Position on Susceptibility to Wheat Stripe Rust. PHYTOPATHOLOGY 2017; 107:412-417. [PMID: 27898264 DOI: 10.1094/phyto-07-16-0284-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In addition to pathogen propagule dispersal, disease spread requires successful infection of host tissue. In plant disease epidemiology, susceptibility of host tissue is often assumed to be constant. This assumption ignores changes in host phenology due to developmental stage. To examine this assumption, 3-, 4-, and 5-week-old wheat plants were inoculated with equal quantities of urediniospores of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust (WSR). Disease severity on each leaf was assessed and fit by mixed-effect linear model as a function of leaf position and plant age. Younger plants had significantly greater disease severity than older plants, with mean severities of 50.4, 30.1, and 12.9% on plants that were 3, 4, and 5 weeks old, respectively, at time of inoculation. This effect was greater on leaves higher on the plant. Within same-aged plants, younger leaves had significantly greater disease severity than older leaves, with mean severities of 40.2, 34.8, and 17.7% on the uppermost, second, and third leaf, respectively. These results suggest that the vertical distribution of WSR lesions in agricultural fields could be driven by differences in host susceptibility more so than propagule dispersal.
Collapse
Affiliation(s)
- D H Farber
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis 97331-2902
| | - C C Mundt
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis 97331-2902
| |
Collapse
|
18
|
Xin ZJ, Li XW, Bian L, Sun XL. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:77-84. [PMID: 27444230 DOI: 10.1017/s000748531600064x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Green leaf volatiles (GLVs) have been reported to play an important role in the host-locating behavior of several folivores that feed on angiosperms. However, next to nothing is known about how the green leafhopper, Empoasca vitis, chooses suitable host plants and whether it detects differing emission levels of GLV components among genetically different tea varieties. Here we found that the constitutive transcript level of the tea hydroperoxide lyase (HPL) gene CsiHPL1, and the amounts of (Z)-3-hexenyl acetate and of total GLV components are significantly higher in tea varieties that are susceptible to E. vitis (Enbiao (EB) and Banzhuyuan (BZY)) than in varieties that are resistant to E. vitis (Changxingzisun (CX) and Juyan (JY)). Moreover, the results of a Y-tube olfactometer bioassay and an oviposition preference assay suggest that (Z)-3-hexenyl acetate and (Z)-3-hexenol offer host and oviposition cues for E. vitis female adults. Taken together, the two GLV components, (Z)-3-hexenol and especially (Z)-3-hexenyl acetate, provide a plausible mechanism by which tea green leafhoppers distinguish among resistant and susceptible varieties. Future research should be carried out to obtain the threshold of the above indices and then assess their reasonableness. The development of practical detection indices would greatly improve our ability to screen and develop tea varieties that are resistant to E. vitis.
Collapse
Affiliation(s)
- Z-J Xin
- Tea Research Institute,Chinese Academy of Agricultural Sciences,Hangzhou 310008,China
| | - X-W Li
- Tea Research Institute,Chinese Academy of Agricultural Sciences,Hangzhou 310008,China
| | - L Bian
- Tea Research Institute,Chinese Academy of Agricultural Sciences,Hangzhou 310008,China
| | - X-L Sun
- Tea Research Institute,Chinese Academy of Agricultural Sciences,Hangzhou 310008,China
| |
Collapse
|
19
|
Ikeue D, Schudoma C, Zhang W, Ogata Y, Sakamoto T, Kurata T, Furuhashi T, Kragler F, Aoki K. A bioinformatics approach to distinguish plant parasite and host transcriptomes in interface tissue by classifying RNA-Seq reads. PLANT METHODS 2015; 11:34. [PMID: 26052341 PMCID: PMC4458054 DOI: 10.1186/s13007-015-0066-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/12/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND The genus Cuscuta is a group of parasitic plants that are distributed world-wide. The process of parasitization starts with a Cuscuta plant coiling around the host stem. The parasite's haustorial organs then establish a vascular connection allowing for access to the phloem content. The host and the parasite form new cellular connections, suggesting coordination of developmental and biochemical processes. Simultaneous monitoring of gene expression in the parasite's and host's tissues may shed light on the complex events occurring between the parasitic and host cells and may help to overcome experimental limitations (i.e. how to separate host tissue from Cuscuta tissue at the haustorial connection). A novel approach is to use bioinformatic analysis to classify sequencing reads as either belonging to the host or to the parasite and to characterize the expression patterns. Owing to the lack of a comprehensive genomic dataset from Cuscuta spp., such a classification has not been performed previously. RESULTS We first classified RNA-Seq reads from an interface region between the non-model parasitic plant Cuscuta japonica and the non-model host plant Impatiens balsamina. Without established reference sequences, we classified reads as originating from either of the plants by stepwise similarity search against de novo assembled transcript sets of C. japonica and I. balsamina, unigene sets of the same genus, and cDNA sequences of the same family. We then assembled de novo transcriptomes from the classified read sets. We assessed the quality of the classification by mapping reads to contigs of both plants, achieving a misclassification rate low enough (0.22-0.39%) to be used reliably for differential gene expression analysis. Finally, we applied our read classification method to RNA-Seq data from the interface between the non-model parasitic plant C. japonica and the model host plant Glycine max. Analysis of gene expression profiles at 5 parasitizing stages revealed differentially expressed genes from both C. japonica and G. max, and uncovered the coordination of cellular processes between the two plants. CONCLUSIONS We demonstrated that reliable identification of differentially expressed transcripts in undissected interface region of the parasite-host association is feasible and informative with respect to differential-expression patterns.
Collapse
Affiliation(s)
- Daisuke Ikeue
- />Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–1 Gakuen–Cho, Naka–Ku, Sakai, Osaka, 599–8531 Japan
| | - Christian Schudoma
- />Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, Potsdam, 14476 Germany
- />Present Address: Bioinformatics Group, The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| | - Wenna Zhang
- />Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, Potsdam, 14476 Germany
| | - Yoshiyuki Ogata
- />Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–1 Gakuen–Cho, Naka–Ku, Sakai, Osaka, 599–8531 Japan
| | - Tomoaki Sakamoto
- />Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916–5 Takayama, Ikoma, 630–0192 Japan
| | - Tetsuya Kurata
- />Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916–5 Takayama, Ikoma, 630–0192 Japan
| | - Takeshi Furuhashi
- />Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science (CSRC), 1–7–22 Suehiro, Tsurumi, Yokohama, 230–0045 Japan
- />Present Address: Department of Molecular Systems Biology (Ecogenomics and Systems Biology), Vienna University, Althanstraße 14, Vienna, A–1090 Austria
| | - Friedrich Kragler
- />Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, Potsdam, 14476 Germany
| | - Koh Aoki
- />Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–1 Gakuen–Cho, Naka–Ku, Sakai, Osaka, 599–8531 Japan
| |
Collapse
|
20
|
Hauser MT. Molecular basis of natural variation and environmental control of trichome patterning. FRONTIERS IN PLANT SCIENCE 2014; 5:320. [PMID: 25071803 PMCID: PMC4080826 DOI: 10.3389/fpls.2014.00320] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/17/2014] [Indexed: 05/17/2023]
Abstract
Trichomes are differentiated epidermal cells on above ground organs of nearly all land plants. They play important protective roles as structural defenses upon biotic attacks such as herbivory, oviposition and fungal infections, and against abiotic stressors such as drought, heat, freezing, excess of light, and UV radiation. The pattern and density of trichomes is highly variable within natural population suggesting tradeoffs between traits positively affecting fitness such as resistance and the costs of trichome production. The spatial distribution of trichomes is regulated through a combination of endogenous developmental programs and external signals. This review summarizes the current understanding on the molecular basis of the natural variation and the role of phytohormones and environmental stimuli on trichome patterning.
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| |
Collapse
|
21
|
Jiang L, Wijeratne AJ, Wijeratne S, Fraga M, Meulia T, Doohan D, Li Z, Qu F. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants. PLoS One 2013; 8:e81389. [PMID: 24312295 PMCID: PMC3842250 DOI: 10.1371/journal.pone.0081389] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/14/2013] [Indexed: 12/19/2022] Open
Abstract
Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.
Collapse
Affiliation(s)
- Linjian Jiang
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Asela J. Wijeratne
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Martina Fraga
- Wooster High School, Wooster, Ohio, United States of America
| | - Tea Meulia
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Doug Doohan
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
22
|
Fei M, Gols R, Harvey JA. Seasonal phenology of interactions involving short-lived annual plants, a multivoltine herbivore and its endoparasitoid wasp. J Anim Ecol 2013; 83:234-44. [PMID: 24028469 DOI: 10.1111/1365-2656.12122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/16/2013] [Indexed: 12/30/2022]
Abstract
Spatial-temporal realism is often missing in many studies of multitrophic interactions, which are conducted at a single time frame and/or involving interactions between insects with a single species of plant. In this scenario, an underlying assumption is that the host-plant species is ubiquitous throughout the season and that the insects always interact with it. We studied interactions involving three naturally occurring wild species of cruciferous plants, Brassica rapa, Sinapis arvensis and Brassica nigra, that exhibit different seasonal phenologies, and a multivoltine herbivore, the large cabbage white butterfly, Pieris brassicae, and its gregarious endoparasitoid wasp, Cotesia glomerata. The three plants have very short life cycles. In central Europe, B. rapa grows in early spring, S. arvensis in late spring and early summer, and B. nigra in mid to late summer. P. brassicae generally has three generations per year, and C. glomerata at least two. This means that different generations of the insects must find and exploit different plant species that may differ in quality and which may be found some distance from one another. Insects were either reared on each of the three plant species for three successive generations or shifted between generations from B. rapa to S. arvensis to B. nigra. Development time from neonate to pupation and pupal fresh mass were determined in P. brassicae and egg-to-adult development time and body mass in C. glomerata. Overall, herbivores performed marginally better on S. arvensis and B. nigra plants than on B. rapa plants. Parasitoids performance was closely tailored with that of the host. Irrespective as to whether the insects were shifted to a new plant in successive generations or not, development time of P. brassicae and C. glomerata decreased dramatically over time. Our results show that there were some differences in insect development on different plant species and when transferred from one species to another. However, all three plants were of generally high quality in terms of insect performance. We discuss ecological and evolutionary constraints on insects that must search in new habitats for different plant species over successive generations.
Collapse
Affiliation(s)
- Minghui Fei
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | | | | |
Collapse
|