1
|
Citak E, Yalin SF, Altiparmak MR, Guven M. Investigation of XPD, miR-145 and miR-770 expression in patients with end-stage renal disease. Mol Biol Rep 2023; 50:6843-6850. [PMID: 37392287 DOI: 10.1007/s11033-023-08608-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND The effective maintenance of genome integrity and fidelity is vital for the normal function of our tissues and organs, and the prevention of diseases. DNA repair pathways maintain genome stability, and the adequacy of genes acting in these pathways is essential for disease suppression and direct treatment responses. Chronic kidney disease is characterized by high levels of genomic damage. In this study, we examined the expression levels of the xeroderma pigmentosum group D (XPD) gene, which plays a role in the nucleotide excision repair (NER) repair mechanism, and the expression levels of miR-145 and miR-770 genes, which play a role in the regulation of the expression of the XPD gene, in hemodialysis patients with (n = 42) and without malignancy (n = 9) in pre- and post-dialysis conditions. We also evaluated these values with the clinical findings of the patients. METHODS & RESULTS Gene expression analysis was performed by real-time polymerase chain reaction (qRT-PCR). Compared to the individuals with normal kidney function (2.06 ± 0.32), the XPD gene expression was lower in the pre-dialysis condition both in hemodialysis patients without cancer (1.24 ± 0.18; p = 0.02) and in hemodialysis patients with cancer (0.82 ± 0.114; p = 0.001). On the other hand, we found that miR-145 and miR-770 expression levels were high in both groups. We also found that expression levels were affected by dialysis processes. A statistically significant positive correlation was found between miR-145 and mir770 expression levels in the pre-dialysis group of patients with (r=-0.988. p = 0.0001) and without (r=-0.934. p = 0.0001) malignancy. CONCLUSIONS Studies on DNA damage repair in the kidney will help develop strategies to protect kidney function against kidney diseases.
Collapse
Affiliation(s)
- Elif Citak
- Department of Medical Biology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey
| | - Serkan Feyyaz Yalin
- Department of Nephrology, Kartal Dr. Lütfi Kırdar City Hospital, Istanbul, Turkey
| | - Mehmet Riza Altiparmak
- Department of Nephrology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mehmet Guven
- Department of Medical Biology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, 34098, Turkey.
| |
Collapse
|
2
|
Garaycoechea JI, Quinlan C, Luijsterburg MS. Pathological consequences of DNA damage in the kidney. Nat Rev Nephrol 2023; 19:229-243. [PMID: 36702905 DOI: 10.1038/s41581-022-00671-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/27/2023]
Abstract
DNA lesions that evade repair can lead to mutations that drive the development of cancer, and cellular responses to DNA damage can trigger senescence and cell death, which are associated with ageing. In the kidney, DNA damage has been implicated in both acute and chronic kidney injury, and in renal cell carcinoma. The susceptibility of the kidney to chemotherapeutic agents that damage DNA is well established, but an unexpected link between kidney ciliopathies and the DNA damage response has also been reported. In addition, human genetic deficiencies in DNA repair have highlighted DNA crosslinks, DNA breaks and transcription-blocking damage as lesions that are particularly toxic to the kidney. Genetic tools in mice, as well as advances in kidney organoid and single-cell RNA sequencing technologies, have provided important insights into how specific kidney cell types respond to DNA damage. The emerging view is that in the kidney, DNA damage affects the local microenvironment by triggering a damage response and cell proliferation to replenish injured cells, as well as inducing systemic responses aimed at reducing exposure to genotoxic stress. The pathological consequences of DNA damage are therefore key to the nephrotoxicity of DNA-damaging agents and the kidney phenotypes observed in human DNA repair-deficiency disorders.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
3
|
Apelt K, White SM, Kim HS, Yeo JE, Kragten A, Wondergem AP, Rooimans MA, González-Prieto R, Wiegant WW, Lunke S, Flanagan D, Pantaleo S, Quinlan C, Hardikar W, van Attikum H, Vertegaal AC, Wilson BT, Wolthuis RM, Schärer OD, Luijsterburg MS. ERCC1 mutations impede DNA damage repair and cause liver and kidney dysfunction in patients. J Exp Med 2021; 218:e20200622. [PMID: 33315086 PMCID: PMC7927433 DOI: 10.1084/jem.20200622] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
ERCC1-XPF is a multifunctional endonuclease involved in nucleotide excision repair (NER), interstrand cross-link (ICL) repair, and DNA double-strand break (DSB) repair. Only two patients with bi-allelic ERCC1 mutations have been reported, both of whom had features of Cockayne syndrome and died in infancy. Here, we describe two siblings with bi-allelic ERCC1 mutations in their teenage years. Genomic sequencing identified a deletion and a missense variant (R156W) within ERCC1 that disrupts a salt bridge below the XPA-binding pocket. Patient-derived fibroblasts and knock-in epithelial cells carrying the R156W substitution show dramatically reduced protein levels of ERCC1 and XPF. Moreover, mutant ERCC1 weakly interacts with NER and ICL repair proteins, resulting in diminished recruitment to DNA damage. Consequently, patient cells show strongly reduced NER activity and increased chromosome breakage induced by DNA cross-linkers, while DSB repair was relatively normal. We report a new case of ERCC1 deficiency that severely affects NER and considerably impacts ICL repair, which together result in a unique phenotype combining short stature, photosensitivity, and progressive liver and kidney dysfunction.
Collapse
Affiliation(s)
- Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Susan M. White
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Angela Kragten
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Martin A. Rooimans
- Section of Oncogenetics, Department of Clinical Genetics, Vrije Universiteit Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Wouter W. Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Daniel Flanagan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
| | - Sarah Pantaleo
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, Australia
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children’s Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Winita Hardikar
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Alfred C.O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Brian T. Wilson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
- Northern Genetics Service, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| | - Rob M.F. Wolthuis
- Section of Oncogenetics, Department of Clinical Genetics, Vrije Universiteit Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Orlando D. Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | | |
Collapse
|
4
|
Envisioning how the prototypic molecular machine TFIIH functions in transcription initiation and DNA repair. DNA Repair (Amst) 2020; 96:102972. [PMID: 33007515 DOI: 10.1016/j.dnarep.2020.102972] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Critical for transcription initiation and bulky lesion DNA repair, TFIIH provides an exemplary system to connect molecular mechanisms to biological outcomes due to its strong genetic links to different specific human diseases. Recent advances in structural and computational biology provide a unique opportunity to re-examine biologically relevant molecular structures and develop possible mechanistic insights for the large dynamic TFIIH complex. TFIIH presents many puzzles involving how its two SF2 helicase family enzymes, XPB and XPD, function in transcription initiation and repair: how do they initiate transcription, detect and verify DNA damage, select the damaged strand for incision, coordinate repair with transcription and cell cycle through Cdk-activating-kinase (CAK) signaling, and result in very different specific human diseases associated with cancer, aging, and development from single missense mutations? By joining analyses of breakthrough cryo-electron microscopy (cryo-EM) structures and advanced computation with data from biochemistry and human genetics, we develop unified concepts and molecular level understanding for TFIIH functions with a focus on structural mechanisms. We provocatively consider that TFIIH may have first evolved from evolutionary pressure for TCR to resolve arrested transcription blocks to DNA replication and later added its key roles in transcription initiation and global DNA repair. We anticipate that this level of mechanistic information will have significant impact on thinking about TFIIH, laying a robust foundation suitable to develop new paradigms for DNA transcription initiation and repair along with insights into disease prevention, susceptibility, diagnosis and interventions.
Collapse
|
5
|
Greber BJ, Toso DB, Fang J, Nogales E. The complete structure of the human TFIIH core complex. eLife 2019; 8:e44771. [PMID: 30860024 PMCID: PMC6422496 DOI: 10.7554/elife.44771] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/03/2019] [Indexed: 01/26/2023] Open
Abstract
Transcription factor IIH (TFIIH) is a heterodecameric protein complex critical for transcription initiation by RNA polymerase II and nucleotide excision DNA repair. The TFIIH core complex is sufficient for its repair functions and harbors the XPB and XPD DNA-dependent ATPase/helicase subunits, which are affected by human disease mutations. Transcription initiation additionally requires the CdK activating kinase subcomplex. Previous structural work has provided only partial insight into the architecture of TFIIH and its interactions within transcription pre-initiation complexes. Here, we present the complete structure of the human TFIIH core complex, determined by phase-plate cryo-electron microscopy at 3.7 Å resolution. The structure uncovers the molecular basis of TFIIH assembly, revealing how the recruitment of XPB by p52 depends on a pseudo-symmetric dimer of homologous domains in these two proteins. The structure also suggests a function for p62 in the regulation of XPD, and allows the mapping of previously unresolved human disease mutations.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyUnited States
- Molecular Biophysics and Integrative Bio-Imaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Daniel B Toso
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyUnited States
| | - Jie Fang
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyUnited States
| | - Eva Nogales
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyUnited States
- Molecular Biophysics and Integrative Bio-Imaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyUnited States
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUnited States
| |
Collapse
|
6
|
Zhang J, Cheng R, Yu X, Sun Z, Li M, Yao Z. Expansion of the genotypic and phenotypic spectrum of xeroderma pigmentosum in Chinese population. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2017; 33:58-63. [PMID: 27982466 DOI: 10.1111/phpp.12283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Jia Zhang
- Department of Dermatology; Xinhua Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Ruhong Cheng
- Department of Dermatology; Xinhua Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Xia Yu
- Department of Dermatology; Xinhua Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Zhonghui Sun
- Department of Dermatology; Fengxian Institute of Dermatosis Prevention; Shanghai China
| | - Ming Li
- Department of Dermatology; Xinhua Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Zhirong Yao
- Department of Dermatology; Xinhua Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| |
Collapse
|
7
|
A novel mutation in the C7orf11 gene causes nonphotosensitive trichothiodystrophy in a multiplex highly consanguineous kindred. Eur J Med Genet 2015; 58:685-8. [DOI: 10.1016/j.ejmg.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 01/10/2023]
|
8
|
Understanding Xeroderma Pigmentosum Complementation Groups Using Gene Expression Profiling after UV-Light Exposure. Int J Mol Sci 2015; 16:15985-96. [PMID: 26184184 PMCID: PMC4519934 DOI: 10.3390/ijms160715985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/31/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Children with the recessive genetic disorder Xeroderma Pigmentosum (XP) have extreme sensitivity to UV-light, a 10,000-fold increase in skin cancers from age 2 and rarely live beyond 30 years. There are seven genetic subgroups of XP, which are all resultant of pathogenic mutations in genes in the nucleotide excision repair (NER) pathway and a XP variant resultant of a mutation in translesion synthesis, POLH. The clinical symptoms and severity of the disease is varied across the subgroups, which does not correlate with the functional position of the affected protein in the NER pathway. The aim of this study was to further understand the biology of XP subgroups, particularly those that manifest with neurological symptoms. Whole genome gene expression profiling of fibroblasts from each XP complementation group was assessed before and after UV-light exposure. The biological pathways with altered gene expression after UV-light exposure were distinct for each subtype and contained oncogenic related functions such as perturbation of cell cycle, apoptosis, proliferation and differentiation. Patients from the subgroups XP-B and XP-F were the only subgroups to have transcripts associated with neuronal activity altered after UV-light exposure. This study will assist in furthering our understanding of the different subtypes of XP which will lead to better diagnosis, treatment and management of the disease.
Collapse
|
9
|
Sun X, Chen H, Deng Z, Hu B, Luo H, Zeng X, Han L, Cai G, Ma L. The Warsaw breakage syndrome-related protein DDX11 is required for ribosomal RNA synthesis and embryonic development. Hum Mol Genet 2015; 24:4901-15. [PMID: 26089203 DOI: 10.1093/hmg/ddv213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
DDX11 was recently identified as a cause of Warsaw breakage syndrome (WABS). However, the functional mechanism of DDX11 and the contribution of clinically described mutations to the pathogenesis of WABS are elusive. Here, we show that DDX11 is a novel nucleolar protein that preferentially binds to hypomethylated active ribosomal DNA (rDNA) gene loci, where it interacts with upstream binding factor (UBF) and the RNA polymerase I (Pol I). DDX11 knockdown changed the epigenetic state of rDNA loci from euchromatic structures to more heterochromatic structures, reduced the activity of UBF, decreased the recruitment of UBF and RPA194 (a subunit of Pol I) to rDNA promoter, suppressed rRNA transcription and thereby inhibited growth and proliferation of HeLa cells. Importantly, two indentified WABS-derived mutants, R263Q and K897del, and a Fe-S deletion construct demonstrated significantly reduced binding abilities to rDNA promoters and lowered DNA-dependent ATPase activities compared with wild-type DDX11. Knockdown of the zebrafish ortholog of human DDX11 by morpholinos resulted in growth retardation and vertebral and craniofacial malformations in zebrafish, concomitant with the changes in histone epigenetic modifications at rDNA loci, the reduction of Pol I recruitment to the rDNA promoter and a significant decrease in nascent pre-RNA levels. These growth disruptions in zebrafish in response to DDX11 reduction showed similarities to the clinically described developmental abnormalities found in WABS patients for the first time in any vertebrate. Thus, our results indicate that DDX11 functions as a positive regulator of rRNA transcription and provides a novel insight into the pathogenesis of WABS.
Collapse
Affiliation(s)
- Xinliang Sun
- School of Life Sciences, Tsinghua University, Beijing, China, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Hongbo Chen
- School of Life Sciences, Tsinghua University, Beijing, China, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China,
| | - Zaian Deng
- School of Life Sciences, Tsinghua University, Beijing, China, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Hui Luo
- Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China and and
| | - Xiaobin Zeng
- Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China and and
| | - Liqiao Han
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Guoping Cai
- School of Life Sciences, Tsinghua University, Beijing, China, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China,
| | - Lan Ma
- School of Life Sciences, Tsinghua University, Beijing, China, Division of Life Science and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China,
| |
Collapse
|