1
|
Anand V, Prabhakaran HS, Prakash A, Hussain MS, Kumar M. Differential processing of CRISPR RNA by LinCas5c and LinCas6 of Leptospira. Biochim Biophys Acta Gen Subj 2023; 1867:130469. [PMID: 37797871 DOI: 10.1016/j.bbagen.2023.130469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Leptospira interrogans serovar Copenhageni's genome harbors two CRISPR-Cas systems belonging to subtypes I-B and I-C. However, in L. interrogans, the subtype I-C locus lacks an array component essential for assembling an interference complex. Thus, the reason for sustaining the expense of a cluster of cas genes (I-C) is obscure. Type I-C (previously Dvulg) is the only CRISPR subtype that engages Cas5c, a Cas5 variant, to process precursor CRISPR-RNA (pre-crRNA). In this study, thus, the recombinant Cas5c (rLinCas5c) of L.interrogans and its mutant variants were cloned, expressed, and purified. The purified rLinCas5c is illustrated as metal-independent, sequence, and size-specific cleavage on repeat RNA and pre-crRNA of subtype I-B or orphan CRISPR array. However, the Cas6-bound mature crRNA of subtype I-B fends off from the rLinCas5c activity. In addition, rLinCas5c holds metal and size-dependent DNase activity. The bioinformatics analysis of LinCas5c inferred that it belongs to the subgroup Cas5c-B. Substitution of Phe141 with a more conserved His residue and deletion of unique (β1'-β2') insertions usher a gain of rLinCas5c activity over nucleic acid. Overall, our results uncover the functional diversity of Cas5c ribonucleases and infer an incognito auxiliary role in the absence of a cognate CRISPR array.
Collapse
Affiliation(s)
- Vineet Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Harshini Sheeja Prabhakaran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aman Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Md Saddam Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
3
|
Lemak S, Serbanescu MA, Khusnutdinova AN, Ruszkowski M, Beloglazova N, Xu X, Brown G, Cui H, Tan K, Joachimiak A, Cvitkovitch DG, Savchenko A, Yakunin AF. Structural and biochemical insights into CRISPR RNA processing by the Cas5c ribonuclease SMU1763 from Streptococcus mutans. J Biol Chem 2021; 297:101251. [PMID: 34592310 PMCID: PMC8524198 DOI: 10.1016/j.jbc.2021.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022] Open
Abstract
The cariogenic pathogen Streptococcus mutans contains two CRISPR systems (type I-C and type II-A) with the Cas5c protein (SmuCas5c) involved in processing of long CRISPR RNA transcripts (pre-crRNA) containing repeats and spacers to mature crRNA guides. In this study, we determined the crystal structure of SmuCas5c at a resolution of 1.72 Å, which revealed the presence of an N-terminal modified RNA recognition motif and a C-terminal twisted β-sheet domain with four bound sulphate molecules. Analysis of surface charge and residue conservation of the SmuCas5c structure suggested the location of an RNA-binding site in a shallow groove formed by the RNA recognition motif domain with several conserved positively charged residues (Arg39, Lys52, Arg109, Arg127, and Arg134). Purified SmuCas5c exhibited metal-independent ribonuclease activity against single-stranded pre-CRISPR RNAs containing a stem-loop structure with a seven-nucleotide stem and a pentaloop. We found SmuCas5c cleaves substrate RNA within the repeat sequence at a single cleavage site located at the 3'-base of the stem but shows significant tolerance to substrate sequence variations downstream of the cleavage site. Structure-based mutational analysis revealed that the conserved residues Tyr50, Lys120, and His121 comprise the SmuCas5c catalytic residues. In addition, site-directed mutagenesis of positively charged residues Lys52, Arg109, and Arg134 located near the catalytic triad had strong negative effects on the RNase activity of this protein, suggesting that these residues are involved in RNA binding. Taken together, our results reveal functional diversity of Cas5c ribonucleases and provide further insight into the molecular mechanisms of substrate selectivity and activity of these enzymes.
Collapse
Affiliation(s)
- Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - M Anca Serbanescu
- Faculty of Dentistry, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, Illinois, USA
| | - Natalia Beloglazova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kemin Tan
- X-Ray Science Division, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois, USA
| | - Andrzej Joachimiak
- X-Ray Science Division, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois, USA
| | - Dennis G Cvitkovitch
- Faculty of Dentistry, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK.
| |
Collapse
|
4
|
Prakash A, Kumar M. Characterizing the transcripts of Leptospira CRISPR I-B array and its processing with endoribonuclease LinCas6. Int J Biol Macromol 2021; 182:785-795. [PMID: 33862076 DOI: 10.1016/j.ijbiomac.2021.04.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022]
Abstract
In Leptospira interrogans serovar Copenhageni, the CRISPR-Cas I-B locus possesses a CRISPR array between the two independent cas-operons. Using the reverse transcription-PCR and the in vitro endoribonuclease assay with Cas6 of Leptospira (LinCas6), we account that the CRISPR is transcriptionally active and is conventionally processed. The LinCas6 specifically excises at one site within the synthetic cognate repeat RNA or the repeats of precursor-CRISPR RNA (pre-crRNA) in the sense direction. In contrast, the antisense repeat RNA is cleaved at multiple sites. LinCas6 functions as a single turnover endoribonuclease on its repeat RNA substrate, where substitution of one of predicted active site residues (His38) resulted in reduced activity. This study highlights the comprehensive understanding of the Leptospira CRISPR array transcription and its processing by LinCas6 that is central to RNA-mediated CRISPR-Cas I-B adaptive immunity.
Collapse
Affiliation(s)
- Aman Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
5
|
Zink IA, Wimmer E, Schleper C. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules 2020; 10:E1523. [PMID: 33172134 PMCID: PMC7694759 DOI: 10.3390/biom10111523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.
Collapse
|
6
|
Behler J, Hess WR. Approaches to study CRISPR RNA biogenesis and the key players involved. Methods 2020; 172:12-26. [PMID: 31325492 DOI: 10.1016/j.ymeth.2019.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins provide an inheritable and adaptive immune system against phages and foreign genetic elements in many bacteria and archaea. The three stages of CRISPR-Cas immunity comprise adaptation, CRISPR RNA (crRNA) biogenesis and interference. The maturation of the pre-crRNA into mature crRNAs, short guide RNAs that target invading nucleic acids, is crucial for the functionality of CRISPR-Cas defense systems. Mature crRNAs assemble with Cas proteins into the ribonucleoprotein (RNP) effector complex and guide the Cas nucleases to the cognate foreign DNA or RNA target. Experimental approaches to characterize these crRNAs, the specific steps toward their maturation and the involved factors, include RNA-seq analyses, enzyme assays, methods such as cryo-electron microscopy, the crystallization of proteins, or UV-induced protein-RNA crosslinking coupled to mass spectrometry analysis. Complex and multiple interactions exist between CRISPR-cas-encoded specific riboendonucleases such as Cas6, Cas5d and Csf5, endonucleases with dual functions in maturation and interference such as the enzymes of the Cas12 and Cas13 families, and nucleases belonging to the cell's degradosome such as RNase E, PNPase and RNase J, both in the maturation as well as in interference. The results of these studies have yielded a picture of unprecedented diversity of sequences, enzymes and biochemical mechanisms.
Collapse
Affiliation(s)
- Juliane Behler
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
7
|
Nickel L, Ulbricht A, Alkhnbashi OS, Förstner KU, Cassidy L, Weidenbach K, Backofen R, Schmitz RA. Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1. RNA Biol 2018; 16:492-503. [PMID: 30153081 DOI: 10.1080/15476286.2018.1514234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) system is a prokaryotic adaptive defense system against foreign nucleic acids. In the methanoarchaeon Methanosarcina mazei Gö1, two types of CRISPR-Cas systems are present (type I-B and type III-C). Both loci encode a Cas6 endonuclease, Cas6b-IB and Cas6b-IIIC, typically responsible for maturation of functional short CRISPR RNAs (crRNAs). To evaluate potential cross cleavage activity, we biochemically characterized both Cas6b proteins regarding their crRNA binding behavior and their ability to process pre-crRNA from the respective CRISPR array in vivo. Maturation of crRNA was studied in the respective single deletion mutants by northern blot and RNA-Seq analysis demonstrating that in vivo primarily Cas6b-IB is responsible for crRNA processing of both CRISPR arrays. Tentative protein level evidence for the translation of both Cas6b proteins under standard growth conditions was detected, arguing for different activities or a potential non-redundant role of Cas6b-IIIC within the cell. Conservation of both Cas6 endonucleases was observed in several other M. mazei isolates, though a wide variety was displayed. In general, repeat and leader sequence conservation revealed a close correlation in the M. mazei strains. The repeat sequences from both CRISPR arrays from M. mazei Gö1 contain the same sequence motif with differences only in two nucleotides. These data stand in contrast to all other analyzed M. mazei isolates, which have at least one additional CRISPR array with repeats belonging to another sequence motif. This conforms to the finding that Cas6b-IB is the crucial and functional endonuclease in M. mazei Gö1. Abbreviations: sRNA: small RNA; crRNA: CRISPR RNA; pre-crRNAs: Precursor CRISPR RNA; CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated; nt: nucleotide; RNP: ribonucleoprotein; RBS: ribosome binding site.
Collapse
Affiliation(s)
- Lisa Nickel
- a Institute of General Microbiology , Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Andrea Ulbricht
- a Institute of General Microbiology , Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Omer S Alkhnbashi
- b Bioinformatics Group, Department of Computer Science , University of Freiburg , Freiburg , Germany
| | - Konrad U Förstner
- c Core Unit Systems Medicine , Institute of Molecular Infection Biology, University of Würzburg , Würzburg , Germany
| | - Liam Cassidy
- d Institute for Experimental Medicine , Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Katrin Weidenbach
- a Institute of General Microbiology , Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Rolf Backofen
- b Bioinformatics Group, Department of Computer Science , University of Freiburg , Freiburg , Germany.,e BIOSS Centre for Biological Signaling Studies , University of Freiburg , Freiburg , Germany
| | - Ruth A Schmitz
- a Institute of General Microbiology , Christian-Albrechts-University of Kiel , Kiel , Germany
| |
Collapse
|
8
|
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018. [DOI: 10.1016/j.cell.2017.11.032] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b. Biochim Biophys Acta Gen Subj 2017; 1861:2993-3000. [PMID: 28238733 DOI: 10.1016/j.bbagen.2017.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND CRISPR arrays are transcribed into long precursor RNA species, which are further processed into mature CRISPR RNAs (crRNAs). Cas proteins utilize these crRNAs, which contain spacer sequences that can be derived from mobile genetic elements, to mediate immunity during a reoccurring virus infection. Type I CRISPR-Cas systems are defined by the presence of different Cascade interference complexes containing large and small subunits that play major roles during target DNA selection. METHODS Here, we produce the protein and crRNA components of the Type I-B CRISPR-Cas complex of Clostridium thermocellum and Methanococcus maripaludis. The C. thermocellum Cascade complexes were reconstituted and analyzed via size-exclusion chromatography. Activity of the heterologous M. maripaludis CRISPR-Cas system was followed using phage lambda plaques assays. RESULTS The reconstituted Type-I-B Cascade complex contains Cas7, Cas5, Cas6b and the large subunit Cas8b. Cas6b can be omitted from the reconstitution protocol. The large subunit Cas8b was found to be represented by two tightly associated protein fragments and a small C-terminal Cas8b segment was identified in recombinant complexes and C. thermocellum cell lysate. CONCLUSIONS Production of Cas8b generates a small C-terminal fragment, which is suggested to fulfill the role of the missing small subunit. A heterologous, synthetic M. maripaludis Type I-B system is active in E. coli against phage lambda, highlighting a potential for genome editing using endogenous Type-I-B CRISPR-Cas machineries. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
10
|
Shao Y, Richter H, Sun S, Sharma K, Urlaub H, Randau L, Li H. A Non-Stem-Loop CRISPR RNA Is Processed by Dual Binding Cas6. Structure 2016; 24:547-554. [PMID: 26996962 PMCID: PMC4823167 DOI: 10.1016/j.str.2016.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 01/07/2023]
Abstract
A subclass of recently discovered CRISPR repeat RNA in bacteria contains minimally recognizable structural features that facilitate an unknown mechanism of recognition and processing by the Cas6 family of endoribonucleases. Cocrystal structures of Cas6 from Methanococcus maripaludis (MmCas6b) bound with its repeat RNA revealed a dual site binding structure and a cleavage site conformation poised for phosphodiester bond breakage. Two non-interacting MmCas6b bind to two separate AAYAA motifs within the same repeat, one distal and one adjacent to the cleavage site. This bound structure potentially competes with a stable but non-productive RNA structure. At the cleavage site, MmCas6b supplies a base pair mimic to stabilize a short 2 base pair stem immediately upstream of the scissile phosphate. Complementary biochemical analyses support the dual-AAYAA binding model and a critical role of the protein-RNA base pair mimic. Our results reveal a previously unknown method of processing non-stem-loop CRISPR RNA by Cas6.
Collapse
Affiliation(s)
- Yaming Shao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hagen Richter
- Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Shengfang Sun
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Kundan Sharma
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Lennart Randau
- Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany,LOEWE Center for Synthetic Microbiology (Synmikro), 35043 Marburg, Germany
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA,Correspondence should be addressed to H.L. ()
| |
Collapse
|
11
|
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.
Collapse
|
12
|
Abstract
Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. Clostridium difficile is the major cause of nosocomial infections associated with antibiotic therapy worldwide. To survive in bacteriophage-rich gut communities, enteropathogens must develop efficient systems for defense against foreign DNA elements. CRISPR-Cas systems have recently taken center stage among various anti-invader bacterial defense systems. We provide experimental evidence for the function of the C. difficile CRISPR system against plasmid DNA and bacteriophages. These data demonstrate the original features of active C. difficile CRISPR system and bring important insights into the interactions of this major enteropathogen with foreign DNA invaders during its infection cycle.
Collapse
|
13
|
Charpentier E, Richter H, van der Oost J, White MF. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 2015; 39:428-41. [PMID: 25994611 PMCID: PMC5965381 DOI: 10.1093/femsre/fuv023] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences acquired from invading mobile genomes is transcribed as a precursor crRNA (pre-crRNA) molecule. This pre-crRNA undergoes one or two maturation steps to generate the mature crRNAs that guide CRISPR-associated (Cas) protein(s) to cognate invading genomes for their destruction. Different types of CRISPR-Cas systems have evolved distinct crRNA biogenesis pathways that implicate highly sophisticated processing mechanisms. In Types I and III CRISPR-Cas systems, a specific endoribonuclease of the Cas6 family, either standalone or in a complex with other Cas proteins, cleaves the pre-crRNA within the repeat regions. In Type II systems, the trans-acting small RNA (tracrRNA) base pairs with each repeat of the pre-crRNA to form a dual-RNA that is cleaved by the housekeeping RNase III in the presence of the protein Cas9. In this review, we present a detailed comparative analysis of pre-crRNA recognition and cleavage mechanisms involved in the biogenesis of guide crRNAs in the three CRISPR-Cas types. This review presents a detailed comparative analysis of pre-crRNA recognition and cleavage mechanisms involved in the biogenesis of guide crRNAs in the different bacterial and archaeal CRISPR-Cas immune systems.
Collapse
Affiliation(s)
- Emmanuelle Charpentier
- Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden Hannover Medical School, Hannover 30625, Germany
| | - Hagen Richter
- Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen 6703 HB, the Netherlands
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
14
|
Plagens A, Richter H, Charpentier E, Randau L. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiol Rev 2015; 39:442-63. [PMID: 25934119 PMCID: PMC5965380 DOI: 10.1093/femsre/fuv019] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 12/26/2022] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) adaptive immune systems use small guide RNAs, the CRISPR RNAs (crRNAs), to mark foreign genetic material, e.g. viral nucleic acids, for degradation. Archaea and bacteria encode a large variety of Cas proteins that bind crRNA molecules and build active ribonucleoprotein surveillance complexes. The evolution of CRISPR-Cas systems has resulted in a diversification of cas genes and a classification of the systems into three types and additional subtypes characterized by distinct surveillance and interfering complexes. Recent crystallographic and biochemical advances have revealed detailed insights into the assembly and DNA/RNA targeting mechanisms of the various complexes. Here, we review our knowledge on the molecular mechanism involved in the DNA and RNA interference stages of type I (Cascade: CRISPR-associated complex for antiviral defense), type II (Cas9) and type III (Csm, Cmr) CRISPR-Cas systems. We further highlight recently reported structural and mechanistic themes shared among these systems. This review details and compares the assembly and the DNA/RNA targeting mechanisms of the various surveillance complexes of prokaryotic CRISPR-Cas immune systems.
Collapse
Affiliation(s)
- André Plagens
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
| | - Hagen Richter
- Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany
| | - Emmanuelle Charpentier
- Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden Hannover Medical School, Hannover 30625, Germany
| | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
| |
Collapse
|
15
|
Heidrich N, Dugar G, Vogel J, Sharma CM. Investigating CRISPR RNA Biogenesis and Function Using RNA-seq. Methods Mol Biol 2015; 1311:1-21. [PMID: 25981463 DOI: 10.1007/978-1-4939-2687-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The development of deep sequencing technology has greatly facilitated transcriptome analyses of both prokaryotes and eukaryotes. RNA-sequencing (RNA-seq), which is based on massively parallel sequencing of cDNAs, has been used to annotate transcript boundaries and revealed widespread antisense transcription as well as a wealth of novel noncoding transcripts in many bacteria. Moreover, RNA-seq is nowadays widely used for gene expression profiling and about to replace hybridization-based approaches such as microarrays. RNA-seq has also informed about the biogenesis and function of CRISPR RNAs (crRNAs) of different types of bacterial RNA-based CRISPR-Cas immune systems. Here we describe several studies that employed RNA-seq for crRNA analyses, with a particular focus on a differential RNA-seq (dRNA-seq) approach, which can distinguish between primary and processed transcripts and allows for a genome-wide annotation of transcriptional start sites. This approach helped to identify a new crRNA biogenesis pathway of Type II CRISPR-Cas systems that involves a trans-encoded small RNA, tracrRNA, and the host factor RNase III.
Collapse
Affiliation(s)
- Nadja Heidrich
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2/Bau D15, 97080, Würzburg, Germany
| | | | | | | |
Collapse
|
16
|
Hochstrasser ML, Doudna JA. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci 2014; 40:58-66. [PMID: 25468820 DOI: 10.1016/j.tibs.2014.10.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 12/26/2022]
Abstract
Many bacteria and archaea possess an adaptive immune system consisting of repetitive genetic elements known as clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Similar to RNAi pathways in eukaryotes, CRISPR-Cas systems require small RNAs for sequence-specific detection and degradation of complementary nucleic acids. Cas5 and Cas6 enzymes have evolved to specifically recognize and process CRISPR-derived transcripts into functional small RNAs used as guides by interference complexes. Our detailed understanding of these proteins has led to the development of several useful Cas6-based biotechnological methods. Here, we review the structures, functions, mechanisms, and applications of the enzymes responsible for CRISPR RNA (crRNA) processing, highlighting a fascinating family of endonucleases with exquisite RNA recognition and cleavage activities.
Collapse
Affiliation(s)
- Megan L Hochstrasser
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Abstract
In bacteria and archaea, RNA-Seq deep sequencing methodology allows for the detection of abundance and processing sites of the small RNAs that comprise a CRISPR (clustered regularly interspaced short palindromic repeats) RNome. Comparative analyses of these CRISPR RNome sets highlight conserved patterns that include the gradual decline of CRISPR RNA abundance from the leader-proximal to the leader-distal end. In the present review, we discuss exceptions to these patterns that indicate the extensive impact of individual spacer sequences on CRISPR array transcription and RNA maturation. Spacer sequences can contain promoter and terminator elements and can promote the formation of CRISPR RNA-anti-CRISPR RNA duplexes. In addition, potential RNA duplex formation with host tRNA was observed. These factors can influence the functionality of CRISPR-Cas (CRISPR-associated) systems and need to be considered in the design of synthetic CRISPR arrays.
Collapse
|
18
|
Leitão AL, Enguita FJ. Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology. Microbiol Res 2014; 169:652-65. [PMID: 24636745 DOI: 10.1016/j.micres.2014.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 02/15/2014] [Accepted: 02/16/2014] [Indexed: 01/07/2023]
Abstract
Secondary metabolic pathways of fungal origin provide an almost unlimited resource of new compounds for medical applications, which can fulfill some of the, currently unmet, needs for therapeutic alternatives for the treatment of a number of diseases. Secondary metabolites secreted to the extracellular medium (extrolites) belong to diverse chemical and structural families, but the majority of them are synthesized by the condensation of a limited number of precursor building blocks including amino acids, sugars, lipids and low molecular weight compounds also employed in anabolic processes. In fungi, genes related to secondary metabolic pathways are frequently clustered together and show a modular organization within fungal genomes. The majority of fungal gene clusters responsible for the biosynthesis of secondary metabolites contain genes encoding a high molecular weight condensing enzyme which is responsible for the assembly of the precursor units of the metabolite. They also contain other auxiliary genes which encode enzymes involved in subsequent chemical modification of the metabolite core. Synthetic biology is a branch of molecular biology whose main objective is the manipulation of cellular components and processes in order to perform logically connected metabolic functions. In synthetic biology applications, biosynthetic modules from secondary metabolic processes can be rationally engineered and combined to produce either new compounds, or to improve the activities and/or the bioavailability of the already known ones. Recently, advanced genome editing techniques based on guided DNA endonucleases have shown potential for the manipulation of eukaryotic and bacterial genomes. This review discusses the potential application of genetic engineering and genome editing tools in the rational design of fungal secondary metabolite pathways by taking advantage of the increasing availability of genomic and biochemical data.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal.
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal.
| |
Collapse
|
19
|
|
20
|
Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing. Biochem J 2013; 452:223-30. [PMID: 23527601 PMCID: PMC3652601 DOI: 10.1042/bj20130269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The competition between viruses and hosts is played out in all branches of life. Many prokaryotes have an adaptive immune system termed ‘CRISPR’ (clustered regularly interspaced short palindromic repeats) which is based on the capture of short pieces of viral DNA. The captured DNA is integrated into the genomic DNA of the organism flanked by direct repeats, transcribed and processed to generate crRNA (CRISPR RNA) that is loaded into a variety of effector complexes. These complexes carry out sequence-specific detection and destruction of invading mobile genetic elements. In the present paper, we report the structure and activity of a Cas6 (CRISPR-associated 6) enzyme (Sso1437) from Sulfolobus solfataricus responsible for the generation of unit-length crRNA species. The crystal structure reveals an unusual dimeric organization that is important for the enzyme's activity. In addition, the active site lacks the canonical catalytic histidine residue that has been viewed as an essential feature of the Cas6 family. Although several residues contribute towards catalysis, none is absolutely essential. Coupled with the very low catalytic rate constants of the Cas6 family and the plasticity of the active site, this suggests that the crRNA recognition and chaperone-like activities of the Cas6 family should be considered as equal to or even more important than their role as traditional enzymes.
Collapse
|