1
|
Drago L, Perin G, Santovito G, Ballarin L. The stress granule component TIAR during the non-embryonic development of the colonial ascidian Botryllusschlosseri. FISH & SHELLFISH IMMUNOLOGY 2023; 141:108999. [PMID: 37604264 DOI: 10.1016/j.fsi.2023.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
TIAR, is a nucleic acid binding protein involved in the formation of cytoplasmic foci known as stress granules, in which mRNA translation is temporarily blocked in response to stressful conditions. TIAR is used as stress granules molecular marker in vertebrates, but it is not so deeply investigated in invertebrates, especially in marine organisms. In the present work, we investigated the role of TIAR in the colonial ascidian Botryllus schlosseri during its non-embryonic development, featured by the cyclical renewal of the colony. We studied the extent of transcription during the colonial blastogenetic cycle and the location of the transcripts in Botryllus tissues. Using an anti-TIAR antibody specific for ascidians, by immunocytochemistry and immunohistochemistry assays, we studied the expression of the protein in haemolymph cells and body tissues and by transmission electron microscopy we identified its subcellular localisation. The anti-TIAR antibody was also microinjected in the circulatory system of B. schlosseri to study its effect on non-embryonic development and immune responses. Results indicate a delay in the progression of the blastogenetic cycle in injected colonies. In addition, degranulation of circulating cytotoxic cells and phagocytosis by professional, circulating phagocytes, two fundamental processes of innate immunity, were also negatively affected.
Collapse
Affiliation(s)
- Laura Drago
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Giulia Perin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Gianfranco Santovito
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
2
|
Zhang T, Zheng H, Lu D, Guan G, Li D, Zhang J, Liu S, Zhao J, Guo JT, Lu F, Chen X. RNA binding protein TIAR modulates HBV replication by tipping the balance of pgRNA translation. Signal Transduct Target Ther 2023; 8:346. [PMID: 37699883 PMCID: PMC10497612 DOI: 10.1038/s41392-023-01573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 09/14/2023] Open
Abstract
The pregenomic RNA (pgRNA) of hepatitis B virus (HBV) serves not only as a bicistronic message RNA to translate core protein (Cp) and DNA polymerase (Pol), but also as the template for reverse transcriptional replication of viral DNA upon packaging into nucleocapsid. Although it is well known that pgRNA translates much more Cp than Pol, the molecular mechanism underlying the regulation of Cp and Pol translation efficiency from pgRNA remains elusive. In this study, we systematically profiled HBV nucleocapsid- and pgRNA-associated cellular proteins by proteomic analysis and identified TIA-1-related protein (TIAR) as a novel cellular protein that binds pgRNA and promotes HBV DNA replication. Interestingly, loss- and gain-of-function genetic analyses showed that manipulation of TIAR expression did not alter the levels of HBV transcripts nor the secretion of HBsAg and HBeAg in human hepatoma cells supporting HBV replication. However, Ribo-seq and PRM-based mass spectrometry analyses demonstrated that TIAR increased the translation of Pol but decreased the translation of Cp from pgRNA. RNA immunoprecipitation (RIP) and pulldown assays further revealed that TIAR directly binds pgRNA at the 5' stem-loop (ε). Moreover, HBV replication or Cp expression induced the increased expression and redistribution of TIAR from the nucleus to the cytoplasm of hepatocytes. Our results thus imply that TIAR is a novel cellular factor that regulates HBV replication by binding to the 5' ε structure of pgRNA to tip the balance of Cp and Pol translation. Through induction of TIAR translocation from the nucleus to the cytoplasm, Cp indirectly regulates the Pol translation and balances Cp and Pol expression levels in infected hepatocytes to ensure efficient viral replication.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Huiling Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Danjuan Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Deyao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ju-Tao Guo
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
3
|
Vatandaslar H, Garzia A, Meyer C, Godbersen S, Brandt LTL, Griesbach E, Chao JA, Tuschl T, Stoffel M. In vivo PAR-CLIP (viP-CLIP) of liver TIAL1 unveils targets regulating cholesterol synthesis and secretion. Nat Commun 2023; 14:3386. [PMID: 37296170 PMCID: PMC10256721 DOI: 10.1038/s41467-023-39135-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
System-wide cross-linking and immunoprecipitation (CLIP) approaches have unveiled regulatory mechanisms of RNA-binding proteins (RBPs) mainly in cultured cells due to limitations in the cross-linking efficiency of tissues. Here, we describe viP-CLIP (in vivo PAR-CLIP), a method capable of identifying RBP targets in mammalian tissues, thereby facilitating the functional analysis of RBP-regulatory networks in vivo. We applied viP-CLIP to mouse livers and identified Insig2 and ApoB as prominent TIAL1 target transcripts, indicating an important role of TIAL1 in cholesterol synthesis and secretion. The functional relevance of these targets was confirmed by showing that TIAL1 influences their translation in hepatocytes. Mutant Tial1 mice exhibit altered cholesterol synthesis, APOB secretion and plasma cholesterol levels. Our results demonstrate that viP-CLIP can identify physiologically relevant RBP targets by finding a factor implicated in the negative feedback regulation of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Laura T L Brandt
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland.
- Medical Faculty, University of Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
4
|
Dolliver SM, Kleer M, Bui-Marinos MP, Ying S, Corcoran JA, Khaperskyy DA. Nsp1 proteins of human coronaviruses HCoV-OC43 and SARS-CoV2 inhibit stress granule formation. PLoS Pathog 2022; 18:e1011041. [PMID: 36534661 PMCID: PMC9810206 DOI: 10.1371/journal.ppat.1011041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic condensates that often form as part of the cellular antiviral response. Despite the growing interest in understanding the interplay between SGs and other biological condensates and viral replication, the role of SG formation during coronavirus infection remains poorly understood. Several proteins from different coronaviruses have been shown to suppress SG formation upon overexpression, but there are only a handful of studies analyzing SG formation in coronavirus-infected cells. To better understand SG inhibition by coronaviruses, we analyzed SG formation during infection with the human common cold coronavirus OC43 (HCoV-OC43) and the pandemic SARS-CoV2. We did not observe SG induction in infected cells and both viruses inhibited eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and SG formation induced by exogenous stress. Furthermore, in SARS-CoV2 infected cells we observed a sharp decrease in the levels of SG-nucleating protein G3BP1. Ectopic overexpression of nucleocapsid (N) and non-structural protein 1 (Nsp1) from both HCoV-OC43 and SARS-CoV2 inhibited SG formation. The Nsp1 proteins of both viruses inhibited arsenite-induced eIF2α phosphorylation, and the Nsp1 of SARS-CoV2 alone was sufficient to cause a decrease in G3BP1 levels. This phenotype was dependent on the depletion of cytoplasmic mRNA mediated by Nsp1 and associated with nuclear accumulation of the SG-nucleating protein TIAR. To test the role of G3BP1 in coronavirus replication, we infected cells overexpressing EGFP-tagged G3BP1 with HCoV-OC43 and observed a significant decrease in virus replication compared to control cells expressing EGFP. The antiviral role of G3BP1 and the existence of multiple SG suppression mechanisms that are conserved between HCoV-OC43 and SARS-CoV2 suggest that SG formation may represent an important antiviral host defense that coronaviruses target to ensure efficient replication.
Collapse
Affiliation(s)
- Stacia M. Dolliver
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Mariel Kleer
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Maxwell P. Bui-Marinos
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Shan Ying
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Jennifer A. Corcoran
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Denys A. Khaperskyy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
- * E-mail:
| |
Collapse
|
5
|
Velasco BR, Izquierdo JM. T-Cell Intracellular Antigen 1-Like Protein in Physiology and Pathology. Int J Mol Sci 2022; 23:ijms23147836. [PMID: 35887183 PMCID: PMC9318959 DOI: 10.3390/ijms23147836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
T-cell intracellular antigen 1 (TIA1)-related/like (TIAR/TIAL1) protein is a multifunctional RNA-binding protein (RBP) involved in regulating many aspects of gene expression, independently or in combination with its paralog TIA1. TIAR was first described in 1992 by Paul Anderson’s lab in relation to the development of a cell death phenotype in immune system cells, as it possesses nucleolytic activity against cytotoxic lymphocyte target cells. Similar to TIA1, it is characterized by a subcellular nucleo-cytoplasmic localization and ubiquitous expression in the cells of different tissues of higher organisms. In this paper, we review the relevant structural and functional information available about TIAR from a triple perspective (molecular, cellular and pathophysiological), paying special attention to its expression and regulation in cellular events and processes linked to human pathophysiology.
Collapse
|
6
|
Yu AT, Berasain C, Bhatia S, Rivera K, Liu B, Rigo F, Pappin DJ, Spector DL. PHAROH lncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR. eLife 2021; 10:68263. [PMID: 34002693 PMCID: PMC8163507 DOI: 10.7554/elife.68263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/02/2021] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma, the most common type of liver malignancy, is one of the most lethal forms of cancer. We identified a long non-coding RNA, Gm19705, that is overexpressed in hepatocellular carcinoma and mouse embryonic stem cells. We named this RNA Pluripotency and Hepatocyte Associated RNA Overexpressed in HCC, or PHAROH. Depletion of PHAROH impacts cell proliferation and migration, which can be rescued by ectopic expression of PHAROH. RNA-seq analysis of PHAROH knockouts revealed that a large number of genes with decreased expression contain a Myc motif in their promoter. MYC is decreased in knockout cells at the protein level, but not the mRNA level. RNA-antisense pulldown identified nucleolysin TIAR, a translational repressor, to bind to a 71-nt hairpin within PHAROH, sequestration of which increases MYC translation. In summary, our data suggest that PHAROH regulates MYC translation by sequestering TIAR and as such represents a potentially exciting diagnostic or therapeutic target in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Allen T Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Genetics Program, Stony Brook University, Stony Brook, United States
| | - Carmen Berasain
- Hepatology Program, Cima, University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonam Bhatia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Bodu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, United States
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Genetics Program, Stony Brook University, Stony Brook, United States
| |
Collapse
|
7
|
Loughlin FE, West DL, Gunzburg MJ, Waris S, Crawford SA, Wilce MCJ, Wilce JA. Tandem RNA binding sites induce self-association of the stress granule marker protein TIA-1. Nucleic Acids Res 2021; 49:2403-2417. [PMID: 33621982 PMCID: PMC7969032 DOI: 10.1093/nar/gkab080] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/01/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
TIA-1 is an RNA-binding protein that sequesters target RNA into stress granules under conditions of cellular stress. Promotion of stress granule formation by TIA-1 depends upon self-association of its prion-like domain that facilitates liquid-liquid phase separation and is thought to be enhanced via RNA binding. However, the mechanisms underlying the influence of RNA on TIA-1 self-association have not been previously demonstrated. Here we have investigated the self-associating properties of full-length TIA-1 in the presence of designed and native TIA-1 nucleic acid binding sites in vitro, monitoring phase separation, fibril formation and shape. We show that single stranded RNA and DNA induce liquid-liquid phase separation of TIA-1 in a multisite, sequence-specific manner and also efficiently promote formation of amyloid-like fibrils. Although RNA binding to a single site induces a small conformational change in TIA-1, this alone does not enhance phase separation of TIA-1. Tandem binding sites are required to enhance phase separation of TIA-1 and this is finely tuned by the protein:binding site stoichiometry rather than nucleic acid length. Native tandem TIA-1 binding sites within the 3′ UTR of p53 mRNA also efficiently enhance phase separation of TIA-1 and thus may potentially act as potent nucleation sites for stress granule assembly.
Collapse
Affiliation(s)
- Fionna E Loughlin
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Danella L West
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Menachem J Gunzburg
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Saboora Waris
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre For Cryo Electron Microscopy, Monash University, Victoria 3800, Australia
| | - Matthew C J Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Jacqueline A Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
8
|
Suvanto M, Beesley J, Blomqvist C, Chenevix-Trench G, Khan S, Nevanlinna H. SNPs in lncRNA Regions and Breast Cancer Risk. Front Genet 2020; 11:550. [PMID: 32714364 PMCID: PMC7340126 DOI: 10.3389/fgene.2020.00550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/07/2020] [Indexed: 01/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in human physiology, and have been found to be associated with various cancers. Transcribed ultraconserved regions (T-UCRs) are a subgroup of lncRNAs conserved in several species, and are often located in cancer-related regions. Breast cancer is the most common cancer in women worldwide and the leading cause of female cancer deaths. We investigated the association of genetic variants in lncRNA and T-UCR regions with breast cancer risk to uncover candidate loci for further analysis. Our focus was on low-penetrance variants that can be discovered in a large dataset. We selected 565 regions of lncRNAs and T-UCRs that are expressed in breast or breast cancer tissue, or show expression correlation to major breast cancer associated genes. We studied the association of single nucleotide polymorphisms (SNPs) in these regions with breast cancer risk in the 122970 case samples and 105974 controls of the Breast Cancer Association Consortium's genome-wide data, and also by in silico functional analyses using Integrated Expression Quantitative trait and in silico prediction of GWAS targets (INQUISIT) and expression quantitative trait loci (eQTL) analysis. The eQTL analysis was carried out using the METABRIC dataset and analyses from GTEx and ncRNA eQTL databases. We found putative breast cancer risk variants (p < 1 × 10-5) targeting the lncRNA GABPB1-AS1 in INQUISIT and eQTL analysis. In addition, putative breast cancer risk associated SNPs (p < 1 × 10-5) in the region of two T-UCRs, uc.184 and uc.313, located in protein coding genes CPEB4 and TIAL1, respectively, targeted these genes in INQUISIT and in eQTL analysis. Other non-coding regions containing SNPs with the defined p-value and highly significant false discovery rate (FDR) for breast cancer risk association were discovered that may warrant further studies. These results suggest candidate lncRNA loci for further research on breast cancer risk and the molecular mechanisms.
Collapse
Affiliation(s)
- Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jonathan Beesley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QL, Australia
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QL, Australia
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Ostareck DH, Ostareck-Lederer A. RNA-Binding Proteins in the Control of LPS-Induced Macrophage Response. Front Genet 2019; 10:31. [PMID: 30778370 PMCID: PMC6369361 DOI: 10.3389/fgene.2019.00031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Innate immune response is triggered by pathogen components, like lipopolysaccharides (LPS) of gram-negative bacteria. LPS initiates Toll-like receptor 4 (TLR4) signaling, which involves mitogen activated protein kinases (MAPK) and nuclear factor kappa B (NFκB) in different pathway branches and ultimately induces inflammatory cytokine and chemokine expression, macrophage migration and phagocytosis. Timely gene transcription and post-transcriptional control of gene expression confer the adequate synthesis of signaling molecules. As trans-acting factors RNA binding proteins (RBPs) contribute significantly to the surveillance of gene expression. RBPs are involved in the regulation of mRNA processing, localization, stability and translation. Thereby they enable rapid cellular responses to inflammatory mediators and facilitate a coordinated systemic immune response. Specific RBP binding to conserved sequence motifs in their target mRNAs is mediated by RNA binding domains, like Zink-finger domains, RNA recognition motifs (RRM), and hnRNP K homology domains (KH), often arranged in modular arrays. In this review, we focus on RBPs Tristetraprolin (TTP), human antigen R (HUR), T-cell intracellular antigen 1 related protein (TIAR), and heterogeneous ribonuclear protein K (hnRNP K) in LPS induced macrophages as primary responding immune cells. We discuss recent experiments employing RNA immunoprecipitation and microarray analysis (RIP-Chip) and newly developed individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP), photoactivatable ribonucleoside-enhanced crosslinking (PAR-iCLIP) and RNA sequencing techniques (RNA-Seq). The global mRNA interaction profile analysis of TTP, HUR, TIAR, and hnRNP K exhibited valuable information about the post-transcriptional control of inflammation related gene expression with a broad impact on intracellular signaling and temporal cytokine expression.
Collapse
Affiliation(s)
- Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
10
|
Meyer C, Garzia A, Mazzola M, Gerstberger S, Molina H, Tuschl T. The TIA1 RNA-Binding Protein Family Regulates EIF2AK2-Mediated Stress Response and Cell Cycle Progression. Mol Cell 2019; 69:622-635.e6. [PMID: 29429924 DOI: 10.1016/j.molcel.2018.01.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
TIA1 and TIAL1 encode a family of U-rich element mRNA-binding proteins ubiquitously expressed and conserved in metazoans. Using PAR-CLIP, we determined that both proteins bind target sites with identical specificity in 3' UTRs and introns proximal to 5' as well as 3' splice sites. Double knockout (DKO) of TIA1 and TIAL1 increased target mRNA abundance proportional to the number of binding sites and also caused accumulation of aberrantly spliced mRNAs, most of which are subject to nonsense-mediated decay. Loss of PRKRA by mis-splicing triggered the activation of the double-stranded RNA (dsRNA)-activated protein kinase EIF2AK2/PKR and stress granule formation. Ectopic expression of PRKRA cDNA or knockout of EIF2AK2 in DKO cells rescued this phenotype. Perturbation of maturation and/or stability of additional targets further compromised cell cycle progression. Our study reveals the essential contributions of the TIA1 protein family to the fidelity of mRNA maturation, translation, and RNA-stress-sensing pathways in human cells.
Collapse
Affiliation(s)
- Cindy Meyer
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Aitor Garzia
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Michael Mazzola
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Stefanie Gerstberger
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA.
| |
Collapse
|
11
|
Lixa C, Mujo A, de Magalhães MTQ, Almeida FCL, Lima LMTR, Pinheiro AS. Oligomeric transition and dynamics of RNA binding by the HuR RRM1 domain in solution. JOURNAL OF BIOMOLECULAR NMR 2018; 72:179-192. [PMID: 30535889 DOI: 10.1007/s10858-018-0217-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Human antigen R (HuR) functions as a major post-transcriptional regulator of gene expression through its RNA-binding activity. HuR is composed by three RNA recognition motifs, namely RRM1, RRM2, and RRM3. The two N-terminal RRM domains are disposed in tandem and contribute mostly to HuR interaction with adenine and uracil-rich elements (ARE) in mRNA. Here, we used a combination of NMR and electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) to characterize the structure, dynamics, RNA recognition, and dimerization of HuR RRM1. Our solution structure reveals a canonical RRM fold containing a 19-residue, intrinsically disordered N-terminal extension, which is not involved in RNA binding. NMR titration results confirm the primary RNA-binding site to the two central β-strands, β1 and β3, for a cyclooxygenase 2 (Cox2) ARE I-derived, 7-nucleotide RNA ligand. We show by 15N relaxation that, in addition to the N- and C-termini, the β2-β3 loop undergoes fast backbone dynamics (ps-ns) both in the free and RNA-bound state, indicating that no structural ordering happens upon RNA interaction. ESI-IMS-MS reveals that HuR RRM1 dimerizes, however dimer population represents a minority. Dimerization occurs via the α-helical surface, which is oppositely orientated to the RNA-binding β-sheet. By using a DNA analog of the Cox2 ARE I, we show that DNA binding stabilizes HuR RRM1 monomer and shifts the monomer-dimer equilibrium toward the monomeric species. Altogether, our results deepen the current understanding of the mechanism of RNA recognition employed by HuR.
Collapse
Affiliation(s)
- Carolina Lixa
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Amanda Mujo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Mariana T Q de Magalhães
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Fabio C L Almeida
- National Center for Nuclear Magnetic Resonance Jiri Jonas, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Luis Mauricio T R Lima
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
| |
Collapse
|
12
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
13
|
Waris S, García-Mauriño SM, Sivakumaran A, Beckham SA, Loughlin FE, Gorospe M, Díaz-Moreno I, Wilce MCJ, Wilce JA. TIA-1 RRM23 binding and recognition of target oligonucleotides. Nucleic Acids Res 2017; 45:4944-4957. [PMID: 28184449 PMCID: PMC5416816 DOI: 10.1093/nar/gkx102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 01/01/2023] Open
Abstract
TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression.
Collapse
Affiliation(s)
- Saboora Waris
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ)-Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Sevilla 41092, Spain
| | - Andrew Sivakumaran
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Simone A Beckham
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Fionna E Loughlin
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ)-Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Sevilla 41092, Spain
| | - Matthew C J Wilce
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Jacqueline A Wilce
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
14
|
Abstract
T-cell intracellular antigen 1 (TIA1) and TIA1-related/like protein (TIAR/TIAL1) are 2 proteins discovered in 1991 as components of cytotoxic T lymphocyte granules. They act in the nucleus as regulators of transcription and pre-mRNA splicing. In the cytoplasm, TIA1 and TIAR regulate and/or modulate the location, stability and/or translation of mRNAs. As knowledge of the different genes regulated by these proteins and the cellular/biological programs in which they are involved increases, it is evident that these antigens are key players in human physiology and pathology. This review will discuss the latest developments in the field, with physiopathological relevance, that point to novel roles for these regulators in the molecular and cell biology of higher eukaryotes.
Collapse
Affiliation(s)
- Carmen Sánchez-Jiménez
- a Centro de Biología Molecular Severo Ochoa; Consejo Superior de Investigaciones Científicas; Universidad Autónoma de Madrid (CSIC/UAM); C/Nicolás Cabrera 1 ; Madrid , Spain
| | | |
Collapse
|
15
|
Kharraz Y, Lefort A, Libert F, Mann CJ, Gueydan C, Kruys V. Genome-wide analysis of TIAR RNA ligands in mouse macrophages before and after LPS stimulation. GENOMICS DATA 2016; 7:297-300. [PMID: 26981431 PMCID: PMC4778682 DOI: 10.1016/j.gdata.2016.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/31/2022]
Abstract
TIA-1 related protein (TIAR) is a RNA-binding protein involved in several steps of gene expression such as RNA splicing Aznarez et al. (2008) [1] and translation Piecyk et al. (2000) [2]. TIAR contains three RNA recognition motifs (RRMs) allowing its interaction with specific sequences localized in the untranslated regions (UTRs) of several mRNAs. In myeloid cells, TIAR has been shown to bind and regulate the translation and stability of various mRNA-encoding proteins important for the inflammatory response, such as TNFα Piecyk et al. (2000), Gueydan et al. (1999) [2], [3], Cox-2 Cok et al. (2003) [4] or IL-8 Suswam et al. (2005) [5]. Here, we generated two macrophage-like RAW 264.7 cell lines expressing either a tagged full-length TIAR protein or a RRM2-truncated mutant unable to bind RNA with high affinity Dember et al. (1996), Kim et al. (2013) . By a combination of RNA-IP and microarray analysis (RIP-chip), we identified mRNAs specifically bound by the full-length protein both in basal conditions and in response to LPS (GSE77577).
Collapse
Affiliation(s)
- Yacine Kharraz
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Belgium
| | - Anne Lefort
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles (ULB), Belgium
| | - Frédérick Libert
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles (ULB), Belgium
| | | | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Belgium
| |
Collapse
|
16
|
Cruz-Gallardo I, Del Conte R, Velázquez-Campoy A, García-Mauriño SM, Díaz-Moreno I. A Non-Invasive NMR Method Based on Histidine Imidazoles to Analyze the pH-Modulation of Protein-Nucleic Acid Interfaces. Chemistry 2015; 21:7588-95. [PMID: 25846236 DOI: 10.1002/chem.201405538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/19/2015] [Indexed: 12/20/2022]
Abstract
A useful (2) J(N-H) coupling-based NMR spectroscopic approach is proposed to unveil, at the molecular level, the contribution of the imidazole groups of histidines from RNA/DNA-binding proteins on the modulation of binding to nucleic acids by pH. Such protonation/deprotonation events have been monitored on the single His96 located at the second RNA/DNA recognition motif (RRM2) of T-cell intracellular antigen-1 (TIA-1) protein. The pKa values of the His96 ionizable groups were substantially higher in the complexes with short U-rich RNA and T-rich DNA oligonucleotides than those of the isolated TIA-1 RRM2. Herein, the methodology applied to determine changes in pKa of histidine side chains upon DNA/RNA binding, gives valuable information to understand the pH effect on multidomain DNA/RNA-binding proteins that shuttle among different cellular compartments.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- Instituto de Bioquímica Vegetal y Fotosíntesis cicCartuja, Universidad de Sevilla - CSIC, Avenida Américo Vespucio 49, 41092 Sevilla (Spain)
| | | | | | | | | |
Collapse
|
17
|
Balanced splicing at the Tat-specific HIV-1 3'ss A3 is critical for HIV-1 replication. Retrovirology 2015; 12:29. [PMID: 25889056 PMCID: PMC4422144 DOI: 10.1186/s12977-015-0154-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/26/2015] [Indexed: 11/12/2022] Open
Abstract
Background The viral regulatory protein Tat is essential for establishing a productive transcription from the 5′-LTR promoter during the early phase of viral gene expression. Formation of the Tat-encoding mRNAs requires splicing at the viral 3′ss A3, which has previously been shown to be both negatively and positively regulated by the downstream splicing regulatory elements (SREs) ESS2p and ESE2/ESS2. However, using the novel RESCUE-type computational HEXplorer algorithm, we were recently able to identify another splicing enhancer (ESE5807-5838, henceforth referred to as ESEtat) located between ESS2p and ESE2/ESS2. Here we show that ESEtat has a great impact on viral tat-mRNA splicing and that it is fundamental for regulated 3′ss A3 usage. Results Mutational inactivation or locked nucleic acid (LNA)-directed masking of the ESEtat sequence in the context of a replication-competent virus was associated with a failure (i) to activate viral 3′ss A3 and (ii) to accumulate Tat-encoding mRNA species. Consequently, due to insufficient amounts of Tat protein efficient viral replication was drastically impaired. RNA in vitro binding assays revealed SRSF2 and SRSF6 as candidate splicing factors acting through ESEtat and ESE2 for 3′ss A3 activation. This notion was supported by coexpression experiments, in which wild-type, but not ESEtat-negative provirus responded to higher levels of SRSF2 and SRSF6 proteins with higher levels of tat-mRNA splicing. Remarkably, we could also find that SRSF6 overexpression established an antiviral state within provirus-transfected cells, efficiently blocking virus particle production. For the anti-HIV-1 activity the arginine-serine (RS)-rich domain of the splicing factor was dispensable. Conclusions Based on our results, we propose that splicing at 3′ss A3 is dependent on binding of the enhancing SR proteins SRSF2 and SRSF6 to the ESEtat and ESE2 sequence. Mutational inactivation or interference specifically with ESEtat activity by LNA-directed masking seem to account for an early stage defect in viral gene expression, probably by cutting off the supply line of Tat that HIV needs to efficiently transcribe its genome.
Collapse
|
18
|
RNA recognition and stress granule formation by TIA proteins. Int J Mol Sci 2014; 15:23377-88. [PMID: 25522169 PMCID: PMC4284772 DOI: 10.3390/ijms151223377] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 02/04/2023] Open
Abstract
Stress granule (SG) formation is a primary mechanism through which gene expression is rapidly modulated when the eukaryotic cell undergoes cellular stresses (including heat, oxidative, viral infection, starvation). In particular, the sequestration of specifically targeted translationally stalled mRNAs into SGs limits the expression of a subset of genes, but allows the expression of heatshock proteins that have a protective effect in the cell. The importance of SGs is seen in several disease states in which SG function is disrupted. Fundamental to SG formation are the T cell restricted intracellular antigen (TIA) proteins (TIA-1 and TIA-1 related protein (TIAR)), that both directly bind to target RNA and self-associate to seed the formation of SGs. Here a summary is provided of the current understanding of the way in which TIA proteins target specific mRNA, and how TIA self-association is triggered under conditions of cellular stress.
Collapse
|
19
|
Bahrami-Samani E, Penalva LOF, Smith AD, Uren PJ. Leveraging cross-link modification events in CLIP-seq for motif discovery. Nucleic Acids Res 2014; 43:95-103. [PMID: 25505146 PMCID: PMC4288180 DOI: 10.1093/nar/gku1288] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High-throughput protein-RNA interaction data generated by CLIP-seq has provided an unprecedented depth of access to the activities of RNA-binding proteins (RBPs), the key players in co- and post-transcriptional regulation of gene expression. Motif discovery forms part of the necessary follow-up data analysis for CLIP-seq, both to refine the exact locations of RBP binding sites, and to characterize them. The specific properties of RBP binding sites, and the CLIP-seq methods, provide additional information not usually present in the classic motif discovery problem: the binding site structure, and cross-linking induced events in reads. We show that CLIP-seq data contains clear secondary structure signals, as well as technology- and RBP-specific cross-link signals. We introduce Zagros, a motif discovery algorithm specifically designed to leverage this information and explore its impact on the quality of recovered motifs. Our results indicate that using both secondary structure and cross-link modifications can greatly improve motif discovery on CLIP-seq data. Further, the motifs we recover provide insight into the balance between sequence- and structure-specificity struck by RBP binding.
Collapse
Affiliation(s)
- Emad Bahrami-Samani
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Luiz O F Penalva
- Children's Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Andrew D Smith
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Philip J Uren
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
20
|
Cruz-Gallardo I, Aroca Á, Gunzburg MJ, Sivakumaran A, Yoon JH, Angulo J, Persson C, Gorospe M, Karlsson BG, Wilce JA, Díaz-Moreno I. The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain. RNA Biol 2014; 11:766-76. [PMID: 24824036 DOI: 10.4161/rna.28801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain
| | - Ángeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain
| | - Menachem J Gunzburg
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria, Australia
| | - Andrew Sivakumaran
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria, Australia
| | - Je-Hyun Yoon
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; NIH; Baltimore, MD USA
| | - Jesús Angulo
- Instituto de Investigaciones Químicas; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain; School of Pharmacy; University of East Anglia; Norwich Research Park; Norwich, UK
| | - Cecilia Persson
- Swedish NMR Centre; University of Gothenburg; Gothenburg, Sweden
| | - Myriam Gorospe
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; NIH; Baltimore, MD USA
| | - B Göran Karlsson
- Swedish NMR Centre; University of Gothenburg; Gothenburg, Sweden
| | - Jacqueline A Wilce
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria, Australia
| | - Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain
| |
Collapse
|
21
|
Yang H, Rao JN, Wang JY. Posttranscriptional Regulation of Intestinal Epithelial Tight Junction Barrier by RNA-binding Proteins and microRNAs. Tissue Barriers 2014; 2:e28320. [PMID: 24843843 PMCID: PMC4022605 DOI: 10.4161/tisb.28320] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 12/19/2022] Open
Abstract
Intestinal epithelial tight junctions (TJs) are a specialized structure that determines the cell polarity and prevents the diffusion of toxins, allergens, and pathogens from the lumen into the tissue. TJs are highly dynamic and its constituent protein complexes undergo continuously remodeling and turnover under tight regulation by numerous extracellular and intracellular factors. RNA-binding proteins (RBPs) and microRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are involved in many aspects of cellular physiology. An increasing body of evidence indicates that RBPs including HuR and CUG-binding protein 1 and miRNAs such as miR-192 modulate the stability and translation of mRNAs encoding TJ proteins and play an important role in the control of intestinal epithelial TJ barrier function. In this mini-review article, we highlight the changes in TJ expression and intestinal epithelial TJ barrier function after activation or inactivation of RBPs and miRNAs and further analyze in some detail the mechanisms through which the stability and translation of TJ mRNAs are regulated by RBPs and miRNAs.
Collapse
Affiliation(s)
- Hong Yang
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| | - Jaladanki N Rao
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| | - Jian-Ying Wang
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Department of Pathology; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| |
Collapse
|
22
|
Vislovukh A, Vargas TR, Polesskaya A, Groisman I. Role of 3’-untranslated region translational control in cancer development, diagnostics and treatment. World J Biol Chem 2014; 5:40-57. [PMID: 24600513 PMCID: PMC3942541 DOI: 10.4331/wjbc.v5.i1.40] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/22/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
The messenger RNA 3’-untranslated region (3’UTR) plays an important role in regulation of gene expression on the posttranscriptional level. The 3’UTR controls gene expression via orchestrated interaction between the structural components of mRNAs (cis-element) and the specific trans-acting factors (RNA binding proteins and non-coding RNAs). The crosstalk of these factors is based on the binding sequences and/or direct protein-protein interaction, or just functional interaction. Much new evidence that has accumulated supports the idea that several RNA binding factors can bind to common mRNA targets: to the non-overlapping binding sites or to common sites in a competitive fashion. Various factors capable of binding to the same RNA can cooperate or be antagonistic in their actions. The outcome of the collective function of all factors bound to the same mRNA 3’UTR depends on many circumstances, such as their expression levels, affinity to the binding sites, and localization in the cell, which can be controlled by various physiological conditions. Moreover, the functional and/or physical interactions of the factors binding to 3’UTR can change the character of their actions. These interactions vary during the cell cycle and in response to changing physiological conditions. Abnormal functioning of the factors can lead to disease. In this review we will discuss how alterations of these factors or their interaction can affect cancer development and promote or enhance the malignant phenotype of cancer cells. Understanding these alterations and their impact on 3’UTR-directed posttranscriptional gene regulation will uncover promising new targets for therapeutic intervention and diagnostics. We will also discuss emerging new tools in cancer diagnostics and therapy based on 3’UTR binding factors and approaches to improve them.
Collapse
|
23
|
Maticzka D, Lange SJ, Costa F, Backofen R. GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biol 2014; 15:R17. [PMID: 24451197 PMCID: PMC4053806 DOI: 10.1186/gb-2014-15-1-r17] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/22/2014] [Indexed: 12/01/2022] Open
Abstract
We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt.
Collapse
|