1
|
Casier K, Autaa J, Gueguen N, Delmarre V, Marie PP, Ronsseray S, Carré C, Brasset E, Teysset L, Boivin A. The histone demethylase Kdm3 prevents auto-immune piRNAs production in Drosophila. SCIENCE ADVANCES 2023; 9:eade3872. [PMID: 37027460 PMCID: PMC10081847 DOI: 10.1126/sciadv.ade3872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Genome integrity of the animal germline is protected from transposable element activity by PIWI-interacting RNAs (piRNAs). While piRNA biogenesis is intensively explored, little is known about the genetical determination of piRNA clusters, the genomic sources of piRNAs. Using a bimodal epigenetic state piRNA cluster (BX2), we identified the histone demethylase Kdm3 as being able to prevent a cryptic piRNA production. In the absence of Kdm3, dozens of coding gene-containing regions become genuine germline dual-strand piRNA clusters. Eggs laid by Kdm3 mutant females show developmental defects phenocopying loss of function of genes embedded into the additional piRNA clusters, suggesting an inheritance of functional ovarian "auto-immune" piRNAs. Antagonizing piRNA cluster determination through chromatin modifications appears crucial to prevent auto-immune genic piRNAs production.
Collapse
Affiliation(s)
- Karine Casier
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Julie Autaa
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Nathalie Gueguen
- iGReD, CNRS, INSERM, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Valérie Delmarre
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Pauline P. Marie
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Stéphane Ronsseray
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Clément Carré
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Emilie Brasset
- iGReD, CNRS, INSERM, Faculté de Médecine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Laure Teysset
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| | - Antoine Boivin
- Transgenerational Epigenetics and Small RNA Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Biologie du Développement, UMR7622, F-75005 Paris, France
| |
Collapse
|
2
|
Cloud-Richardson KM, Smith BR, Macdonald SJ. Genetic dissection of intraspecific variation in a male-specific sexual trait in Drosophila melanogaster. Heredity (Edinb) 2016; 117:417-426. [PMID: 27530909 PMCID: PMC5117841 DOI: 10.1038/hdy.2016.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/07/2016] [Accepted: 06/22/2016] [Indexed: 01/06/2023] Open
Abstract
An open question in evolutionary biology is the relationship between standing variation for a trait and the variation that leads to interspecific divergence. By identifying loci underlying phenotypic variation in intra- and interspecific crosses we can determine the extent to which polymorphism and divergence are controlled by the same genomic regions. Sexual traits provide abundant examples of morphological and behavioral diversity within and among species, and here we leverage variation in the Drosophila sex comb to address this question. The sex comb is an array of modified bristles or ‘teeth' present on the male forelegs of several Drosophilid species. Males use the comb to grasp females during copulation, and ablation experiments have shown that males lacking comb teeth typically fail to mate. We measured tooth number in >700 genotypes derived from a multiparental advanced-intercross population, mapping three moderate-effect loci contributing to trait heritability. Two quantitative trait loci (QTLs) coincide with previously identified intra- and interspecific sex comb QTL, but such overlap can be explained by chance alone, in part because of the broad swathes of the genome implicated by earlier, low-resolution QTL scans. Our mapped QTL regions encompass 70–124 genes, but do not include those genes known to be involved in developmental specification of the comb. Nonetheless, we identified plausible candidates within all QTL intervals, and used RNA interference to validate effects at four loci. Notably, TweedleS expression knockdown substantially reduces tooth number. The genes we highlight are strong candidates to harbor segregating, functional variants contributing to sex comb tooth number.
Collapse
Affiliation(s)
| | - B R Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - S J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.,Center for Computational Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
3
|
Abstract
Tra2 proteins regulate pre-mRNA splicing in vertebrates and invertebrates, and are involved in important processes ranging from brain development in mice to sex determination in fruitflies. In structure Tra2 proteins contain two RS domains (domains enriched in arginine and serine residues) flanking a central RRM (RNA recognition motif). Understanding the mechanisms of how Tra2 proteins work to control splicing is one of the key requirements to understand their biology. In the present article, we review what is known about how Tra2 proteins regulate splicing decisions in mammals and fruitflies.
Collapse
|
4
|
Siala O, Rebai A, Fakhfakh F. Slight variations in the SC35 ESE sequence motif among human chromosomes: a computational approach. Gene 2014; 545:102-10. [PMID: 24792892 DOI: 10.1016/j.gene.2014.04.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022]
Abstract
Gene expression is initiated by the binding of transcription factors to cis-regulatory modules such as enhancer elements binding to the Serine/Arginine proteins. Recently, we noticed an increased ability to identify the location as well as the motifs of enhancers using genome-wide information on spliceosomal factor occupancy, cofactor recruitment and chromatin modifications. In this study, we have undertaken a large-scale genomic analysis in an attempt to uncover if the exonic splicing enhancer motif binding to the SC35 and the SRp40 SR proteins is conserved among several groups of human genes. For the SRp40, the results showed that the ESE consensus is conserved among human genes. Concerning the SC35 SR protein, results showed an ESE motif conserved among human tissues and between different levels of muscular cell differentiation and within the same chromosome. However, this motif displays subtle discrepancies between genes localized in different chromosomes. These results emphasize the presence of different translational isoforms of the SFRS2 gene encoding for the SC35, or different post-translational protein maturations in different chromosomes, confirming that chromatin structure is another layer of gene regulation. These links between chromatin pattern and splicing give further mechanistic support to functional interconnections between splicing, transcription and chromatin structure, and raise the intriguing possibility of the existence of a memory for splicing patterns to be inherited through epigenetic modifications.
Collapse
Affiliation(s)
- Olfa Siala
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Avenue Majida Boulila, 3029 Sfax, Tunisia.
| | - Ahmed Rebai
- Unit of Bioinformatics and Biostatistics, Centre of Biotechnology of Sfax, Sfax 3038, Tunisia.
| | - Faiza Fakhfakh
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Avenue Majida Boulila, 3029 Sfax, Tunisia.
| |
Collapse
|
5
|
Shukla JN, Palli SR. Tribolium castaneum Transformer-2 regulates sex determination and development in both males and females. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1125-32. [PMID: 24056158 PMCID: PMC3965185 DOI: 10.1016/j.ibmb.2013.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 05/24/2023]
Abstract
Tribolium castaneum Transformer (TcTra) is essential for female sex determination and maintenance through the regulation of sex-specific splicing of doublesex (dsx) pre-mRNA. In females, TcTra also regulates the sex-specific splicing of its own pre-mRNA to ensure continuous production of functional Tra protein. Transformer protein is absent in males and hence dsx pre-mRNA is spliced in a default mode. The mechanisms by which males inhibit the production of functional Tra protein are not known. Here, we report on functional characterization of transformer-2 (tra-2) gene (an ortholog of Drosophila transformer-2) in T. castaneum. RNA interference-mediated knockdown in the expression of gene coding for tra-2 in female pupae or adults resulted in the production of male-specific isoform of dsx and both female and male isoforms of tra suggesting that Tra-2 is essential for the female-specific splicing of tra and dsx pre-mRNAs. Interestingly, knockdown of tra-2 in males did not affect the splicing of dsx but resulted in the production of both female and male isoforms of tra suggesting that Tra-2 suppresses female-specific splicing of tra pre-mRNA in males. This dual regulation of sex-specific splicing of tra pre-mRNA ensures a tight regulation of sex determination and maintenance. These data suggest a critical role for Tra-2 in suppression of female sex determination cascade in males. In addition, RNAi studies showed that Tra-2 is also required for successful embryonic and larval development in both sexes.
Collapse
Affiliation(s)
| | - Subba Reddy Palli
- Corresponding author. Tel.: +1 859 257 4962; fax: +1 859 323 1120. , (S.R. Palli)
| |
Collapse
|