1
|
Shen X, Peng X, Guo Y, Dai Z, Cui L, Yu W, Liu Y, Liu CY. YAP/TAZ enhances P-body formation to promote tumorigenesis. eLife 2024; 12:RP88573. [PMID: 39046443 PMCID: PMC11268890 DOI: 10.7554/elife.88573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
The role of processing bodies (P-bodies) in tumorigenesis and tumor progression is not well understood. Here, we showed that the oncogenes YAP/TAZ promote P-body formation in a series of cancer cell lines. Mechanistically, both transcriptional activation of the P-body-related genes SAMD4A, AJUBA, and WTIP and transcriptional suppression of the tumor suppressor gene PNRC1 are involved in enhancing the effects of YAP/TAZ on P-body formation in colorectal cancer (CRC) cells. By reexpression of PNRC1 or knockdown of P-body core genes (DDX6, DCP1A, and LSM14A), we determined that disruption of P-bodies attenuates cell proliferation, cell migration, and tumor growth induced by overexpression of YAP5SA in CRC. Analysis of a pancancer CRISPR screen database (DepMap) revealed co-dependencies between YAP/TEAD and the P-body core genes and correlations between the mRNA levels of SAMD4A, AJUBA, WTIP, PNRC1, and YAP target genes. Our study suggests that the P-body is a new downstream effector of YAP/TAZ, which implies that reexpression of PNRC1 or disruption of P-bodies is a potential therapeutic strategy for tumors with active YAP.
Collapse
Affiliation(s)
- Xia Shen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Xiang Peng
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - YueGui Guo
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Zhujiang Dai
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Long Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yun Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Colorectal Cancer Research CenterShanghaiChina
| |
Collapse
|
2
|
Solis-Miranda J, Chodasiewicz M, Skirycz A, Fernie AR, Moschou PN, Bozhkov PV, Gutierrez-Beltran E. Stress-related biomolecular condensates in plants. THE PLANT CELL 2023; 35:3187-3204. [PMID: 37162152 PMCID: PMC10473214 DOI: 10.1093/plcell/koad127] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, 2 of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance.
Collapse
Affiliation(s)
- Jorge Solis-Miranda
- Institutode Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Monika Chodasiewicz
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Emilio Gutierrez-Beltran
- Institutode Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 41092 Sevilla, Spain
- Departamento de Bioquimica Vegetal y Biologia Molecular, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Buddika K, Huang YT, Ariyapala IS, Butrum-Griffith A, Norrell SA, O'Connor AM, Patel VK, Rector SA, Slovan M, Sokolowski M, Kato Y, Nakamura A, Sokol NS. Coordinated repression of pro-differentiation genes via P-bodies and transcription maintains Drosophila intestinal stem cell identity. Curr Biol 2022; 32:386-397.e6. [PMID: 34875230 PMCID: PMC8792327 DOI: 10.1016/j.cub.2021.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/17/2021] [Accepted: 11/11/2021] [Indexed: 01/26/2023]
Abstract
The role of processing bodies (P-bodies), key sites of post-transcriptional control, in adult stem cells remains poorly understood. Here, we report that adult Drosophila intestinal stem cells, but not surrounding differentiated cells such as absorptive enterocytes (ECs), harbor P-bodies that contain Drosophila orthologs of mammalian P-body components DDX6, EDC3, EDC4, and LSM14A/B. A targeted RNAi screen in intestinal progenitor cells identified 39 previously known and 64 novel P-body regulators, including Patr-1, a gene necessary for P-body assembly. Loss of Patr-1-dependent P-bodies leads to a loss of stem cells that is associated with inappropriate expression of EC-fate gene nubbin. Transcriptomic analysis of progenitor cells identifies a cadre of such weakly transcribed pro-differentiation transcripts that are elevated after P-body loss. Altogether, this study identifies a P-body-dependent repression activity that coordinates with known transcriptional repression programs to maintain a population of in vivo stem cells in a state primed for differentiation.
Collapse
Affiliation(s)
- Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Sam A Norrell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alex M O'Connor
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Viraj K Patel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Samuel A Rector
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Mark Slovan
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
4
|
Gutierrez‐Beltran E, Elander PH, Dalman K, Dayhoff GW, Moschou PN, Uversky VN, Crespo JL, Bozhkov PV. Tudor staphylococcal nuclease is a docking platform for stress granule components and is essential for SnRK1 activation in Arabidopsis. EMBO J 2021; 40:e105043. [PMID: 34287990 PMCID: PMC8447601 DOI: 10.15252/embj.2020105043] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Tudor staphylococcal nuclease (TSN; also known as Tudor-SN, p100, or SND1) is a multifunctional, evolutionarily conserved regulator of gene expression, exhibiting cytoprotective activity in animals and plants and oncogenic activity in mammals. During stress, TSN stably associates with stress granules (SGs), in a poorly understood process. Here, we show that in the model plant Arabidopsis thaliana, TSN is an intrinsically disordered protein (IDP) acting as a scaffold for a large pool of other IDPs, enriched for conserved stress granule components as well as novel or plant-specific SG-localized proteins. While approximately 30% of TSN interactors are recruited to stress granules de novo upon stress perception, 70% form a protein-protein interaction network present before the onset of stress. Finally, we demonstrate that TSN and stress granule formation promote heat-induced activation of the evolutionarily conserved energy-sensing SNF1-related protein kinase 1 (SnRK1), the plant orthologue of mammalian AMP-activated protein kinase (AMPK). Our results establish TSN as a docking platform for stress granule proteins, with an important role in stress signalling.
Collapse
Affiliation(s)
- Emilio Gutierrez‐Beltran
- Instituto de Bioquímica Vegetal y FotosíntesisConsejo Superior de Investigaciones Científicas (CSIC)‐Universidad de SevillaSevillaSpain
- Departamento de Bioquímica Vegetal y Biología MolecularFacultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Pernilla H Elander
- Department of Molecular SciencesUppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsalaSweden
| | - Kerstin Dalman
- Department of Molecular SciencesUppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsalaSweden
| | - Guy W Dayhoff
- Department of ChemistryCollege of Art and SciencesUniversity of South FloridaTampaFLUSA
| | - Panagiotis N Moschou
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology ‐ HellasHeraklionGreece
- Department of Plant BiologyUppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsalaSweden
- Department of BiologyUniversity of CreteHeraklionGreece
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFLUSA
- Institute for Biological Instrumentation of the Russian Academy of SciencesFederal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”PushchinoRussia
| | - Jose L Crespo
- Instituto de Bioquímica Vegetal y FotosíntesisConsejo Superior de Investigaciones Científicas (CSIC)‐Universidad de SevillaSevillaSpain
| | - Peter V Bozhkov
- Department of Molecular SciencesUppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsalaSweden
| |
Collapse
|
5
|
Burgers LD, Fürst R. Natural products as drugs and tools for influencing core processes of eukaryotic mRNA translation. Pharmacol Res 2021; 170:105535. [PMID: 34058326 DOI: 10.1016/j.phrs.2021.105535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
Eukaryotic protein synthesis is the highly conserved, complex mechanism of translating genetic information into proteins. Although this process is essential for cellular homoeostasis, dysregulations are associated with cellular malfunctions and diseases including cancer and diabetes. In the challenging and ongoing search for adequate treatment possibilities, natural products represent excellent research tools and drug leads for new interactions with the translational machinery and for influencing mRNA translation. In this review, bacterial-, marine- and plant-derived natural compounds that interact with different steps of mRNA translation, comprising ribosomal assembly, translation initiation and elongation, are highlighted. Thereby, the exact binding and interacting partners are unveiled in order to accurately understand the mode of action of each natural product. The pharmacological relevance of these compounds is furthermore assessed by evaluating the observed biological activities in the light of translational inhibition and by enlightening potential obstacles and undesired side-effects, e.g. in clinical trials. As many of the natural products presented here possess the potential to serve as drug leads for synthetic derivatives, structural motifs, which are indispensable for both mode of action and biological activities, are discussed. Evaluating the natural products emphasises the strong diversity of their points of attack. Especially the fact that selected binding partners can be set in direct relation to different diseases emphasises the indispensability of natural products in the field of drug development. Discovery of new, unique and unusual interacting partners again renders them promising tools for future research in the field of eukaryotic mRNA translation.
Collapse
Affiliation(s)
- Luisa D Burgers
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany; LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| |
Collapse
|
6
|
Overexpression of mRNA-decapping enzyme 1a predicts disease-specific survival in malignant melanoma. Melanoma Res 2018; 28:30-36. [PMID: 29076924 DOI: 10.1097/cmr.0000000000000406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our previous study identified that rs11551405 A allele located at the 3' UTR of mRNA-decapping enzyme 1a (DCP1A) was associated with an increased risk for malignant melanoma (MM). The aim of this study was to investigate whether that association is manifested at the DCP1A expression and whether an altered DCP1A expression can predict disease-specific survival (DSS) of MM patients. The DCP1A expression in specimens of 56 cases of primary MM (23 cases at TNM stage I-II and 33 cases at TNM stage III-IV) and 43 cases of benign nevi (BN) was measured by quantitative RT-PCR (qRT-PCR), immunohistochemistry, and western blotting. The levels of DCP1A expression and the clinical characteristics of the patients were recorded and compared, along with the DSS within the 3 years of follow-up. The average relative mRNA level of DCP1A was significantly (P=0.002) higher in the MM tissues (0.159±0.007) than that shown in the BN tissues (0.122±0.009). The DCP1A immunohistochemistry scores of MM samples (5.55±2.56) were significantly (P<0.001) higher than those of the BN samples (3.58±3.66). Tissue protein levels of DCP1A in MM (0.378±0.021) were much (P<0.05) higher than those in BN tissues (0.265±0.017). Higher DCP1A expression was significantly correlated with shorter DSS time in patients with MM (P<0.05). The multivariate Cox regression analysis revealed that DCP1A expression was an independent prognostic factor for DSS (hazard ratio=1.648, P=0.021). Elevation of DCP1A expression may be an epigenetic contributing factor for oncogenesis of MM, and high DCP1A level may predict an unfavorable prognosis for MM.
Collapse
|
7
|
Moujaber O, Stochaj U. Cytoplasmic RNA Granules in Somatic Maintenance. Gerontology 2018; 64:485-494. [PMID: 29847814 DOI: 10.1159/000488759] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Cytoplasmic RNA granules represent subcellular compartments that are enriched in protein-bound RNA species. RNA granules are produced by evolutionary divergent eukaryotes, including yeast, mammals, and plants. The functions of cytoplasmic RNA granules differ widely. They are dictated by the cell type and physiological state, which in turn is determined by intrinsic cell properties and environmental factors. RNA granules provide diverse cellular functions. However, all of the granules contribute to aspects of RNA metabolism. This is exemplified by transcription, RNA storage, silencing, and degradation, as well as mRNP remodeling and regulated translation. Several forms of cytoplasmic mRNA granules are linked to normal physiological processes. For instance, they may coordinate protein synthesis and thereby serve as posttranscriptional "operons". RNA granules also participate in cytoplasmic mRNA trafficking, a process particularly well understood for neurons. Many forms of RNA granules support the preservation of somatic cell performance under normal and stress conditions. On the other hand, severe insults or disease can cause the formation and persistence of RNA granules that contribute to cellular dysfunction, especially in the nervous system. Neurodegeneration and many other diseases linked to RNA granules are associated with aging. Nevertheless, information related to the impact of aging on the various types of RNA granules is presently very limited. This review concentrates on cytoplasmic RNA granules and their role in somatic cell maintenance. We summarize the current knowledge on different types of RNA granules in the cytoplasm, their assembly and function under normal, stress, or disease conditions. Specifically, we discuss processing bodies, neuronal granules, stress granules, and other less characterized cytoplasmic RNA granules. Our focus is primarily on mammalian and yeast models, because they have been critical to unravel the physiological role of various RNA granules. RNA granules in plants and pathogens are briefly described. We conclude our viewpoint by summarizing the emerging concepts for RNA granule biology and the open questions that need to be addressed in future studies.
Collapse
|
8
|
Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep 2015; 32:29-48. [PMID: 25315648 DOI: 10.1039/c4np00085d] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to April 2014. The development of drugs with broad-spectrum antiviral activities is a long pursued goal in drug discovery. It has been shown that blocking co-opted host-factors abrogates the replication of many viruses, yet the development of such host-targeting drugs has been met with scepticism mainly due to toxicity issues and poor translation to in vivo models. With the advent of new and more powerful screening assays and prediction tools, the idea of a drug that can efficiently treat a wide range of viral infections by blocking specific host functions has re-bloomed. Here we critically review the state-of-the-art in broad-spectrum antiviral drug discovery. We discuss putative targets and treatment strategies, with particular focus on natural products as promising starting points for antiviral lead development.
Collapse
Affiliation(s)
- J P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|