1
|
Lin C, Chou FJ, Lu J, Lin W, Truong M, Tian H, Sun Y, Luo J, Yang R, Niu Y, Nadal R, Antonarakis ES, Cordon-Cardo C, Sahasrabudhe D, Huang CP, Yeh S, Li G, Chang C. Preclinical studies show using enzalutamide is less effective in docetaxel-pretreated than in docetaxel-naïve prostate cancer cells. Aging (Albany NY) 2020; 12:17694-17712. [PMID: 32920545 PMCID: PMC7521536 DOI: 10.18632/aging.103917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/25/2020] [Indexed: 01/24/2023]
Abstract
Anti-androgen therapy with Enzalutamide (Enz) has been used as a therapy for castration resistant prostate cancer (CRPC) patients after development of resistance to chemotherapy with Docetaxel (Doc). The potential impacts of Doc-chemotherapy on the subsequent Enz treatment, however, remain unclear. Here we found the overall survival rate of patients that received Enz was significantly less in patients that received prior Doc-chemotherapy than those who had not. In vitro studies from 3 established Doc resistant CRPC (DocRPC) cell lines are consistent with the clinical findings showing DocRPC patients had decreased Enz-sensitivity as well as accelerated development of Enz-resistance via enhanced androgen receptor (AR) splicing variant 7 (ARv7) expression. Mechanism dissection found that Doc treatment might increase the generation of ARv7 via altering the MALAT1-SF2 RNA splicing complex. Preclinical studies using in vivo mouse models and in vitro cell lines proved that targeting the MALAT1/SF2/ARv7 axis with small molecules, including siMALAT1, shSF2, and shARv7 or ARv7 degradation enhancers: Cisplatin or ASC-J9®, can restore/increase the Enz sensitivity to further suppress DocRPC cell growth. Therefore, combined therapy of Doc-chemotherapy with anti-ARv7 therapy, including Cisplatin or ASC-J9®, may be developed to increase the efficacy of Enz to further suppress DocRPC in patients.
Collapse
Affiliation(s)
- Changyi Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Fu-Ju Chou
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Jieyang Lu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wanying Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Matthew Truong
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Hao Tian
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Jie Luo
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Rachel Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Yuanjie Niu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | - Rosa Nadal
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | | | - Carlos Cordon-Cardo
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Deepak Sahasrabudhe
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Chi-Ping Huang
- Sex Hormone Research Center, Department of Urology, China Medical University and Hospital, Taichung 404, Taiwan
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY 14642, USA
- Sex Hormone Research Center, Department of Urology, China Medical University and Hospital, Taichung 404, Taiwan
| |
Collapse
|
2
|
The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation. Int J Mol Sci 2015; 17:ijms17010003. [PMID: 26703587 PMCID: PMC4730250 DOI: 10.3390/ijms17010003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.
Collapse
|
3
|
Shkreta L, Chabot B. The RNA Splicing Response to DNA Damage. Biomolecules 2015; 5:2935-77. [PMID: 26529031 PMCID: PMC4693264 DOI: 10.3390/biom5042935] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/20/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Benoit Chabot
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
4
|
SAM68: Signal Transduction and RNA Metabolism in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:528954. [PMID: 26273626 PMCID: PMC4529925 DOI: 10.1155/2015/528954] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting
splicing regulatory sequences contribute to cancer phenotypes. Genome-wide
studies have revealed more than 15,000 tumor-associated splice variants derived from
genes involved in almost every aspect of cancer cell biology, including proliferation,
differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and
angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been
implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to
the STAR (signal transduction and activation of RNA metabolism) family of RBPs.
SAM68 is involved in several steps of mRNA metabolism, from transcription to
alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling
pathways associated with cell response to stimuli, cell cycle transitions, and viral
infections. Recent evidence has linked this RBP to the onset and progression of
different tumors, highlighting misregulation of SAM68-regulated splicing events as a
key step in neoplastic transformation and tumor progression. Here we review recent
studies on the role of SAM68 in splicing regulation and we discuss its contribution to
aberrant pre-mRNA processing in cancer.
Collapse
|
5
|
Warns JA, Davie JR, Dhasarathy A. Connecting the dots: chromatin and alternative splicing in EMT. Biochem Cell Biol 2015; 94:12-25. [PMID: 26291837 DOI: 10.1139/bcb-2015-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Collapse
Affiliation(s)
- Jessica A Warns
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| | - James R Davie
- b Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Archana Dhasarathy
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| |
Collapse
|
6
|
Naro C, Bielli P, Pagliarini V, Sette C. The interplay between DNA damage response and RNA processing: the unexpected role of splicing factors as gatekeepers of genome stability. Front Genet 2015; 6:142. [PMID: 25926848 PMCID: PMC4397863 DOI: 10.3389/fgene.2015.00142] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 12/22/2022] Open
Abstract
Genome integrity is constantly threatened by endogenous and exogenous factors. However, its preservation is ensured by a network of pathways that prevent and/or repair the lesion, which constitute the DNA damage response (DDR). Expression of the key proteins involved in the DDR is controlled by numerous post-transcriptional mechanisms, among which pre-mRNA splicing stands out. Intriguingly, several splicing factors (SFs) have been recently shown to play direct functions in DNA damage prevention and repair, which go beyond their expected splicing activity. At the same time, evidence is emerging that DNA repair proteins (DRPs) can actively sustain the DDR by acting as post-transcriptional regulator of gene expression, in addition to their well-known role in the mechanisms of signaling and repair of the lesion. Herein, we will review these non-canonical functions of both SFs and DRPs, which suggest the existence of a tight interplay between splicing regulation and canonical DNA safeguard mechanisms ensuring genome stability.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata , Rome, Italy ; Laboratory of Neuroembryology, Fondazione Santa Lucia , Rome, Italy
| |
Collapse
|
7
|
Blasius M, Wagner SA, Choudhary C, Bartek J, Jackson SP. A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response. Genes Dev 2014; 28:1977-82. [PMID: 25189701 PMCID: PMC4173157 DOI: 10.1101/gad.246272.114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA metabolism is altered following DNA damage, but the underlying mechanisms are not well understood. Through a 14-3-3 interaction screen for DNA damage-induced protein interactions in human cells, we identified protein complexes connected to RNA biology. These include the nuclear exosome targeting (NEXT) complex that regulates turnover of noncoding RNAs termed promoter upstream transcripts (PROMPTs). We show that the NEXT subunit RBM7 is phosphorylated upon DNA damage by the MAPKAPK2 kinase and establish that this mediates 14-3-3 binding and decreases PROMPT binding. These findings and our observation that cells lacking RBM7 display DNA damage hypersensitivity link PROMPT turnover to the DNA damage response.
Collapse
Affiliation(s)
- Melanie Blasius
- The Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Genome Integrity Unit, Danish Cancer Society Research Centre, 2100 Copenhagen, Denmark
| | - Sebastian A Wagner
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jiri Bartek
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Institute of Molecular and Translational Medicine, Palacky University, 77900 Olomouc, Czech Republic
| | - Stephen P Jackson
- The Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom; The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
8
|
Ma H, Rao L, Wang HL, Mao ZW, Lei RH, Yang ZY, Qing H, Deng YL. Transcriptome analysis of glioma cells for the dynamic response to γ-irradiation and dual regulation of apoptosis genes: a new insight into radiotherapy for glioblastomas. Cell Death Dis 2013; 4:e895. [PMID: 24176853 PMCID: PMC3920930 DOI: 10.1038/cddis.2013.412] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/09/2013] [Accepted: 09/06/2013] [Indexed: 11/11/2022]
Abstract
Ionizing radiation (IR) is of clinical importance for glioblastoma therapy; however, the recurrence of glioma characterized by radiation resistance remains a therapeutic challenge. Research on irradiation-induced transcription in glioblastomas can contribute to the understanding of radioresistance mechanisms. In this study, by using the total mRNA sequencing (RNA-seq) analysis, we assayed the global gene expression in a human glioma cell line U251 MG at various time points after exposure to a growth arrest dose of γ-rays. We identified 1656 genes with obvious changes at the transcriptional level in response to irradiation, and these genes were dynamically enriched in various biological processes or pathways, including cell cycle arrest, DNA replication, DNA repair and apoptosis. Interestingly, the results showed that cell death was not induced even many proapoptotic molecules, including death receptor 5 (DR5) and caspases were activated after radiation. The RNA-seq data analysis further revealed that both proapoptosis and antiapoptosis genes were affected by irradiation. Namely, most proapoptosis genes were early continually responsive, whereas antiapoptosis genes were responsive at later stages. Moreover, HMGB1, HMGB2 and TOP2A involved in the positive regulation of DNA fragmentation during apoptosis showed early continual downregulation due to irradiation. Furthermore, targeting of the TRAIL/DR5 pathway after irradiation led to significant apoptotic cell death, accompanied by the recovered gene expression of HMGB1, HMGB2 and TOP2A. Taken together, these results revealed that inactivation of proapoptotic signaling molecules in the nucleus and late activation of antiapoptotic genes may contribute to the radioresistance of gliomas. Overall, this study provided novel insights into not only the underlying mechanisms of radioresistance in glioblastomas but also the screening of multiple targets for radiotherapy.
Collapse
Affiliation(s)
- H Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nevo Y, Kamhi E, Jacob-Hirsch J, Amariglio N, Rechavi G, Sperling J, Sperling R. Genome-wide activation of latent donor splice sites in stress and disease. Nucleic Acids Res 2012; 40:10980-94. [PMID: 23002147 PMCID: PMC3510495 DOI: 10.1093/nar/gks834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sequences that conform to the 5′ splice site (5′SS) consensus are highly abundant in mammalian introns. Most of these sequences are preceded by at least one in-frame stop codon; thus, their use for splicing would result in pre-maturely terminated aberrant mRNAs. In normally grown cells, such intronic 5′SSs appear not to be selected for splicing. However, under heat shock conditions aberrant splicing involving such latent 5′SSs occurred in a number of specific gene transcripts. Using a splicing-sensitive microarray, we show here that stress-induced (e.g. heat shock) activation of latent splicing is widespread across the human transcriptome, thus highlighting the possibility that latent splicing may underlie certain diseases. Consistent with this notion, our analyses of data from the Gene Expression Omnibus (GEO) revealed widespread activation of latent splicing in cells grown under hypoxia and in certain cancers such as breast cancer and gliomas. These changes were found in thousands of transcripts representing a wide variety of functional groups; among them are genes involved in cell proliferation and differentiation. The GEO analysis also revealed a set of gene transcripts in oligodendroglioma, in which the level of activation of latent splicing increased with the severity of the disease.
Collapse
Affiliation(s)
- Yuval Nevo
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
10
|
Albert H, Battaglia E, Monteiro C, Bagrel D. Genotoxic stress modulates CDC25C phosphatase alternative splicing in human breast cancer cell lines. Mol Oncol 2012; 6:542-52. [PMID: 22871320 DOI: 10.1016/j.molonc.2012.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/20/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022] Open
Abstract
CDC25 (cell division cycle 25) phosphatases are essential for cell cycle control under normal conditions and in response to DNA damage. They are represented by three isoforms, CDC25A, B and C, each of them being submitted to an alternative splicing mechanism. Alternative splicing of many genes is affected in response to genotoxic stress, but the impact of such a stress on CDC25 splicing has never been investigated. In this study, we demonstrate that genotoxic agents (doxorubicin, camptothecin, etoposide and cisplatin), alter the balance between CDC25C splice variants in human breast cancer cell lines both at the mRNA and protein levels. This modulation occurs during the response to moderate, sub-lethal DNA damage. Our results also suggest that the CDC25C splice variants expression shift induced by a genotoxic stress is dependent on the ATM/ATR signaling but not on p53. This study highlights the modulation of CDC25C alternative splicing as an additional regulatory event involved in cellular response to DNA damage in breast cancer cells.
Collapse
Affiliation(s)
- Hélène Albert
- Université de Lorraine, LIMBP-SRSMC, Rue du Général Delestraint, EA 3940, Metz F-57070, France
| | | | | | | |
Collapse
|
11
|
Allende-Vega N, Dayal S, Agarwala U, Sparks A, Bourdon JC, Saville MK. p53 is activated in response to disruption of the pre-mRNA splicing machinery. Oncogene 2012; 32:1-14. [PMID: 22349816 DOI: 10.1038/onc.2012.38] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we show that interfering with the splicing machinery results in activation of the tumour-suppressor p53. The spliceosome was targeted by small interfering RNA-mediated knockdown of proteins associated with different small nuclear ribonucleoprotein complexes and by using the small-molecule splicing modulator TG003. These interventions cause: the accumulation of p53, an increase in p53 transcriptional activity and can result in p53-dependent G(1) cell cycle arrest. Mdm2 and MdmX are two key repressors of p53. We show that a decrease in MdmX protein level contributes to p53 activation in response to targeting the spliceosome. Interfering with the spliceosome also causes an increase in the rate of degradation of Mdm2. Alterations in splicing are linked with tumour development. There are frequently global changes in splicing in cancer. Our study suggests that p53 activation could participate in protection against potential tumour-promoting defects in the spliceosome. A number of known p53-activating agents affect the splicing machinery and this could contribute to their ability to upregulate p53. Preclinical studies indicate that tumours can be more sensitive than normal cells to small-molecule spliceosome inhibitors. Activation of p53 could influence the selective anti-tumour activity of this therapeutic approach.
Collapse
Affiliation(s)
- N Allende-Vega
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Angus, UK
| | | | | | | | | | | |
Collapse
|
12
|
Pedrotti S, Busà R, Compagnucci C, Sette C. The RNA recognition motif protein RBM11 is a novel tissue-specific splicing regulator. Nucleic Acids Res 2011; 40:1021-32. [PMID: 21984414 PMCID: PMC3273811 DOI: 10.1093/nar/gkr819] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian tissues display a remarkable complexity of splicing patterns. Nevertheless, only few examples of tissue-specific splicing regulators are known. Herein, we characterize a novel splicing regulator named RBM11, which contains an RNA Recognition Motif (RRM) at the amino terminus and a region lacking known homology at the carboxyl terminus. RBM11 is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. RBM11 mRNA levels fluctuate in a developmentally regulated manner, peaking perinatally in brain and cerebellum, and at puberty in testis, in concomitance with differentiation events occurring in neurons and germ cells. Deletion analysis indicated that the RRM of RBM11 is required for RNA binding, whereas the carboxyl terminal region permits nuclear localization and homodimerization. RBM11 is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. Transcription inhibition/release experiments and exposure of cells to stress revealed a dynamic movement of RBM11 between nucleoplasm and speckles, suggesting that its localization is affected by the transcriptional status of the cell. Splicing assays revealed a role for RBM11 in the modulation of alternative splicing. In particular, RBM11 affected the choice of alternative 5′ splice sites in BCL-X by binding to specific sequences in exon 2 and antagonizing the SR protein SRSF1. Thus, our findings identify RBM11 as a novel tissue-specific splicing factor with potential implication in the regulation of alternative splicing during neuron and germ cell differentiation.
Collapse
Affiliation(s)
- Simona Pedrotti
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | |
Collapse
|
13
|
Bielli P, Busà R, Paronetto MP, Sette C. The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer 2011; 18:R91-R102. [PMID: 21565971 DOI: 10.1530/erc-11-0041] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Src associated in mitosis, of 68 kDa (Sam68) is a KH domain RNA-binding protein that belongs to the signal transduction and activation of RNA family. Although ubiquitously expressed, Sam68 plays very specialized roles in different cellular environments. In most cells, Sam68 resides in the nucleus and is involved in several steps of mRNA processing, from transcription, to alternative splicing, to nuclear export. In addition, Sam68 translocates to the cytoplasm upon cell stimulation, cell cycle transitions or viral infections, where it takes part to signaling complexes and associates with the mRNA translation machinery. Recent evidence has linked Sam68 function to the onset and progression of endocrine tumors, such as prostate and breast carcinomas. Notably, all the biochemical activities reported for Sam68 seem to be implicated in carcinogenesis. Herein, we review the recent advancement in the knowledge of Sam68 function and regulation and discuss it in the frame of its participation to neoplastic transformation and tumor progression.
Collapse
Affiliation(s)
- Pamela Bielli
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Italy
| | | | | | | |
Collapse
|