1
|
Gene regulatory networks exhibit several kinds of memory: quantification of memory in biological and random transcriptional networks. iScience 2021; 24:102131. [PMID: 33748699 PMCID: PMC7970124 DOI: 10.1016/j.isci.2021.102131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/09/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Gene regulatory networks (GRNs) process important information in developmental biology and biomedicine. A key knowledge gap concerns how their responses change over time. Hypothesizing long-term changes of dynamics induced by transient prior events, we created a computational framework for defining and identifying diverse types of memory in candidate GRNs. We show that GRNs from a wide range of model systems are predicted to possess several types of memory, including Pavlovian conditioning. Associative memory offers an alternative strategy for the biomedical use of powerful drugs with undesirable side effects, and a novel approach to understanding the variability and time-dependent changes of drug action. We find evidence of natural selection favoring GRN memory. Vertebrate GRNs overall exhibit more memory than invertebrate GRNs, and memory is most prevalent in differentiated metazoan cell networks compared with undifferentiated cells. Timed stimuli are a powerful alternative for biomedical control of complex in vivo dynamics without genomic editing or transgenes. Gene regulatory networks' dynamics are modified by transient stimuli GRNs have several different types of memory, including associative conditioning Evolution favored GRN memory, and differentiated cells have the most memory capacity Training GRNs offers a novel biomedical strategy not dependent on genetic rewiring
Collapse
|
2
|
Hu Y, Xie C, Xu F, Pan L. A strategy for programming the regulation of in vitro transcription with application in molecular circuits. NANOSCALE 2021; 13:5429-5434. [PMID: 33682870 DOI: 10.1039/d0nr08465d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In vitro transcription is a convenient platform for fabricating nanodevices and has been used for assembling synthetic networks. However, it remains challenging to regulate synthetic cell-free in vitro transcription by multiple stimuli in a simple and programmable way. We proposed a strategy to regulate in vitro transcription by controlling the transcription templates' promoter domain via variable DNA inputs. To demonstrate the utility of this strategy, various logic circuits and cascading circuits were implemented. With the advantage of simplicity, modularity, programmability, and extensibility, the proposed strategy has potential in biocomputing, bioanalytical, and therapeutic applications.
Collapse
Affiliation(s)
- Yingxin Hu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China. and College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, P. R. China
| | - Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Fei Xu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
3
|
Menon G, Krishnan J. Design Principles for Compartmentalization and Spatial Organization of Synthetic Genetic Circuits. ACS Synth Biol 2019; 8:1601-1619. [PMID: 31257861 DOI: 10.1021/acssynbio.8b00522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Compartmentalization is a hallmark of cellular systems and an ingredient actively exploited in evolution. It is also being engineered and exploited in synthetic biology, in multiple ways. While these have demonstrated important experimental capabilities, understanding design principles underpinning compartmentalization of genetic circuits has been elusive. We develop a systems framework to elucidate the interplay between the nature of the genetic circuit, the spatial organization of compartments, and their operational state (well-mixed or otherwise). In so doing, we reveal a number of unexpected features associated with compartmentalizing synthetic and template-based circuits. These include (i) the consequences of distributing circuits including trade-offs and how they may be circumvented, (ii) hidden constraints in realizing a distributed circuit, and (iii) appealing new features of compartmentalized circuits. We build on this to examine exemplar applications, which consolidate and extend the design principles we have obtained. Our insights, which emerge from the most basic and general considerations of compartmentalizing genetic circuits, are relevant in a broad range of settings.
Collapse
Affiliation(s)
- Govind Menon
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW72AZ, United Kingdom
| | - J. Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW72AZ, United Kingdom
- Institute for Systems and Synthetic Biology, Imperial College London, London SW72AZ, United Kingdom
| |
Collapse
|
4
|
Caschera F. Bacterial cell-free expression technology to in vitro systems engineering and optimization. Synth Syst Biotechnol 2017; 2:97-104. [PMID: 29062966 PMCID: PMC5637228 DOI: 10.1016/j.synbio.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022] Open
Abstract
Cell-free expression system is a technology for the synthesis of proteins in vitro. The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.
Collapse
|
5
|
Goltry S, Hallstrom N, Clark T, Kuang W, Lee J, Jorcyk C, Knowlton WB, Yurke B, Hughes WL, Graugnard E. DNA topology influences molecular machine lifetime in human serum. NANOSCALE 2015; 7:10382-90. [PMID: 25959862 PMCID: PMC4457601 DOI: 10.1039/c5nr02283e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 05/28/2023]
Abstract
DNA nanotechnology holds the potential for enabling new tools for biomedical engineering, including diagnosis, prognosis, and therapeutics. However, applications for DNA devices are thought to be limited by rapid enzymatic degradation in serum and blood. Here, we demonstrate that a key aspect of DNA nanotechnology-programmable molecular shape-plays a substantial role in device lifetimes. These results establish the ability to operate synthetic DNA devices in the presence of endogenous enzymes and challenge the textbook view of near instantaneous degradation.
Collapse
Affiliation(s)
- Sara Goltry
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Natalya Hallstrom
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Tyler Clark
- Department of Physics , Boise State University , Boise , Idaho 83725 , USA
- Department of Mathematics , Boise State University , Boise , Idaho 83725 , USA
| | - Wan Kuang
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - Jeunghoon Lee
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Chemistry & Biochemistry , Boise State University , Boise , Idaho 83725 , USA
| | - Cheryl Jorcyk
- Department of Biological Sciences , Boise State University , Boise , Idaho 83725 , USA
| | - William B. Knowlton
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - Bernard Yurke
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - William L. Hughes
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Elton Graugnard
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| |
Collapse
|
6
|
Strackharn M, Pippig DA, Meyer P, Stahl SW, Gaub HE. Nanoscale Arrangement of Proteins by Single-Molecule Cut-and-Paste. J Am Chem Soc 2012; 134:15193-6. [DOI: 10.1021/ja305689r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mathias Strackharn
- Center for
Nanoscience and Department of Physics, University of Munich, Amalienstraße 54, 80799
Munich, Germany
| | - Diana A. Pippig
- Center for
Nanoscience and Department of Physics, University of Munich, Amalienstraße 54, 80799
Munich, Germany
| | - Philipp Meyer
- Center for
Nanoscience and Department of Physics, University of Munich, Amalienstraße 54, 80799
Munich, Germany
| | - Stefan W. Stahl
- Center for
Nanoscience and Department of Physics, University of Munich, Amalienstraße 54, 80799
Munich, Germany
| | - Hermann E. Gaub
- Center for
Nanoscience and Department of Physics, University of Munich, Amalienstraße 54, 80799
Munich, Germany
| |
Collapse
|