1
|
Pillai RG, Azyat K, Chan NWC, Jemere AB. Rapid assembly of mixed thiols for toll-like receptor-based electrochemical pathogen sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7021-7032. [PMID: 39283241 DOI: 10.1039/d4ay00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we describe a rapid and facile fabrication of electrochemical sensors utilizing two different toll-like receptor (TLR) proteins as biorecognition elements to detect bacterial pathogen associated molecular patterns (PAMPs). Using potential-assisted self-assembly, binary mixtures of 11-mercaptoundecanoic acid (MUA) and 6-mercapto-1-hexanol (MCH), or MUA and an in-house synthesized zwitterionic sulfobetaine thiol (DPS) were assembled on a gold working electrode within 5 minutes, which is >200 times shorter than other TLR sensors' preparation time. Electrochemical methods and X-ray photoelectron microscopy were used to characterize the SAM layers. SAMs composed of the betaine terminated thiol exhibited superior resistance to nonspecific interactions, and were used to develop the TLR sensors. Biosensors containing two individually immobilized TLRs (TLR4 and TLR9) were fabricated on separate MUA-DPS SAM modified Au electrodes (MUA-DPS/Au) and tested for their response towards their respective PAMPs. The changes to electron transfer resistance in EIS of the TLR4/MUA-DPS/Au sensor showed a detection limit of 4 ng mL-1 for E. coli 0157:H7 endotoxin (lipopolysaccharide, LPS) and a dynamic range of up to 1000 ng mL-1. The TLR4-based sensor showed negligible response when tested with LPS spiked human plasma samples, showing no interference from the plasma matrix. The TLR9/MUA-DPS/Au sensor responded linearly up to 350 μg mL-1 bacterial DNA, with a detection limit of 7 μg mL-1. The rapid assembly of the TLR sensors, excellent antifouling properties of the mixed SAM assembly, small size and ease of operation of EIS hold great promise for the development of a portable and automated broad-spectrum pathogen detection and classification tool.
Collapse
Affiliation(s)
- Rajesh G Pillai
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Khalid Azyat
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Nora W C Chan
- Defence Research and Development Canada - Suffield Research Centre, Medicine Hat T1A 8K6, AB, Canada
| | - Abebaw B Jemere
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
- Department of Chemistry, Queen's University, Kingston K7L 3N6, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, ON, Canada
| |
Collapse
|
2
|
Iyer V, Castro D, Malla B, Panda B, Rabson AR, Horowitz G, Heger N, Gupta K, Singer A, Norwitz ER. Culture-independent identification of bloodstream infections from whole blood: prospective evaluation in specimens of known infection status. J Clin Microbiol 2024; 62:e0149823. [PMID: 38315022 PMCID: PMC10935643 DOI: 10.1128/jcm.01498-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Sepsis caused by bloodstream infection (BSI) is a major healthcare burden and a leading cause of morbidity and mortality worldwide. Timely diagnosis is critical to optimize clinical outcome, as mortality rates rise every hour treatment is delayed. Blood culture remains the "gold standard" for diagnosis but is limited by its long turnaround time (1-7 days depending on the organism) and its potential to provide false-negative results due to interference by antimicrobial therapy or the presence of mixed (i.e., polymicrobial) infections. In this paper, we evaluated the performance of resistance and pathogen ID/BSI, a direct-from-specimen molecular assay. To reduce the false-positivity rate common with molecular methods, this assay isolates and detects genomic material only from viable microorganisms in the blood by incorporating a novel precursor step to selectively lyse host and non-viable microbial cells and remove cell-free genomic material prior to lysis and analysis of microbial cells. Here, we demonstrate that the assay is free of interference from host immune cells and common antimicrobial agents at elevated concentrations. We also demonstrate the accuracy of this technology in a prospective cohort pilot study of individuals with known sepsis/BSI status, including samples from both positive and negative individuals. IMPORTANCE Blood culture remains the "gold standard" for the diagnosis of sepsis/bloodstream infection (BSI) but has many limitations which may lead to a delay in appropriate and accurate treatment in patients. Molecular diagnostic methods have the potential for markedly improving the management of such patients through faster turnaround times and increased accuracy. But molecular diagnostic methods have not been widely adopted for the identification of BSIs. By incorporating a precursor step of selective lysis of host and non-viable microorganisms, our resistance and pathogen ID (RaPID)/BSI molecular assay addresses many limitations of blood culture and other molecular assay. The RaPID/BSI assay has an approximate turnaround time of 4 hours, thereby significantly reducing the time to appropriate and accurate diagnosis of causative microorganisms in such patients. The short turnaround time also allows for close to real-time tracking of pathogenic clearance of microorganisms from the blood of these patients or if a change of antimicrobial regimen is required. Thus, the RaPID/BSI molecular assay helps with optimization of antimicrobial stewardship; prompt and accurate diagnosis of sepsis/BSI could help target timely treatment and reduce mortality and morbidity in such patients.
Collapse
Affiliation(s)
- Vidya Iyer
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Castro
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Bipin Malla
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Britta Panda
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Arthur R. Rabson
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Gary Horowitz
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicholas Heger
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | - Alon Singer
- HelixBind Inc., Boxborough, Massachusetts, USA
| | - Errol R. Norwitz
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021; 11:2083. [PMID: 34829430 PMCID: PMC8625106 DOI: 10.3390/diagnostics11112083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, Haryana, India;
| | - Rupesh Kumar Mishra
- Bindley Bio-Science Center, Lab 222, 1203 W. State St., Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - K. Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona A. Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority, Giza 99999, Egypt;
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh, India;
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Yangpu District, Shanghai 200093, China;
| | - Roger Narayan
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA;
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
4
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
5
|
Metzgar D, Frinder MW, Rothman RE, Peterson S, Carroll KC, Zhang SX, Avornu GD, Rounds MA, Carolan HE, Toleno DM, Moore D, Hall TA, Massire C, Richmond GS, Gutierrez JR, Sampath R, Ecker DJ, Blyn LB. The IRIDICA BAC BSI Assay: Rapid, Sensitive and Culture-Independent Identification of Bacteria and Candida in Blood. PLoS One 2016; 11:e0158186. [PMID: 27384540 PMCID: PMC4934770 DOI: 10.1371/journal.pone.0158186] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022] Open
Abstract
Bloodstream infection (BSI) and sepsis are rising in incidence throughout the developed world. The spread of multi-drug resistant organisms presents increasing challenges to treatment. Surviving BSI is dependent on rapid and accurate identification of causal organisms, and timely application of appropriate antibiotics. Current culture-based methods used to detect and identify agents of BSI are often too slow to impact early therapy and may fail to detect relevant organisms in many positive cases. Existing methods for direct molecular detection of microbial DNA in blood are limited in either sensitivity (likely the result of small sample volumes) or in breadth of coverage, often because the PCR primers and probes used target only a few specific pathogens. There is a clear unmet need for a sensitive molecular assay capable of identifying the diverse bacteria and yeast associated with BSI directly from uncultured whole blood samples. We have developed a method of extracting DNA from larger volumes of whole blood (5 ml per sample), amplifying multiple widely conserved bacterial and fungal genes using a mismatch- and background-tolerant PCR chemistry, and identifying hundreds of diverse organisms from the amplified fragments on the basis of species-specific genetic signatures using electrospray ionization mass spectrometry (PCR/ESI-MS). We describe the analytical characteristics of the IRIDICA BAC BSI Assay and compare its pre-clinical performance to current standard-of-care methods in a collection of prospectively collected blood specimens from patients with symptoms of sepsis. The assay generated matching results in 80% of culture-positive cases (86% when common contaminants were excluded from the analysis), and twice the total number of positive detections. The described method is capable of providing organism identifications directly from uncultured blood in less than 8 hours. Disclaimer: The IRIDICA BAC BSI Assay is not available in the United States.
Collapse
Affiliation(s)
- David Metzgar
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
- * E-mail:
| | - Mark W. Frinder
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Richard E. Rothman
- Department of Emergency Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen Peterson
- Department of Emergency Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Karen C. Carroll
- The Johns Hopkins Hospital Clinical Microbiology Laboratory, Baltimore, Maryland, United States of America
| | - Sean X. Zhang
- The Johns Hopkins Hospital Clinical Microbiology Laboratory, Baltimore, Maryland, United States of America
| | - Gideon D. Avornu
- Department of Emergency Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Megan A. Rounds
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Heather E. Carolan
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Donna M. Toleno
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - David Moore
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Thomas A. Hall
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Christian Massire
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Gregory S. Richmond
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Jose R. Gutierrez
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Rangarajan Sampath
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - David J. Ecker
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Lawrence B. Blyn
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| |
Collapse
|
6
|
|
7
|
Affiliation(s)
- George P Tegos
- Center for Molecular Discovery; University of New Mexico; Albuquerque, NM USA; Department of Pathology; University of New Mexico; Albuquerque, NM USA; Wellman Center for Photomedicine; Massachusetts General Hospital; Boston, MA USA; Department of Dermatology; Harvard Medical School; Boston, MA USA
| |
Collapse
|