1
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
2
|
Singh A, Sinha S, Singh NK. Dietary Natural Flavonoids: Intervention for MAO-B Against Parkinson's Disease. Chem Biol Drug Des 2024; 104:e14619. [PMID: 39223743 DOI: 10.1111/cbdd.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/27/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) stands as the second most common neurological disorder after Alzheimer's disease, primarily affecting the elderly population and significantly compromising their quality of life. The precise etiology of PD remains elusive, but recent research has shed light on potential factors, including the formation of α-synuclein aggregates, oxidative stress, neurotransmitter imbalances, and dopaminergic neurodegeneration in the substantia nigra pars compacta (SNpc) region of the brain, culminating in motor symptoms such as bradykinesia, akinesia, tremors, and rigidity. Monoamine oxidase (MAO) is an essential enzyme, comprising two isoforms, MAO-A and MAO-B, responsible for the oxidation of monoamines such as dopamine. Increased MAO-B activity is responsible for decreased dopamine levels in the SNpc region of mid brain which is remarkably associated with the pathogenesis of PD-like manifestations. Inhibitors of MAO-B enhance striatal neuronal responses to dopamine, making them valuable in treating PD, which involves dopamine deficiency. Clinically approved MAO-B inhibitors such as selegiline, L-deprenyl, pargyline, and rasagiline are employed in the management of neurodegenerative conditions associated with PD. Current therapeutic interventions including MAO-B inhibitors for PD predominantly aim to alleviate these motor symptoms but often come with a host of side effects that can be particularly challenging for the patients. While effective, they have limitations, prompting a search for alternative treatments, there is a growing interest in exploring natural products notably flavonoids as potential sources of novel MAO-B inhibitors. In line with that, the present review focuses on natural flavonoids of plant origin that hold promise as potential candidates for the development of novel MAO-B inhibitors. The discussion encompasses both in vitro and in vivo studies, shedding light on their potential therapeutic applications. Furthermore, this review underscores the significance of exploring natural products as valuable reservoirs of MAO-B inhibitors, offering new avenues for drug development and addressing the pressing need for improved treatments in PD-like pathological conditions. The authors of this review majorly explore the neuroprotective potential of natural flavonoids exhibiting notable MAO-B inhibitory activity and additionally multi-targeted approaches in the treatment of PD with clinical evidence and challenges faced in current therapeutic approaches.
Collapse
Affiliation(s)
- Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suman Sinha
- Division of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
3
|
Tyliszczak M, Wiatrak B, Danielewski M, Szeląg A, Kucharska AZ, Sozański T. Does a pickle a day keep Alzheimer's away? Fermented food in Alzheimer's disease: A review. Exp Gerontol 2023; 184:112332. [PMID: 37967591 DOI: 10.1016/j.exger.2023.112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Fermented food is commonly viewed as healthy, mostly due to its probiotic and digestion-enhancing properties and recently it has been examined with regard to the development of new therapeutic and preventive measures for Alzheimer's disease. Fermented food has been shown to have anti-inflammatory and antioxidant properties and to alter the gut microbiota. However, the exact pathogenesis of Alzheimer's disease is still unknown and its connections to systemic inflammation and gut dysbiosis, as potential targets of fermented food, require further investigation. Therefore, to sum up the current knowledge, this article reviews recent research on the pathogenesis of Alzheimer's disease with emphasis on the role of the gut-brain axis and studies examining the use of fermented foods. The analysis of the fermented food research includes clinical and preclinical in vivo and in vitro studies. The fermented food studies have shown promising effects on amyloid-β metabolism, inflammation, and cognitive impairment in animals and humans. Fermented food has great potential in developing new approaches to Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Michał Tyliszczak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | | | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
4
|
Chong SG, Ismail IS, Ahmad Azam A, Tan SJ, Shaari K, Tan JK. Nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry metabolomics studies on non-organic soybeans versus organic soybeans (Glycine max), and their fermentation by Rhizopus oligosporus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3146-3156. [PMID: 36426592 DOI: 10.1002/jsfa.12355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/20/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Soybeans (Glycine max) are high in proteins and isoflavones, which offer many health benefits. It has been suggested that the fermentation process enhances the nutrients in the soybeans. Organic foods are perceived as better than non-organic foods in terms of health benefits, yet little is known about the difference in the phytochemical content that distinguishes the quality of organic soybeans from non-organic soybeans. This study investigated the chemical profiles of non-organic (G, T, U, UB) and organic (C, COF, A, R, B, Z) soybeans (G. max [L.] Merr.) and their metabolite changes after fermentation with Rhizopus oligosporus. RESULTS A clear separation was only observed between non-organic G and organic Z, which were then selected for further investigation in the fermentation of soybeans (GF and ZF). All four groups (G, Z, GF, ZF) were analyzed using nuclear magnetic resonance (NMR) spectroscopy along with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this way a total of 41 and 47 metabolites were identified respectively, with 12 in common. A clear variation (|log1.5 FC| > 2 and P < 0.05) was observed between Z and ZF: most of the sugars and isoflavone glycosides were found only in Z, while more amino acids and organic acids were found in ZF. An additional four metabolites clustered as C-glycosylflavonoids were discovered from MS/MS-based molecular networking. CONCLUSION Chemical profiles of non-organic and organic soybeans exhibited no significant difference. However, the metabolite profile of the unfermented soybeans, which were higher in sugars, shifted to higher amino acid and organic acid content after fermentation, thereby potentially enhancing their nutritional value. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Siok-Geok Chong
- Natural Medicines and Products Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Intan S Ismail
- Natural Medicines and Products Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amalina Ahmad Azam
- Center for Healthy Ageing and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia Campus Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Shih-Jen Tan
- Natural Medicines and Products Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jen-Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Singh S, Grewal S, Sharma N, Behl T, Gupta S, Anwer MK, Vargas-De-La-Cruz C, Mohan S, Bungau SG, Bumbu A. Unveiling the Pharmacological and Nanotechnological Facets of Daidzein: Present State-of-the-Art and Future Perspectives. Molecules 2023; 28:1765. [PMID: 36838751 PMCID: PMC9958968 DOI: 10.3390/molecules28041765] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Herbal drugs have been attracting much scientific interest in the last few decades and nowadays, phytoconstituents-based research is in progress to disclose their unidentified medicinal potential. Daidzein (DAI) is the natural phytoestrogen isoflavone derived primarily from leguminous plants, such as the soybean and mung bean, and its IUPAC name is 4',7-dihydroxyisoflavone. This compound has received great attention as a fascinating pharmacophore with remarkable potential for the therapeutic management of several diseases. Certain pharmacokinetic properties of DAI such as less aqueous solubility, low permeability, and poor bioavailability are major obstacles restricting the therapeutic applications. In this review, distinctive physicochemical characteristics and pharmacokinetics of DAI has been elucidated. The pharmacological applications in treatment of several disorders like oxidative stress, cancer, obesity, cardiovascular, neuroprotective, diabetes, ovariectomy, anxiety, and inflammation with their mechanism of action are explained. Furthermore, this review article comprehensively focuses to provide up-to-date information about nanotechnology-based formulations which have been investigated for DAI in preceding years which includes polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, polymer-lipid nanoparticles, nanocomplexes, polymeric micelles, nanoemulsion, nanosuspension, liposomes, and self-microemulsifying drug delivery systems.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Sonam Grewal
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Tapan Behl
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133207, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15081, Peru
| | - Syam Mohan
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602117, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Adrian Bumbu
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
6
|
Kuligowski M, Sobkowiak D, Polanowska K, Jasińska-Kuligowska I. Effect of different processing methods on isoflavone content in soybeans and soy products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
8
|
Moorehead RA. Rodent Models Assessing Mammary Tumor Prevention by Soy or Soy Isoflavones. Genes (Basel) 2019; 10:E566. [PMID: 31357528 PMCID: PMC6722900 DOI: 10.3390/genes10080566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
While epidemiological studies performed in Asian countries generally show that high levels of dietary soy are associated with reduced breast cancer risk, studies in Western countries have typically failed to show this correlation. In an attempt to model the preventative actions of soy on mammary tumor development, rodent models have been employed. Thirty-four studies were identified that evaluated the impact of soy products or purified soy isoflavones on mammary tumor initiation (studies evaluating established mammary tumors or mammary tumor cell lines were not included) and these studies were separated into mammary tumors induced by chemical carcinogens or transgenic expression of oncogenes based on the timing of soy administration. Regardless of when soy-based diets or purified isoflavones were administered, no consistent protective effects were observed in either carcinogen-induced or oncogene-induced mammary tumors. While some studies demonstrated that soy or purified isoflavones could reduce mammary tumor incidence, other studies showed either no effect or tumor promoting effects of soy products or isoflavones. Most importantly, only five studies found a decrease in mammary tumor incidence and six studies observed a decrease in tumor multiplicity, two relevant measures of the tumor preventative effects of soy or isoflavones. The variable outcomes of the studies examined were not completely surprising given that few studies employed the same experimental design. Future studies should be carefully designed to more accurately emulate soy consumption observed in Asian cultures including lifetime exposure to less refined soy products and potentially the incorporation of multigenerational feeding studies.
Collapse
Affiliation(s)
- Roger A Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada.
| |
Collapse
|
9
|
Bowes DA, Halden RU. Breast Cancer and Dietary Intake of Endocrine Disruptors: a Review of Recent Literature. CURRENT PATHOBIOLOGY REPORTS 2019. [DOI: 10.1007/s40139-019-00199-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Monteiro NE, Queirós LD, Lopes DB, Pedro AO, Macedo GA. Impact of microbiota on the use and effects of isoflavones in the relief of climacteric symptoms in menopausal women – A review. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
11
|
Abstract
This review summarizes the 2016 NAMS/Pfizer-Wulf H. Utian Endowed Lecture that focused on the history and basic science of soy isoflavones. Described is a personal perspective of the background and history that led to the current interest in soy and isoflavones with a specific focus on the role that soy isoflavones play in the health of postmenopausal women. This overview covers the metabolism and physiological behavior of isoflavones, their biological properties that are of potential relevance to aging, issues related to the safety of soy isoflavones, and the role of the important intestinally derived metabolite S-(-)equol.
Collapse
Affiliation(s)
- Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
12
|
Messina M, Rogero MM, Fisberg M, Waitzberg D. Health impact of childhood and adolescent soy consumption. Nutr Rev 2017; 75:500-515. [PMID: 28838083 DOI: 10.1093/nutrit/nux016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Soyfoods have been intensely researched, primarily because they provide such abundant amounts of isoflavones. Isoflavones are classified as both plant estrogens and selective estrogen receptor modulators. Evidence suggests that these soybean constituents are protective against a number of chronic diseases, but they are not without controversy. In fact, because soyfoods contain such large amounts of isoflavones, concerns have arisen that these foods may cause untoward effects in some individuals. There is particular interest in understanding the effects of isoflavones in young people. Relatively few studies involving children have been conducted, and many of those that have are small in size. While the data are limited, evidence suggests that soy does not exert adverse hormonal effects in children or affect pubertal development. On the other hand, there is intriguing evidence indicating that when soy is consumed during childhood and/or adolescence, risk of developing breast cancer is markedly reduced. Relatively few children are allergic to soy protein, and most of those who initially are outgrow their soy allergy by 10 years of age. The totality of the available evidence indicates that soyfoods can be healthful additions to the diets of children, but more research is required to allow definitive conclusions to be made.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., Pittsfield, Massachusets, United States
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Mauro Fisberg
- Nutrition and Feeding Difficulty Center, Pensi Institute, José Luiz Setubal Foundation, Sabará Children's Hospital, São Paulo, Brazil
| | - Dan Waitzberg
- University of Sao Paulo Medical School and Ganep Humana Nutrition, São Paulo, Brazil
| |
Collapse
|
13
|
MONSALVE BERNARDITA, CONCHA-MEYER ANIBAL, PALOMO IVÁN, FUENTES EDUARDO. Mechanisms of Endothelial Protection by Natural Bioactive Compounds from Fruit and Vegetables. ACTA ACUST UNITED AC 2017; 89:615-633. [DOI: 10.1590/0001-3765201720160509] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - EDUARDO FUENTES
- Universidad de Talca, Chile; CONICYT, Chile; Universidad de Talca, Chile
| |
Collapse
|
14
|
Chadha R, Bhalla Y, Jain A, Chadha K, Karan M. Dietary Soy Isoflavone: A Mechanistic Insight. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Soy, a major component of the diet for centuries contains the largest concentration of isoflavones, a class of phytoestrogens. A variety of health benefits are associated with the consumption of soy primarily because of the isoflavones genistein, daidzein, and glycitein with a potential protective effect against a number of chronic diseases. Owing to the pharmaceutical and nutraceutical properties allied with isoflavonoids and their use in functional foods, there is a growing interest in these compounds. This review throws light on the chemistry, and significant pharmacological and biopharmaceutical aspects of soy isoflavones. This article critically describes the mechanisms of action, infers conclusions and shows opportunity for future research.
Collapse
Affiliation(s)
- Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Yashika Bhalla
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ankita Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kunal Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Maninder Karan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
15
|
Miura A, Sugiyama C, Sakakibara H, Simoi K, Goda T. Bioavailability of isoflavones from soy products in equol producers and non-producers in Japanese women. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016. [DOI: 10.1016/j.jnim.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Messina M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016; 8:E754. [PMID: 27886135 PMCID: PMC5188409 DOI: 10.3390/nu8120754] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 01/10/2023] Open
Abstract
Soyfoods have long been recognized as sources of high-quality protein and healthful fat, but over the past 25 years these foods have been rigorously investigated for their role in chronic disease prevention and treatment. There is evidence, for example, that they reduce risk of coronary heart disease and breast and prostate cancer. In addition, soy alleviates hot flashes and may favorably affect renal function, alleviate depressive symptoms and improve skin health. Much of the focus on soyfoods is because they are uniquely-rich sources of isoflavones. Isoflavones are classified as both phytoestrogens and selective estrogen receptor modulators. Despite the many proposed benefits, the presence of isoflavones has led to concerns that soy may exert untoward effects in some individuals. However, these concerns are based primarily on animal studies, whereas the human research supports the safety and benefits of soyfoods. In support of safety is the recent conclusion of the European Food Safety Authority that isoflavones do not adversely affect the breast, thyroid or uterus of postmenopausal women. This review covers each of the major research areas involving soy focusing primarily on the clinical and epidemiologic research. Background information on Asian soy intake, isoflavones, and nutrient content is also provided.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., 26 Spadina Parkway, Pittsfield, MA 01201, USA.
| |
Collapse
|
17
|
Gardana C, Simonetti P. Long-term kinetics of daidzein and its main metabolites in human equol-producers after soymilk intake: identification of equol-conjugates by UPLC-orbitrap-MS and influence of the number of transforming bacteria on plasma kinetics. Int J Food Sci Nutr 2016; 68:496-506. [PMID: 27851886 DOI: 10.1080/09637486.2016.1256380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The main aim of the study was to establish in vivo a correlation between equol (EQU) production and a number of intestinal bacteria able to perform the transformation. Thus, healthy female volunteers were selected for their ability to convert slowly (n = 6, 105-109 cells/g wet feces) or quickly (n = 6, 1010-1012 cells/g wet feces) daidzein (DAI) in EQU. After oral administration of 100 mg DAI in soymilk, plasma (0-99 h) and urine (0-96 h) samples were collected. DAI and its metabolites were determined by LC-MS/MS and EQU -conjugates by UPLC-High Resolution-MS. Only for EQU a direct correlation was found between the number of transforming microorganisms and parameters such as tmax and t1/2 (p = 0.027). Peak serum concentration time, Cmax, AUC0-72 h and t1/2 for total EQU (n = 12) were 36 ± 10 h, 89 ± 78 nM, 2.4 ± 1.7 (μmol × h/L) and 15.6 ± 3.3 h, respectively. In plasma and urine EQU was found mainly as 7-O-glucuronide.
Collapse
Affiliation(s)
- Claudio Gardana
- a Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition , Università degli Studi di Milano , Milano , Italy
| | - Paolo Simonetti
- a Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
18
|
Kang NH, Shin HC, Oh S, Lee KH, Lee YB, Choi KC. Soy milk digestion extract inhibits progression of prostate cancer cell growth via regulation of prostate cancer-specific antigen and cell cycle-regulatory genes in human LNCaP cancer cells. Mol Med Rep 2016; 14:1809-16. [DOI: 10.3892/mmr.2016.5408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 04/02/2016] [Indexed: 01/09/2023] Open
|
19
|
Evaluation of the Isoflavone Genistein as Reversible Human Monoamine Oxidase-A and -B Inhibitor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1423052. [PMID: 27118978 PMCID: PMC4826920 DOI: 10.1155/2016/1423052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 11/29/2022]
Abstract
Monoamine oxidases inhibitors (MAOIs) are effective therapeutic drugs for managing Parkinson's disease (PD) and depression. However, their irreversibility may lead to rare but serious side effects. As finding safer and reversible MAOIs is our target, we characterized the recombinant human (h) MAO-A and MAO-B inhibition potentials of two common natural isoflavones, genistein (GST) and daidzein (DZ) using luminescence assay. The results obtained showed that DZ exhibits partial to no inhibition of the isozymes examined while GST inhibited hMAO-B (IC50 of 6.81 μM), and its hMAO-A inhibition was more potent than the standard deprenyl. Furthermore, the reversibility, mode of inhibition kinetics, and tyramine oxidation of GST were examined. GST was a time-independent reversible and competitive hMAO-A and hMAO-B inhibitor with a lower Ki of hMAO-B (1.45 μM) than hMAO-A (4.31 μM). GST also inhibited hMAO-B tyramine oxidation and hydrogen peroxide production more than hMAO-A. Docking studies conducted indicated that the GST reversibility and hMAO-B selectivity of inhibition may relate to C5-OH effects on its orientation and its interactions with the threonine 201 residue of the active site. It was concluded from this study that the natural product GST has competitive and reversible MAOs inhibitions and may be recommended for further investigations as a useful therapeutic agent for Parkinson's disease.
Collapse
|
20
|
Pharmacokinetics interaction between imatinib and genistein in rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:368976. [PMID: 25629045 PMCID: PMC4299555 DOI: 10.1155/2015/368976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/05/2014] [Accepted: 09/22/2014] [Indexed: 01/08/2023]
Abstract
The objective of this work was to investigate the effect of orally administered genistein on the pharmacokinetics of imatinib and N-desmethyl imatinib in rats. Twenty-five healthy male SD (Sprague-Dawley) rats were randomly divided into five groups: A group (control group), B group (multiple dose of 100 mg/kg genistein for consecutive 15 days), C group (multiple dose of 50 mg/kg genistein for consecutive 15 days), D group (a single dose of 100 mg/kg genistein), and E group (a single dose of 50 mg/kg genistein). A single dose of imatinib is administered orally 30 min after administration of genistein (100 mg/kg or 50 mg/kg). The pharmacokinetic parameters of imatinib and N-desmethyl imatinib were calculated by DAS 3.0 software. The multiple dose of 100 mg/kg or 50 mg/kg genistein significantly (P < 0.05) decreased the AUC0-t and C max of imatinib. AUC0-t and the C max of N-desmethyl imatinib were also increased, but without any significant difference. However, the single dose of 100 mg/kg or 50 mg/kg genistein has no effect on the pharmacokinetics of imatinib and N-desmethyl imatinib. Those results indicated that multiple dose of genistein (100 mg/kg or 50 mg/kg) induces the metabolism of imatinib, while single dose of genistein has no effect.
Collapse
|
21
|
Yang B, Li N, Lu Y, Qiu Z, Zhao D, Song P, Chen X. Pharmacokinetics of thiamphenicol glycinate and its active metabolite by single and multiple intravenous infusions in healthy Chinese volunteers. Xenobiotica 2014; 44:819-26. [DOI: 10.3109/00498254.2014.897010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Gardana C, Canzi E, Simonetti P. R(-)-O-desmethylangolensin is the main enantiomeric form of daidzein metabolite produced by human in vitro and in vivo. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954:30-7. [PMID: 24561352 DOI: 10.1016/j.jchromb.2014.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/21/2014] [Accepted: 01/29/2014] [Indexed: 11/19/2022]
Abstract
After ingestion, human intestinal bacteria transform daidzein into dihydrodaidzein, which can be further metabolised to O-desmethylangolensin. This metabolite, unlike daidzein, has a chiral centre and can therefore occur as two distinct enantiomers; however, it is unclear which enantiomer is present in humans. The aim of this study was to define in vitro and in vivo the structure of O-desmethylangolensin and then to evaluate its pharmacokinetic parameters. Daidzein metabolism was preliminarily investigated in anaerobic batch cultures inoculated with mixed faecal bacteria from O-desmethylangolensin producer volunteers. The transformation was monitored by liquid chromatography-mass spectrometry and a chiral column was used to distinguish dihydrodaidzein and O-desmethylangolensin enantiomers. These were purified, analysed by circular dichroism and the results established R(-)-O-desmethylangolensin as the main product (enantiomer excess 91%). However, both dihydrodaidzein enantiomers were detected. Similar results were obtained by in vivo trials. The in vitro formation of O-desmethylangolensin seems to be directly correlated with the number of transforming microorganisms. This correlation was found in vivo for tmax but not for other pharmacokinetic indexes. The pharmacokinetics of daidzein, dihydrodaidzein and O-desmethylangolensin were then evaluated in 11 healthy adult O-desmethylangolensin producers after the single administration of soy milk containing 100mg daidzein. The conjugated forms of daidzein, dihydrodaidzein and O-desmethylangolensin represent more than 90 and 95% of the plasmatic and urinary forms, respectively. The Cmax, tmax and half-life of O-desmethylangolensin in plasma were 62±53nM, 28±11 and 15±6h, respectively. Relevant inter-individual variations were observed as indicated by the high standard deviations.
Collapse
Affiliation(s)
- Claudio Gardana
- Università degli Studi di Milano - Department of Food, Environmental and Nutritional Sciences - DeFENS, Division of Human Nutrition - Via Celoria 2, 20133 Milan, Italy.
| | - Enrica Canzi
- Università degli Studi di Milano - Department of Food, Environmental and Nutritional Sciences - DeFENS, Division of Microbiology - Via Celoria 2, 20133 Milan, Italy
| | - Paolo Simonetti
- Università degli Studi di Milano - Department of Food, Environmental and Nutritional Sciences - DeFENS, Division of Human Nutrition - Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|