1
|
Rhee JH, Khim K, Puth S, Choi Y, Lee SE. Deimmunization of flagellin adjuvant for clinical application. Curr Opin Virol 2023; 60:101330. [PMID: 37084463 DOI: 10.1016/j.coviro.2023.101330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
Flagellin is the cognate ligand for host pattern recognition receptors, toll-like receptor 5 (TLR5) in the cell surface, and NAIP5/NLRC4 inflammasome in the cytosol. TLR5-binding domain is located in D1 domain, where crucial amino acid sequences are conserved among diverse bacteria. The highly conserved C-terminal 35 amino acids of flagellin were proved to be responsible for the inflammasome activation by binding to NAIP5. D2/D3 domains, located in the central region and exposed to the outside surface of flagellar filament, are heterogeneous across bacterial species and highly immunogenic. Taking advantage of TLR5- and NLRC4-stimulating activities, flagellin has been actively developed as a vaccine adjuvant and immunotherapeutic. Because of its immunogenicity, there exist worries concerning diminished efficacy and possible reactogenicity after repeated administration. Deimmunization of flagellin derivatives while preserving the TLR5/NLRC4-mediated immunomodulatory activity should be the most reasonable option for clinical application. This review describes strategies and current achievements in flagellin deimmunization.
Collapse
Affiliation(s)
- Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea.
| | - Koemchhoy Khim
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
2
|
Psychopharmacology: neuroimmune signaling in psychiatric disease-developing vaccines against abused drugs using toll-like receptor agonists. Psychopharmacology (Berl) 2019; 236:2899-2907. [PMID: 30726515 DOI: 10.1007/s00213-019-5176-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
RATIONALE Since substance use disorders have few or no effective pharmacotherapies, researchers have developed vaccines as immune-therapies against nicotine, cocaine, methamphetamine, and opioids including fentanyl. OBJECTIVES We focus on enhancing antibody (AB) production through stimulation of toll-like receptor-5 (TLR5) during active vaccination. The stimulating adjuvant is Entolimod, a novel protein derivative of flagellin. We review the molecular and cellular mechanisms underlying Entolimod's actions on TLR5. RESULTS Entolimod shows excellent efficacy for increasing AB levels to levels well beyond those produced by anti-addiction vaccines alone in animal models and humans. These ABs also significantly block the behavioral effects of the targeted drug of abuse. The TLR5 stimulation involves a wide range of immune cell types such as dendritic, antigen presenting, T and B cells. Entolimod binding to TLR5 initiates an intracellular signaling cascade that stimulates cytokine production of tumor necrosis factor and two interleukins (IL-6 and IL-12). While cytokine release can be catastrophic in cytokine storm, Entolimod produces a modulated release with few side effects even at doses 30 times greater than doses needed in these vaccine studies. Entolimod has markedly increased AB responses to all of our anti-addiction vaccines in rodent models, and in normal humans. CONCLUSIONS Entolimod and TLR5 stimulation has broad application to vaccines and potentially to other psychiatric disorders like depression, which has critical inflammatory contributions that Entolimod could reduce.
Collapse
|
3
|
Suzuki S, Sakurai D, Sakurai T, Yonekura S, Iinuma T, Okuma Y, Ihara F, Arai T, Hanazawa T, Fukuda-Kawaguchi E, Ishii Y, Okamoto Y. Sublingual administration of liposomes enclosing alpha-galactosylceramide as an effective adjuvant of allergen immunotherapy in a murine model of allergic rhinitis. Allergol Int 2019; 68:352-362. [PMID: 30803854 DOI: 10.1016/j.alit.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sublingual immunotherapy (SLIT) is an established efficacious approach for the treatment of allergic rhinitis (AR). However, SLIT requires a long administration period to establish stable and adequate responses. This study investigated the efficacy of the sublingual administration of an allergen with liposomes enclosing α-GalCer (α-GC-liposome) as a potential adjuvant in mice with AR. METHODS Mice with AR induced by OVA received the sublingual administration of OVA, α-GC-liposomes, or OVA plus α-GC-liposomes for 7 days. After nasal re-challenge with OVA, nasal symptoms were evaluated. The serum levels of OVA-specific Ig, the cytokine production of CD4+ T cells in the cultures of cervical lymph node (CLN) cells, and the gene expression of CLNs were analyzed. RESULTS Although IL-4, IL-5 and IL-13 production from CD4+ T cells in CLN cells was significantly inhibited by the sublingual administration of OVA alone in mice with AR induced by OVA, their nasal symptoms were not significantly diminished. However, the combined sublingual administration of α-GC-liposomes and OVA completely suppressed nasal symptoms, downregulated Th2 and Th17 type cytokine production in CD4+ T cells as well as Th2 and Th17 gene expressions, and upregulated Th1 type cytokine production as well as Th1 gene expressions in CLN cells. Additionally, the serum levels of specific IgG2a were promoted, and specific IgE and IgG1 were inhibited. CONCLUSIONS Our findings suggest that the sublingual administration of an allergen with α-GC-liposomes as an adjuvant might increase the therapeutic efficacy and effectiveness of this treatment method.
Collapse
|
4
|
Tan W, Zheng JH, Duong TMN, Koh YI, Lee SE, Rhee JH. A Fusion Protein of Derp2 Allergen and Flagellin Suppresses Experimental Allergic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:254-266. [PMID: 30661317 PMCID: PMC6340794 DOI: 10.4168/aair.2019.11.2.254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The house dust mite (HDM) is one of the most important sources of indoor allergens and a significant cause of allergic rhinitis and allergic asthma. Our previous studies demonstrated that Vibrio vulnificus flagellin B (FlaB) plus allergen as a co-treatment mixture improved lung function and inhibited eosinophilic airway inflammation through the Toll-like receptor 5 signaling pathway in an ovalbumin (OVA)- or HDM-induced mouse asthma model. In the present study, we fused the major mite allergen Derp2 to FlaB and compared the therapeutic effects of the Derp2-FlaB fusion protein with those of a mixture of Derp2 and FlaB in a Derp2-induced mouse asthma model. METHODS BALB/c mice sensitized with Derp2 + HDM were treated with Derp2, a Derp2 plus FlaB (Derp2 + FlaB) mixture, or the Derp2-FlaB fusion protein 3 times at 1-week intervals. Seven days after the final treatment, the mice were challenged intranasally with Derp2, and airway responses and Derp2-specific immune responses were evaluated. RESULTS The Derp2-FlaB fusion protein was significantly more efficacious in reducing airway hyperresponsiveness, lung eosinophil infiltration, and Derp2-specific IgE than the Derp2 + FlaB mixture. CONCLUSIONS The Derp2-FlaB fusion protein showed a strong anti-asthma immunomodulatory capacity, leading to the prevention of airway inflammatory responses in a murine disease model through the inhibition of Th2 responses. These findings suggest that the Derp2-FlaB fusion protein would be a promising vaccine candidate for HDM-mediated allergic asthma therapy.
Collapse
Affiliation(s)
- Wenzhi Tan
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jin Hai Zheng
- Laboratory of In Vivo Molecular imaging, Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, Korea
| | - Tra-My Nu Duong
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Young-Il Koh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Shee Eun Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
5
|
Wang L, Zhang W, Ge CH, Yin RH, Xiao Y, Zhan YQ, Yu M, Li CY, Ge ZQ, Yang XM. Toll-like receptor 5 signaling restrains T-cell/natural killer T-cell activation and protects against concanavalin A-induced hepatic injury. Hepatology 2017; 65:2059-2073. [PMID: 28273362 DOI: 10.1002/hep.29140] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/27/2017] [Indexed: 01/06/2023]
Abstract
UNLABELLED Toll-like receptor-5 (TLR5) signaling regulates the immune privileged status of the liver and is involved in hepatic immune disorders. However, the role of TLR5 has not yet been investigated in experimental models of concanavalin A (Con A)-mediated liver injury. Here, we show that TLR5 is highly up-regulated in the hepatic mononuclear cells of mice during Con A-induced hepatitis. Increased mortality and liver histopathology of TLR5-deficient mice correlated with excessive production of proinflammatory cytokines, suggesting that TLR5 knockout mice were more susceptible to Con A-induced hepatitis. We also report that administration of CBLB502, an exogenous TLR5 agonist, substantially alleviated Con A-mediated hepatitis in wild-type mice as shown by increased survival rates, reduced aminotransferase and proinflammatory cytokine production, impaired lymphocyte infiltration, and ameliorated hepatocyte necrosis and/or apoptosis. Mechanistic studies revealed that CBLB502 acts as a negative regulator in limiting T-cell/natural killer T-cell activity and cytokine production in the Con A-hepatitis model. Bone marrow transplantation experiments showed that TLR5 in bone marrow-derived cells contributed to the hepatoprotective efficacy of CBLB502 against Con A-induced liver injury. Moreover, interleukin-6 elevation induced by CBLB502 is an important protective factor against Con A-induced liver injury. In addition, we demonstrate that CBLB502 suppresses α-galactosylceramide-induced natural killer T cell-dependent inflammatory liver injury. CONCLUSION The TLR5 signaling pathway plays an important role in T cell-mediated hepatic injury and may be exploited for therapeutic treatment of inflammatory liver diseases. (Hepatology 2017;65:2059-2073).
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen Zhang
- Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing, China.,State Key Laboratory of Proteomics, Beijing, China
| | - Rong-Hua Yin
- Beijing Institute of Radiation Medicine, Beijing, China.,State Key Laboratory of Proteomics, Beijing, China
| | - Yang Xiao
- Beijing Institute of Radiation Medicine, Beijing, China.,State Key Laboratory of Proteomics, Beijing, China
| | - Yi-Qun Zhan
- Beijing Institute of Radiation Medicine, Beijing, China.,State Key Laboratory of Proteomics, Beijing, China
| | - Miao Yu
- Beijing Institute of Radiation Medicine, Beijing, China.,State Key Laboratory of Proteomics, Beijing, China
| | - Chang-Yan Li
- Beijing Institute of Radiation Medicine, Beijing, China.,State Key Laboratory of Proteomics, Beijing, China
| | - Zhi-Qiang Ge
- Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China
| | - Xiao-Ming Yang
- Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China.,Beijing Institute of Radiation Medicine, Beijing, China.,State Key Laboratory of Proteomics, Beijing, China
| |
Collapse
|