1
|
Xu Y, Zhu F, Zhou Z, Ma S, Zhang P, Tan C, Luo Y, Qin R, Chen J, Pan P. A novel mRNA multi-epitope vaccine of Acinetobacter baumannii based on multi-target protein design in immunoinformatic approach. BMC Genomics 2024; 25:791. [PMID: 39160492 PMCID: PMC11334330 DOI: 10.1186/s12864-024-10691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Acinetobacter baumannii is a gram-negative bacillus prevalent in nature, capable of thriving under various environmental conditions. As an opportunistic pathogen, it frequently causes nosocomial infections such as urinary tract infections, bacteremia, and pneumonia, contributing to increased morbidity and mortality in clinical settings. Consequently, developing novel vaccines against Acinetobacter baumannii is of utmost importance. In our study, we identified 10 highly conserved antigenic proteins from the NCBI and UniProt databases for epitope mapping. We subsequently screened and selected 8 CTL, HTL, and LBL epitopes, integrating them into three distinct vaccines constructed with adjuvants. Following comprehensive evaluations of immunological and physicochemical parameters, we conducted molecular docking and molecular dynamics simulations to assess the efficacy and stability of these vaccines. Our findings indicate that all three multi-epitope mRNA vaccines designed against Acinetobacter baumannii are promising; however, further animal studies are required to confirm their reliability and effectiveness.
Collapse
Affiliation(s)
- Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Caixia Tan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rongliu Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Ding W, Li R, Song T, Yang Z, Xu D, Huang C, Shen S, Zhong N, Lai K, Deng Z. AMG487 alleviates influenza A (H1N1) virus-induced pulmonary inflammation through decreasing IFN-γ-producing lymphocytes and IFN-γ concentrations. Br J Pharmacol 2024; 181:2053-2069. [PMID: 38500396 DOI: 10.1111/bph.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Severe influenza virus-infected patients have high systemic levels of Th1 cytokines (including IFN-γ). Intrapulmonary IFN-γ increases pulmonary IFN-γ-producing T lymphocytes through the CXCR3 pathway. Virus-infected mice lacking IP-10/CXCR3 demonstrate lower pulmonary neutrophilic inflammation. AMG487, an IP-10/CXCR3 antagonist, ameliorates virus-induced lung injury in vivo through decreasing viral loads. This study examined whether AMG487 could treat H1N1 virus-induced mouse illness through reducing viral loads or decreasing the number of lymphocytes or neutrophils. EXPERIMENTAL APPROACH Here, we studied the above-mentioned effects and underlying mechanisms in vivo. KEY RESULTS H1N1 virus infection caused bad overall condition and pulmonary inflammation characterized by the infiltration of lymphocytes and neutrophils. From Day-5 to Day-10 post-virus infection, bad overall condition, pulmonary lymphocytes, and IFN-γ concentrations increased, while pulmonary H1N1 viral titres and neutrophils decreased. Both anti-IFN-γ and AMG487 alleviated virus infection-induced bad overall condition and pulmonary lymphocytic inflammation. Pulmonary neutrophilic inflammation was mitigated by AMG487 on Day-5 post-infection, but was not mitigated by AMG487 on Day-10 post-infection. H1N1 virus induced increases of IFN-γ, IP-10, and IFN-γ-producing lymphocytes and activation of the Jak2-Stat1 pathways in mouse lungs, which were inhibited by AMG487. Anti-IFN-γ decreased IFN-γ and IFN-γ-producing lymphocytes on Day-5 post-infection. AMG487 but not anti-IFN-γ decreased viral titres in mouse lung homogenates or BALF. Higher virus load did not increase pulmonary inflammation and IFN-γ concentrations when mice were treated with AMG487. CONCLUSION AND IMPLICATIONS AMG487 may ameliorate H1N1 virus-induced pulmonary inflammation through decreasing IFN-γ-producing lymphocytes rather than reducing viral loads or neutrophils.
Collapse
Affiliation(s)
- Wenbin Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tongtong Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuirong Shen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Ding W, Xu D, Li F, Huang C, Song T, Zhong N, Lai K, Deng Z. Intrapulmonary IFN-γ instillation causes chronic lymphocytic inflammation in the spleen and lung through the CXCR3 pathway. Int Immunopharmacol 2023; 122:110675. [PMID: 37481849 DOI: 10.1016/j.intimp.2023.110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Some patients with chronic refractory cough have high levels of pulmonary IFN-γ and IFN-γ-producing T lymphocytes. Pulmonary IFN-γ administration causes acute airway lymphocytic inflammation and cough hypersensitivity by increasing the number of pulmonary IFN-γ-producing T lymphocytes, but these lymphocytes may be recruited from other organs. Intraperitoneal IFN-γ injection can increase the spleen weight of mice. It remains elusive whether pulmonary IFN-γ can induce chronic airway lymphocytic inflammation and cough hypersensitivity by stimulating the proliferation of IFN-γ -producing T lymphocytes in the spleen. Here, we found that pulmonary IFN-γ administration induced chronic airway inflammation and chronic cough hypersensitivity with an increased number of IFN-γ-producing T lymphocytes in the spleen, blood and lung. Pulmonary IFN-γ administration also increased 1) the proliferation of spleen lymphocytes in vivo and 2) the IP-10 level and CXCR3+ T lymphocyte numbers in the spleen and lung of mice. IP-10 could promote the proliferation of spleen lymphocytes in vitro but not blood lymphocytes or lung-resident lymphocytes. AMG487, a potent inhibitor of binding between IP-10 and CXCR3, could block pulmonary IFN-γ instillation-induced chronic airway lymphocytic inflammation and the proliferation of IFN-γ-producing T lymphocytes in mouse spleens. In conclusion, intrapulmonary IFN-γ instillation may induce the proliferation of splenic IFN-γ-producing T lymphocytes through IP-10 and the CXCR3 pathway. The IFN-γ-producing T lymphocytes in blood, partly released from the mouse spleen, may be partly attracted to the lung by pulmonary IP-10 through the CXCR3 pathway. IFN-γ-producing T lymphocytes and IFN-γ in the lung may cause chronic airway lymphocytic inflammation and chronic cough hypersensitivity.
Collapse
Affiliation(s)
- Wenbin Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fengying Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tongtong Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zheng Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|