1
|
Shu C, Cui H, Peng Y, Wei Z, Ni X, Zheng L, Shang J, Liu F, Liu J. Understanding the molecular pathway of triclosan-induced ADHD-like behaviour: Involvement of the hnRNPA1-PKM2-STAT3 feedback loop. ENVIRONMENT INTERNATIONAL 2024; 191:108966. [PMID: 39167854 DOI: 10.1016/j.envint.2024.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Triclosan (TCS) is an environmental pollutant. In recent years, there has been increasing level of concern regarding the potential toxicity of TCS in animals and humans, especially its effects on the nervous system. However, whether TCS induces ADHD-like behaviour and the mechanism by which it affects neural function are unclear. The impact of 60 days of continuous exposure to TCS on the behaviour of offspring rats was assessed in this research. According to the results of this study, TCS exposure led to ADHD-like behaviour in offspring rats and activated microglia in the prefrontal cortex (PFC), inducing inflammatory factor release. In vitro studies showed that TCS increased the levels of inflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α, in HMC3 cells. More importantly, we found that TCS regulated the STAT3 pathway by upregulating PKM2 via hnRNPA1. In summary, this study suggested that TCS can induce ADHD-like behaviour in offspring rats and continuously activate HMC3 microglia through the hnRNPA1-PKM2-STAT3 feedback loop, promoting inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Chang Shu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - He Cui
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Linlin Zheng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jianing Shang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Fu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
2
|
Höftberger R, Lassmann H, Berger T, Reindl M. Pathogenic autoantibodies in multiple sclerosis - from a simple idea to a complex concept. Nat Rev Neurol 2022; 18:681-688. [PMID: 35970870 DOI: 10.1038/s41582-022-00700-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
The role of autoantibodies in multiple sclerosis (MS) has been enigmatic since the first description, many decades ago, of intrathecal immunoglobulin production in people with this condition. Some studies have indicated that MS pathology is heterogeneous, with an antibody-associated subtype - characterized by B cells (in varying quantities), antibodies and complement - existing alongside other subtypes with different pathologies. However, subsequent evidence suggested that some cases originally diagnosed as MS with autoantibody-mediated demyelination were more likely to be neuromyelitis optica spectrum disorder or myelin oligodendrocyte glycoprotein antibody-associated disease. These findings raise the important question of whether an autoantibody-mediated MS subtype exists and whether pathogenic MS-associated autoantibodies remain to be identified. Potential roles of autoantibodies in MS could range from specific antibodies defining the disease to a non-disease-specific amplification of cellular immune responses and other pathophysiological processes. In this Perspective, we review studies that have attempted to identify MS-associated autoantibodies and provide our opinions on their possible roles in the pathophysiology of MS.
Collapse
Affiliation(s)
- Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Lima M, Aloizou AM, Siokas V, Bakirtzis C, Liampas I, Tsouris Z, Bogdanos DP, Baloyannis SJ, Dardiotis E. Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the Covid-19 pandemia? Rev Neurosci 2022; 33:703-720. [PMID: 35258237 DOI: 10.1515/revneuro-2021-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to examine whether there is a possible (etiological/triggering) relationship between infection with various Coronaviruses, including Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2), the virus responsible for the Coronavirus disease-19 (Covid-19) pandemia, and Multiple Sclerosis (MS), and whether an increase of the prevalence of MS after the current Covid-19 pandemia should be expected, examining new and preexisting data. Although the exact pathogenesis of MS remains unknown, environmental agents seem to greatly influence the onset of the disease, with viruses being the most popular candidate. Existing data support this possible etiological relationship between viruses and MS, and experimental studies show that Coronaviruses can actually induce an MS-like demyelinating disease in animal models. Findings in MS patients could also be compatible with this coronaviral MS hypothesis. More importantly, current data from the Covid-19 pandemia show that SARS-CoV-2 can trigger autoimmunity and possibly induce autoimmune diseases, in the Central Nervous System as well, strengthening the viral hypothesis of MS. If we accept that Coronaviruses can induce MS, it is reasonable to expect an increase in the prevalence of MS after the Covid-19 pandemia. This knowledge is of great importance in order to protect the aging groups that are more vulnerable against autoimmune diseases and MS specifically, and to establish proper vaccination and health policies.
Collapse
Affiliation(s)
- Maria Lima
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, Multiple Sclerosis Center, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500 Viopolis, Larissa, Greece
| | - Stavros J Baloyannis
- Research Institute for Alzheimer's disease, Aristotle University of Thessaloniki, 57200 Iraklio Lagkada, Thessaloniki, Greece.,1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100, Larissa, Greece
| |
Collapse
|
4
|
Clarke JP, Thibault PA, Salapa HE, Levin MC. A Comprehensive Analysis of the Role of hnRNP A1 Function and Dysfunction in the Pathogenesis of Neurodegenerative Disease. Front Mol Biosci 2021; 8:659610. [PMID: 33912591 PMCID: PMC8072284 DOI: 10.3389/fmolb.2021.659610] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP family of conserved proteins that is involved in RNA transcription, pre-mRNA splicing, mRNA transport, protein translation, microRNA processing, telomere maintenance and the regulation of transcription factor activity. HnRNP A1 is ubiquitously, yet differentially, expressed in many cell types, and due to post-translational modifications, can vary in its molecular function. While a plethora of knowledge is known about the function and dysfunction of hnRNP A1 in diseases other than neurodegenerative disease (e.g., cancer), numerous studies in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, multiple sclerosis, spinal muscular atrophy, Alzheimer’s disease, and Huntington’s disease have found that the dysregulation of hnRNP A1 may contribute to disease pathogenesis. How hnRNP A1 mechanistically contributes to these diseases, and whether mutations and/or altered post-translational modifications contribute to pathogenesis, however, is currently under investigation. The aim of this comprehensive review is to first describe the background of hnRNP A1, including its structure, biological functions in RNA metabolism and the post-translational modifications known to modify its function. With this knowledge, the review then describes the influence of hnRNP A1 in neurodegenerative disease, and how its dysfunction may contribute the pathogenesis.
Collapse
Affiliation(s)
- Joseph P Clarke
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Multiple Sclerosis-Associated hnRNPA1 Mutations Alter hnRNPA1 Dynamics and Influence Stress Granule Formation. Int J Mol Sci 2021; 22:ijms22062909. [PMID: 33809384 PMCID: PMC7998649 DOI: 10.3390/ijms22062909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Evidence indicates that dysfunctional heterogeneous ribonucleoprotein A1 (hnRNPA1; A1) contributes to the pathogenesis of neurodegeneration in multiple sclerosis. Understanding molecular mechanisms of neurodegeneration in multiple sclerosis may result in novel therapies that attenuate neurodegeneration, thereby improving the lives of MS patients with multiple sclerosis. Using an in vitro, blue light induced, optogenetic protein expression system containing the optogene Cryptochrome 2 and a fluorescent mCherry reporter, we examined the effects of multiple sclerosis-associated somatic A1 mutations (P275S and F281L) in A1 localization, cluster kinetics and stress granule formation in real-time. We show that A1 mutations caused cytoplasmic mislocalization, and significantly altered the kinetics of A1 cluster formation/dissociation, and the quantity and size of clusters. A1 mutations also caused stress granule formation to occur more quickly and frequently in response to blue light stimulation. This study establishes a live cell optogenetics imaging system to probe localization and association characteristics of A1. It also demonstrates that somatic mutations in A1 alter its function and promote stress granule formation, which supports the hypothesis that A1 dysfunction may exacerbate neurodegeneration in multiple sclerosis.
Collapse
|
6
|
Low YH, Asi Y, Foti SC, Lashley T. Heterogeneous Nuclear Ribonucleoproteins: Implications in Neurological Diseases. Mol Neurobiol 2021; 58:631-646. [PMID: 33000450 PMCID: PMC7843550 DOI: 10.1007/s12035-020-02137-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
Heterogenous nuclear ribonucleoproteins (hnRNPs) are a complex and functionally diverse family of RNA binding proteins with multifarious roles. They are involved, directly or indirectly, in alternative splicing, transcriptional and translational regulation, stress granule formation, cell cycle regulation, and axonal transport. It is unsurprising, given their heavy involvement in maintaining functional integrity of the cell, that their dysfunction has neurological implications. However, compared to their more established roles in cancer, the evidence of hnRNP implication in neurological diseases is still in its infancy. This review aims to consolidate the evidences for hnRNP involvement in neurological diseases, with a focus on spinal muscular atrophy (SMA), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), multiple sclerosis (MS), congenital myasthenic syndrome (CMS), and fragile X-associated tremor/ataxia syndrome (FXTAS). Understanding more about hnRNP involvement in neurological diseases can further elucidate the pathomechanisms involved in these diseases and perhaps guide future therapeutic advances.
Collapse
Affiliation(s)
- Yi-Hua Low
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Duke-NUS Medical School, Singapore, Singapore
| | - Yasmine Asi
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sandrine C Foti
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
7
|
Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front Immunol 2020; 11:587078. [PMID: 33391262 PMCID: PMC7773893 DOI: 10.3389/fimmu.2020.587078] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a neurologic disease affecting myelinated nerves in the central nervous system (CNS). The disease often debuts as a clinically isolated syndrome, e.g., optic neuritis (ON), which later develops into relapsing-remitting (RR) MS, with temporal attacks or primary progressive (PP) MS. Characteristic features of MS are inflammatory foci in the CNS and intrathecal synthesis of immunoglobulins (Igs), measured as an IgG index, oligoclonal bands (OCBs), or specific antibody indexes. Major predisposing factors for MS are certain tissue types (e.g., HLA DRB1*15:01), vitamin D deficiency, smoking, obesity, and infection with Epstein-Barr virus (EBV). Many of the clinical signs of MS described above can be explained by chronic/recurrent EBV infection and current models of EBV involvement suggest that RRMS may be caused by repeated entry of EBV-transformed B cells to the CNS in connection with attacks, while PPMS may be caused by more chronic activity of EBV-transformed B cells in the CNS. In line with the model of EBV's role in MS, new treatments based on monoclonal antibodies (MAbs) targeting B cells have shown good efficacy in clinical trials both for RRMS and PPMS, while MAbs inhibiting B cell mobilization and entry to the CNS have shown efficacy in RRMS. Thus, these agents, which are now first line therapy in many patients, may be hypothesized to function by counteracting a chronic EBV infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | | - Jette Lautrup Frederiksen
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Anti-Kir4.1 Antibodies in Multiple Sclerosis: Specificity and Pathogenicity. Int J Mol Sci 2020; 21:ijms21249632. [PMID: 33348803 PMCID: PMC7765826 DOI: 10.3390/ijms21249632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
The glial cells in the central nervous system express diverse inward rectifying potassium channels (Kir). They express multiple Kir channel subtypes that are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors. Dysfunction in a major astrocyte potassium channel, Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurological diseases. The autoimmune effects on the potassium channel have not yet been fully described in the literature. However, several research groups have reported that the potassium channels are an immune target in patients with various neurological disorders. In 2012, Srivastava et al. reported about Kir4.1, a new immune target for autoantibodies in patients with multiple sclerosis (MS). Follow-up studies have been conducted by several research groups, but no clear conclusion has been reached. Most follow-up studies, including ours, have reported that the prevalence of Kir4.1-seropositive patients with MS was lower than that in the initial study. Therefore, we extensively review studies on the method of antibody testing, seroprevalence of MS, and other neurological diseases in patients with MS. Finally, based on the role of Kir4.1 in MS, we consider whether it could be an immune target in this disease.
Collapse
|
9
|
Libner CD, Salapa HE, Hutchinson C, Lee S, Levin MC. Antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 contribute to neuronal cell loss in an animal model of multiple sclerosis. J Comp Neurol 2020; 528:1704-1724. [PMID: 31872424 DOI: 10.1002/cne.24845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Neurodegeneration, including loss of neurons and axons, is a feature of progressive forms of multiple sclerosis (MS). The mechanisms underlying neurodegeneration are mostly unknown. Research implicates autoimmunity to nonmyelin self-antigens as important contributors to disease pathogenesis. Data from our lab implicate autoimmunity to the RNA binding protein (RBP) heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as a possible mechanism of neurodegeneration in MS. MS patients make antibodies to hnRNP A1, which have been shown to lead to neuronal dysfunction in vitro. Using an animal model of MS, experimental autoimmune encephalomyelitis (EAE), we show here that injection of anti-hnRNP A1 antibodies, in contrast to control antibodies, resulted in worsened disease and increased neurodegeneration. We found a reduction of NeuN+ neuronal cell bodies in areas of the ventral gray matter of the spinal cord where anti-hnRNP A1 antibodies localized. Neurons displayed increased levels of hnRNP A1 nucleocytoplasmic mislocalization and stress granule formation, both markers of neuronal injury. Anti-hnRNP A1 antibodies were found to surround neuronal cell bodies and interact with CD68+ immune cells via Fc receptors. Additionally, anti-hnRNP A1 antibodies were found within neuronal cell bodies including those of the ventral spinocerebellar tract (VSCT), a tract previously shown to undergo neurodegeneration in anti-hnRNP A1 antibody injected EAE mice. Finally, both immune cells and neurons showed increased levels of inducible nitric oxide synthase, another indicator of cell damage. These findings suggest that autoimmunity to RBPs, such as hnRNP A1, play a role in neurodegeneration in EAE with important implications for the pathogenesis of MS.
Collapse
Affiliation(s)
- Cole D Libner
- Department of Health Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hannah E Salapa
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Catherine Hutchinson
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sangmin Lee
- Department of Neurology, University of Tennessee Health Science Center, Research Service, Veterans Affairs Medical Center, Memphis, TN
| | - Michael C Levin
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Cortini A, Bembich S, Marson L, Cocco E, Edomi P. Identification of novel non-myelin biomarkers in multiple sclerosis using an improved phage-display approach. PLoS One 2019; 14:e0226162. [PMID: 31805175 PMCID: PMC6894809 DOI: 10.1371/journal.pone.0226162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
Although the etiology of multiple sclerosis is not yet understood, it is accepted that its pathogenesis involves both autoimmune and neurodegenerative processes, in which the role of autoreactive T-cells has been elucidated. Instead, the contribution of humoral response is still unclear, even if the presence of intrathecal antibodies and B-cells follicle-like structures in meninges of patients has been demonstrated. Several myelin and non-myelin antigens have been identified, but none has been validated as humoral biomarker. In particular autoantibodies against myelin proteins have been found also in healthy individuals, whereas non-myelin antigens have been implicated in neurodegenerative phase of the disease. To provide further putative autoantigens of multiple sclerosis, we investigated the antigen specificity of immunoglobulins present both in sera and in cerebrospinal fluid of patients using phage display technology in a new improved format. A human brain cDNA phage display library was constructed and enriched for open-read-frame fragments. This library was selected against pooled and purified immunoglobulins from cerebrospinal fluid and sera of multiple sclerosis patients. The antigen library was also screened against an antibody scFv library obtained from RNA of B cells purified from the cerebrospinal fluid of two relapsing remitting patients. From all biopanning a complex of 14 antigens were identified; in particular, one of these antigens, corresponding to DDX24 protein, was present in all selections. The ability of more frequently isolated antigens to discriminate between sera from patients with multiple sclerosis or other neurological diseases was investigated. The more promising novel candidate autoantigens were DDX24 and TCERG1. Both are implicated in RNA modification and regulation which can be altered in neurodegenerative processes. Therefore, we propose that they could be a marker of a particular disease activity state.
Collapse
Affiliation(s)
- Andrea Cortini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sara Bembich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Lorena Marson
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, University of Cagliari/ATS Sardegna, Cagliari, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- * E-mail:
| |
Collapse
|
11
|
Lee S, Salapa HE, Levin MC. Localization of near-infrared labeled antibodies to the central nervous system in experimental autoimmune encephalomyelitis. PLoS One 2019; 14:e0212357. [PMID: 30768649 PMCID: PMC6377130 DOI: 10.1371/journal.pone.0212357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
Antibodies, including antibodies to the RNA binding protein heterogeneous nuclear ribonucleoprotein A1, have been shown to contribute to the pathogenesis of multiple sclerosis, thus it is important to assess their biological activity using animal models of disease. Near-infrared optical imaging of fluorescently labeled antibodies and matrix metalloproteinase activity were measured and quantified in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis. We successfully labeled, imaged and quantified the fluorescence signal of antibodies that localized to the central nervous system of mice with experimental autoimmune encephalomyelitis. Fluorescently labeled anti-heterogeneous nuclear ribonucleoprotein A1 antibodies persisted in the central nervous system of mice with experimental autoimmune encephalomyelitis, colocalized with matrix metalloproteinase activity, correlated with clinical disease and shifted rostrally within the spinal cord, consistent with experimental autoimmune encephalomyelitis being an ascending paralysis. The fluorescent antibody signal also colocalized with matrix metalloproteinase activity in brain. Previous imaging studies in experimental autoimmune encephalomyelitis analyzed inflammatory markers such as cellular immune responses, dendritic cell activity, blood brain barrier integrity and myelination, but none assessed fluorescently labeled antibodies within the central nervous system. This data suggests a strong association between autoantibody localization and disease. This system can be used to detect other antibodies that might contribute to the pathogenesis of autoimmune diseases of the central nervous system including multiple sclerosis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Blood-Brain Barrier/metabolism
- Brain/diagnostic imaging
- Central Nervous System/diagnostic imaging
- Central Nervous System/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Fluorescent Dyes/chemistry
- Heterogeneous Nuclear Ribonucleoprotein A1/immunology
- Matrix Metalloproteinases/metabolism
- Mice
- Mice, Inbred C57BL
- Spectroscopy, Near-Infrared
- Spinal Cord/diagnostic imaging
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael C. Levin
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Research Service, Veterans Affairs Medical Center, Memphis, Tennessee, United States of America
| |
Collapse
|
12
|
Guarneri C, Aguennouz M, Guarneri F, Polito F, Benvenga S, Cannavò SP. Autoimmunität gegen heterogenes nukleäres Ribonukleoprotein A1 bei Psoriasispatienten und Korrelation mit dem Schweregrad der Erkrankung. J Dtsch Dermatol Ges 2018; 16:1103-1108. [DOI: 10.1111/ddg.13631_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/28/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Claudio Guarneri
- Department of Clinical and Experimental Medicine - Dermatology; University of Messina; Messina Italy
| | - Mohammed Aguennouz
- Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - Fabrizio Guarneri
- Department of Clinical and Experimental Medicine - Dermatology; University of Messina; Messina Italy
| | - Francesca Polito
- Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine - Endocrinology; University of Messina; Messina Italy
- Master Program on Childhood; Adolescent and Women's Endocrine Health; University of Messina; Messina Italy
- Interdepartmental Program of Molecular & Clinical Endocrinology and Women's Endocrine Health; University Hospital Policlinico “G. Martino”; Messina Italy
| | | |
Collapse
|
13
|
Saberi A, Akhondzadeh S, Kazemi S. Infectious agents and different course of multiple sclerosis: a systematic review. Acta Neurol Belg 2018; 118:361-377. [PMID: 30006858 DOI: 10.1007/s13760-018-0976-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/05/2018] [Indexed: 01/22/2023]
Abstract
Multiple sclerosis (MS) causes demyelination of white matter of central nervous system and neuro-degeneration due to inflammation. Different types of MS, as well as disease progression, come with different pathology and pathophysiology. The objective of this study was to evaluate the possible association between different micro-organisms and the relapse or progression of MS. Studies indexed in Medline/PMC, Scopus and Web of Science published without time and language limitation until March 2017 were identified through the search terms "infection" or "infectious" and "multiple sclerosis". A total of 20878 abstracts were identified through the initial search terms. Selection of articles and assessment of their quality was done based on Cochrane library guidelines. Full texts were reviewed for 33 articles out of which 14 articles met the criteria for inclusion. Different micro-organisms are known to play roles in the pathogenesis of MS and its relapse; including Human herpesvirus 6 (HHV-6), Human herpesvirus 7 (HHV-7), Epstein-Barr virus (EBV), Chlamydia pneumoniae and Torque teno virus (TTV). But in this review only HHV-6, C. pneumoniae and TTV have been considered to play a role in disease progression in some studies and not all of them. This review concluded that some micro-organisms such as HHV-6, C. pneumoniae and TTV have been considered as cofactors to make MS a progressive type. It should be considered that these findings do not necessarily rule out the role of other pathogens in MS progression but may represent population differences or different sensitivity of the technique used.
Collapse
Affiliation(s)
- Alia Saberi
- Neuroscience Research Center, Department of Neurology, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Kazemi
- Deputy of Research and Technology, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
14
|
Salapa HE, Lee S, Shin Y, Levin MC. Contribution of the Degeneration of the Neuro-Axonal Unit to the Pathogenesis of Multiple Sclerosis. Brain Sci 2017; 7:E69. [PMID: 28629158 PMCID: PMC5483642 DOI: 10.3390/brainsci7060069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. In recent years, it has become more evident that neurodegeneration, including neuronal damage and axonal injury, underlies permanent disability in MS. This manuscript reviews some of the mechanisms that could be responsible for neurodegeneration and axonal damage in MS and highlights the potential role that dysfunctional heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and antibodies to hnRNP A1 may play in MS pathogenesis.
Collapse
Affiliation(s)
- Hannah E Salapa
- Department of Anatomy and Cell Biology, CMSNRC (Cameco MS Neuroscience Research Center), University of Saskatchewan, Saskatoon, SK S7N0Z1, Canada.
| | - Sangmin Lee
- Veterans Administration Medical Center, Memphis, TN 38104, USA.
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38104, USA.
| | - Yoojin Shin
- Veterans Administration Medical Center, Memphis, TN 38104, USA.
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38104, USA.
| | - Michael C Levin
- Department of Anatomy and Cell Biology, CMSNRC (Cameco MS Neuroscience Research Center), University of Saskatchewan, Saskatoon, SK S7N0Z1, Canada.
- Veterans Administration Medical Center, Memphis, TN 38104, USA.
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38104, USA.
- Department of Neurology, University of Saskatchewan, Saskatoon, SK S7N0Z1, Canada.
| |
Collapse
|
15
|
Carassiti D, Altmann DR, Petrova N, Pakkenberg B, Scaravilli F, Schmierer K. Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex. Neuropathol Appl Neurobiol 2017; 44:377-390. [DOI: 10.1111/nan.12405] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- D. Carassiti
- Blizard Institute (Neuroscience); Queen Mary University of London; London UK
| | - D. R. Altmann
- Department of Medical Statistics; London School of Hygiene and Tropical Medicine; London UK
| | - N. Petrova
- Blizard Institute (Neuroscience); Queen Mary University of London; London UK
| | - B. Pakkenberg
- Research Laboratory for Stereology and Neuroscience; Bispebjerg University Hospital; Copenhagen Denmark
| | - F. Scaravilli
- Blizard Institute (Neuroscience); Queen Mary University of London; London UK
| | - K. Schmierer
- Blizard Institute (Neuroscience); Queen Mary University of London; London UK
- Neurosciences Clinical Academic Group; The Royal London Hospital; Barts Health NHS Trust; London UK
| |
Collapse
|
16
|
Walvoort MTC, Testa C, Eilam R, Aharoni R, Nuti F, Rossi G, Real-Fernandez F, Lanzillo R, Brescia Morra V, Lolli F, Rovero P, Imperiali B, Papini AM. Antibodies from multiple sclerosis patients preferentially recognize hyperglucosylated adhesin of non-typeable Haemophilus influenzae. Sci Rep 2016; 6:39430. [PMID: 28008952 PMCID: PMC5180199 DOI: 10.1038/srep39430] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/21/2016] [Indexed: 01/29/2023] Open
Abstract
In autoimmune diseases, there have been proposals that exogenous “molecular triggers”, i.e., specific ‘non-self antigens’ accompanying infectious agents, might disrupt control of the adaptive immune system resulting in serious pathologies. The etiology of multiple sclerosis (MS) remains unclear. However, epidemiologic data suggest that exposure to infectious agents may be associated with increased MS risk and progression may be linked to exogenous, bacterially-derived, antigenic molecules, mimicking mammalian cell surface glycoconjugates triggering autoimmune responses. Previously, antibodies specific to a gluco-asparagine (N-Glc) glycopeptide, CSF114(N-Glc), were identified in sera of an MS patient subpopulation. Since the human glycoproteome repertoire lacks this uniquely modified amino acid, we turned our attention to bacteria, i.e., Haemophilus influenzae, expressing cell-surface adhesins including N-Glc, to establish a connection between H. influenzae infection and MS. We exploited the biosynthetic machinery from the opportunistic pathogen H. influenzae (and the homologous enzymes from A. pleuropneumoniae) to produce a unique set of defined glucosylated adhesin proteins. Interestingly we revealed that a hyperglucosylated protein domain, based on the cell-surface adhesin HMW1A, is preferentially recognized by antibodies from sera of an MS patient subpopulation. In conclusion the hyperglucosylated adhesin is the first example of an N-glucosylated native antigen that can be considered a relevant candidate for triggering pathogenic antibodies in MS.
Collapse
Affiliation(s)
- Marthe T. C. Walvoort
- Departments of Biology and Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave., Cambridge, MA, USA
| | - Chiara Testa
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Raya Eilam
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Francesca Nuti
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Giada Rossi
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Paolo Rovero
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Barbara Imperiali
- Departments of Biology and Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave., Cambridge, MA, USA
| | - Anna Maria Papini
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- PeptLab@UCP and Laboratory of Chemical Biology EA4505, Université Paris-Seine, 5 Mail Gay-Lussac, 95031 Cergy-Pontoise, France
| |
Collapse
|
17
|
Levin MC, Lee S, Gardner LA, Shin Y, Douglas JN, Salapa H. Autoantibodies to heterogeneous nuclear ribonuclear protein A1 (hnRNPA1) cause altered 'ribostasis' and neurodegeneration; the legacy of HAM/TSP as a model of progressive multiple sclerosis. J Neuroimmunol 2016; 304:56-62. [PMID: 27449854 DOI: 10.1016/j.jneuroim.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
Several years following its discovery in 1980, infection with human T-lymphotropic virus type 1 (HTLV-1) was shown to cause HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), a disease biologically similar to progressive forms of multiple sclerosis (MS). In this manuscript, we review some of the clinical, pathological, and immunological similarities between HAM/TSP and MS with an emphasis on how autoantibodies to an RNA binding protein, heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), might contribute to neurodegeneration in immune mediated diseases of the central nervous system.
Collapse
Affiliation(s)
- Michael C Levin
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Anatomy/Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Sangmin Lee
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lidia A Gardner
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yoojin Shin
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joshua N Douglas
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Anatomy/Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hannah Salapa
- Veterans Administration Medical Center, Memphis, TN, USA; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Anatomy/Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
18
|
Douglas JN, Gardner LA, Salapa HE, Lalor SJ, Lee S, Segal BM, Sawchenko PE, Levin MC. Antibodies to the RNA-binding protein hnRNP A1 contribute to neurodegeneration in a model of central nervous system autoimmune inflammatory disease. J Neuroinflammation 2016; 13:178. [PMID: 27391474 PMCID: PMC4938923 DOI: 10.1186/s12974-016-0647-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neurodegeneration is believed to be the primary cause of permanent, long-term disability in patients with multiple sclerosis. The cause of neurodegeneration in multiple sclerosis appears to be multifactorial. One mechanism that has been implicated in the pathogenesis of neurodegeneration in multiple sclerosis is the targeting of neuronal and axonal antigens by autoantibodies. Multiple sclerosis patients develop antibodies to the RNA-binding protein, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), which is enriched in neurons. We hypothesized that anti-hnRNP A1 antibodies would contribute to neurodegeneration in an animal model of multiple sclerosis. METHODS Following induction of experimental autoimmune encephalomyelitis (EAE) by direct immunization with myelin oligodendrocyte glycoprotein, mice were injected with anti-hnRNP A1 or control antibodies. Animals were examined clinically, and the central nervous system (CNS) tissues were tested for neurodegeneration with Fluoro-Jade C, a marker of degenerating neural elements. RESULTS Injection of anti-hnRNP A1 antibodies in mice with EAE worsened clinical disease, altered the clinical disease phenotype, and caused neurodegeneration preferentially in the ventral spinocerebellar tract and deep white matter of the cerebellum in the CNS. Neurodegeneration in mice injected with hnRNP A1-M9 antibodies compared to control groups was consistent with "dying back" axonal degeneration. CONCLUSIONS These data suggest that antibodies to the RNA-binding protein hnRNP A1 contribute to neurodegeneration in immune-mediated disease of the CNS.
Collapse
Affiliation(s)
- Joshua N. Douglas
- />Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Room 415, Memphis, TN 38163 USA
- />The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| | - Lidia A. Gardner
- />Research Service, VA Medical Center, Memphis, TN USA
- />Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Room 415, Memphis, TN 38163 USA
- />The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| | - Hannah E. Salapa
- />Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Room 415, Memphis, TN 38163 USA
- />The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| | - Stephen J. Lalor
- />Department of Neurology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Sangmin Lee
- />Research Service, VA Medical Center, Memphis, TN USA
- />Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Room 415, Memphis, TN 38163 USA
- />The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| | - Benjamin M. Segal
- />Department of Neurology, University of Michigan Medical School, Ann Arbor, MI USA
- />Neurology Service, VA Ann Arbor Health Care System, Ann Arbor, MI USA
| | - Paul E. Sawchenko
- />Laboratory of Neuronal Structure & Function, The Salk Institute, La Jolla, CA USA
| | - Michael C. Levin
- />Research Service, VA Medical Center, Memphis, TN USA
- />Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Room 415, Memphis, TN 38163 USA
- />The Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| |
Collapse
|
19
|
Devaux S, Cizkova D, Quanico J, Franck J, Nataf S, Pays L, Hauberg-Lotte L, Maass P, Kobarg JH, Kobeissy F, Mériaux C, Wisztorski M, Slovinska L, Blasko J, Cigankova V, Fournier I, Salzet M. Proteomic Analysis of the Spatio-temporal Based Molecular Kinetics of Acute Spinal Cord Injury Identifies a Time- and Segment-specific Window for Effective Tissue Repair. Mol Cell Proteomics 2016; 15:2641-70. [PMID: 27250205 DOI: 10.1074/mcp.m115.057794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) represents a major debilitating health issue with a direct socioeconomic burden on the public and private sectors worldwide. Although several studies have been conducted to identify the molecular progression of injury sequel due from the lesion site, still the exact underlying mechanisms and pathways of injury development have not been fully elucidated. In this work, based on OMICs, 3D matrix-assisted laser desorption ionization (MALDI) imaging, cytokines arrays, confocal imaging we established for the first time that molecular and cellular processes occurring after SCI are altered between the lesion proximity, i.e. rostral and caudal segments nearby the lesion (R1-C1) whereas segments distant from R1-C1, i.e. R2-C2 and R3-C3 levels coexpressed factors implicated in neurogenesis. Delay in T regulators recruitment between R1 and C1 favor discrepancies between the two segments. This is also reinforced by presence of neurites outgrowth inhibitors in C1, absent in R1. Moreover, the presence of immunoglobulins (IgGs) in neurons at the lesion site at 3 days, validated by mass spectrometry, may present additional factor that contributes to limited regeneration. Treatment in vivo with anti-CD20 one hour after SCI did not improve locomotor function and decrease IgG expression. These results open the door of a novel view of the SCI treatment by considering the C1 as the therapeutic target.
Collapse
Affiliation(s)
- Stephanie Devaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France; §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia; §§Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France; §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia; §§Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Jusal Quanico
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Julien Franck
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Serge Nataf
- ¶Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1, France
| | - Laurent Pays
- ¶Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1, France
| | - Lena Hauberg-Lotte
- ‖Center for industrial mathematics, University of Bremen, Bibliothek straβe 1, MZH, Room 2060, 28359 Bremen, Germany
| | - Peter Maass
- ‖Center for industrial mathematics, University of Bremen, Bibliothek straβe 1, MZH, Room 2060, 28359 Bremen, Germany
| | - Jan H Kobarg
- **Steinbeis Innovation Center SCiLS Research, Fahrenheitstr. 1, 28359 Bremen, Germany
| | - Firas Kobeissy
- ‡‡Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut
| | - Céline Mériaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Maxence Wisztorski
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Lucia Slovinska
- §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia
| | - Juraj Blasko
- §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia
| | - Viera Cigankova
- §§Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Isabelle Fournier
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Michel Salzet
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France; **Steinbeis Innovation Center SCiLS Research, Fahrenheitstr. 1, 28359 Bremen, Germany
| |
Collapse
|
20
|
Makshakov GS, Lapin SV, Evdoshenko EP. [Current concepts on intrathecal humoral immune response and diagnostic importance of oligoclonal immunoglobulins in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:14-20. [PMID: 27070356 DOI: 10.17116/jnevro20161162214-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system of probable autoimmune origin. In this review of literature, the authors present a constantly broadening list of potential antigens, including myelin and non-myelin structures, that cause the autoimmune reaction. Determination of antibodies to any antigen has not sufficient specificity and sensitivity for the use in routine laboratory practice. Oligoclonal immunoglobulins determined with isoelectric focusing (IEF) technique are currently considered as the main immunological MS markers. The sensitivity and specificity of IEF are 90 and 86%, respectively. The authors have considered the additional markers such as oligoclonal IgM and MRZ-response.
Collapse
Affiliation(s)
- G S Makshakov
- City Clinical Hospital 31, Saint-Petersburg Center of multiple sclerosis and other autoimmune diseases, Saint-Petersburg
| | - S V Lapin
- Research Guidance Center for molecular medicine, Laboratory of diagnostics of autoimmune diseases, Saint-Petersburg
| | - E P Evdoshenko
- City Clinical Hospital 31, Saint-Petersburg Center of multiple sclerosis and other autoimmune diseases, Saint-Petersburg; First Saint-Petersburg State I.P. Pavlov Medical University, Neurology and Neurosurgery Department, First Saint-Petersburg State I.P. Pavlov Medical University
| |
Collapse
|
21
|
Douglas JN, Gardner LA, Salapa HE, Levin MC. Antibodies to the RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein A1 Colocalize to Stress Granules Resulting in Altered RNA and Protein Levels in a Model of Neurodegeneration in Multiple Sclerosis. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:402. [PMID: 27375925 PMCID: PMC4928374 DOI: 10.4172/2155-9899.1000402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is the most common demyelinating disorder of the central nervous system (CNS). Data suggest that antibodies to CNS targets contribute to the pathogenesis of MS. MS patients produce autoantibodies to heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). hnRNP A1 is an RNA binding protein (RBP) overexpressed in neurons that functions in pre-mRNA splicing, mRNA trafficking, and translation. Previously, we showed that anti-hnRNP A1 antibodies entered neuronal cells (in vitro) via clathrin-mediated endocytosis, caused mislocalization of endogenous hnRNP A1 protein and increased markers of neurodegeneration including decreased ATP concentration and apoptosis. In this study, we hypothesized that anti-hnRNP A1 antibodies might cause stress granule formation and altered levels of RNAs and proteins that bind hnRNP A1. METHODS Neuronal cell lines were exposed to anti-hnRNP A1 and isotype-matched control antibodies in vitro and examined for neuronal granule formation, including stress granules, P bodies and transport granules. In addition, RNAs that bound hnRNP A1 were determined. Levels of RNA and their translated proteins were measured upon exposure to the anti-hnRNP A1 antibodies. RESULTS Anti-hnRNP A1 antibodies induced and localized to stress granules, a marker of neurodegeneration, within a neuronal cell line. The anti-hnRNP A1 antibodies did not induce P bodies or neuronal granules. Clinically relevant RNAs were found to bind hnRNP A1. In addition, the anti-hnRNP A1 antibodies caused reduced levels of RNA and protein of the spinal paraplegia genes (SPGs) 4 and 7, which when mutated mimic progressive MS. CONCLUSIONS Taken together, these data suggest potential mechanisms by which autoantibodies may contribute to neurodegeneration in MS.
Collapse
Affiliation(s)
- Joshua N. Douglas
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lidia A. Gardner
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hannah E Salapa
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Michael C. Levin
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Research Service, VA Medical Center, Memphis, TN, 38104, USA
| |
Collapse
|
22
|
Gardner LA, Levin MC. Importance of Apolipoprotein A-I in Multiple Sclerosis. Front Pharmacol 2015; 6:278. [PMID: 26635608 PMCID: PMC4654019 DOI: 10.3389/fphar.2015.00278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
Jean-Martin Charcot has first described multiple sclerosis (MS) as a disease of the central nervous system (CNS) over a century ago. MS remains incurable today, and treatment options are limited to disease modifying drugs. Over the years, significant advances in understanding disease pathology have been made in autoimmune and neurodegenerative components. Despite the fact that brain is the most lipid rich organ in human body, the importance of lipid metabolism has not been extensively studied in this disorder. In MS, the CNS is under attack by a person's own immune system. Autoantigens and autoantibodies are known to cause devastation of myelin through up regulation of T-cells and cytokines, which penetrate through the blood-brain barrier to cause inflammation and myelin destruction. The anti-inflammatory role of high-density lipoproteins (HDLs) has been implicated in a plethora of biological processes: vasodilation, immunity to infection, oxidation, inflammation, and apoptosis. However, it is not known what role HDL plays in neurological function and myelin repair in MS. Understanding of lipid metabolism in the CNS and in the periphery might unveil new therapeutic targets and explain the partial success of some existing MS therapies.
Collapse
Affiliation(s)
- Lidia A. Gardner
- Research Service, VA Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael C. Levin
- Research Service, VA Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
23
|
Utility of Autoantibodies as Biomarkers for Diagnosis and Staging of Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:1-51. [DOI: 10.1016/bs.irn.2015.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Meyers L, Groover CJ, Douglas J, Lee S, Brand D, Levin MC, Gardner LA. A role for Apolipoprotein A-I in the pathogenesis of multiple sclerosis. J Neuroimmunol 2014; 277:176-85. [PMID: 25468275 DOI: 10.1016/j.jneuroim.2014.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 01/13/2023]
Abstract
Apolipoprotein A1 (Apo A-I), the most abundant component of high-density lipoprotein (HDL), is an anti-inflammatory molecule, yet its potential role in the pathogenesis of multiple sclerosis (MS) has not been fully investigated. In this study, Western blot analyses of human plasma showed differential Apo A-I expression in healthy controls compared to MS patients. Further, primary progressive MS patients had less plasma Apo A-I than other forms of MS. Using experimental allergic encephalomyelitis (EAE) as a model for MS, Apo A-I deficient mice exhibited worse clinical disease and more neurodegeneration concurrent with increased levels of pro-inflammatory cytokines compared to wild-type animals. These data suggest that Apo A-I plays a role in the pathogenesis of EAE, a model for MS, creating the possibility for agents that increase Apo A-I levels as potential therapies for MS.
Collapse
Affiliation(s)
| | | | | | - Sangmin Lee
- Research Service VAMC, Memphis, TN 38104, United States; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - David Brand
- Research Service VAMC, Memphis, TN 38104, United States
| | - Michael C Levin
- Research Service VAMC, Memphis, TN 38104, United States; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Lidia A Gardner
- Research Service VAMC, Memphis, TN 38104, United States; Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
25
|
Blancas I, Cárdenas N, Delgado M, Jurado JM, Legeren M, Villaescusa A, Galvez F, Yelamos M. Late relapse of non-seminomatous testicular cancer during treatment of multiple sclerosis with interferon β-1a: A case report. Oncol Lett 2014; 8:2179-2182. [PMID: 25289098 PMCID: PMC4186558 DOI: 10.3892/ol.2014.2519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/12/2014] [Indexed: 11/11/2022] Open
Abstract
Germ cell tumors (GCTs) comprise 95% of malignant tumors arising in the testes. The present study reports a patient diagnosed with non-seminomatous testicular cancer, stage IB, with a good risk prediction according to the International Germ Cell Cancer Collaborative Group classification. The patient received chemotherapy with bleomycin, etoposide and cisplatin, and achieved complete remission. Eleven years later, while receiving treatment with interferon β-1a for multiple sclerosis, the patient developed a relapse of the original cancer in the lungs and lymph nodes. The majority of GCTs relapse within the first two years of treatment, while 2–4% of patients can present with late relapses. There is no clear established association between multiple sclerosis and testicular cancer; we present the hypothesis that the inmunosupressor treatment that was administered for the multiple sclerosis promoted the cancer relapse.
Collapse
Affiliation(s)
- Isabel Blancas
- Oncology Unit, Hospital Clinico San Cecilio, Granada 18012, Spain
| | - Nuria Cárdenas
- Oncology Unit, Hospital Clinico San Cecilio, Granada 18012, Spain
| | - Mayte Delgado
- Oncology Unit, Hospital Clinico San Cecilio, Granada 18012, Spain
| | | | - Marta Legeren
- Oncology Unit, Hospital Clinico San Cecilio, Granada 18012, Spain
| | - Ana Villaescusa
- Oncology Unit, Hospital Clinico San Cecilio, Granada 18012, Spain
| | - Fernando Galvez
- Oncology Unit, Hospital Clinico San Cecilio, Granada 18012, Spain
| | - Marisol Yelamos
- Oncology Unit, Hospital Clinico San Cecilio, Granada 18012, Spain
| |
Collapse
|
26
|
Lee S, Levin M. Novel somatic single nucleotide variants within the RNA binding protein hnRNP A1 in multiple sclerosis patients. F1000Res 2014; 3:132. [PMID: 25254102 PMCID: PMC4168748 DOI: 10.12688/f1000research.4436.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2014] [Indexed: 03/22/2024] Open
Abstract
Some somatic single nucleotide variants (SNVs) are thought to be pathogenic, leading to neurological disease. We hypothesized that heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), an autoantigen associated with multiple sclerosis (MS) would contain SNVs. MS patients develop antibodies to hnRNP A1 (293-304), an epitope within the M9 domain (AA (268-305)) of hnRNP A1. M9 is hnRNP A1's nucleocytoplasmic transport domain, which binds transportin-1 (TPNO-1) and allows for hnRNP A1's transport into and out of the nucleus. Genomic DNA sequencing of M9 revealed nine novel SNVs that resulted in an amino acid substitution in MS patients that were not present in controls. SNVs occurred within the TPNO-1 binding domain (hnRNP A1 (268-289)) and the MS IgG epitope (hnRNP A1 (293-304)), within M9. In contrast to the nuclear localization of wild type (WT) hnRNP A1, mutant hnRNP A1 mis-localized to the cytoplasm, co-localized with stress granules and caused cellular apoptosis. Whilst WT hnRNP A1 bound TPNO-1, mutant hnRNP A1 showed reduced TPNO-1 binding. These data suggest SNVs in hnRNP A1 might contribute to pathogenesis of MS.
Collapse
Affiliation(s)
- Sangmin Lee
- Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael Levin
- Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy/Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
27
|
Lee S, Levin M. Novel somatic single nucleotide variants within the RNA binding protein hnRNP A1 in multiple sclerosis patients. F1000Res 2014; 3:132. [PMID: 25254102 PMCID: PMC4168748 DOI: 10.12688/f1000research.4436.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 12/13/2022] Open
Abstract
Some somatic single nucleotide variants (SNVs) are thought to be pathogenic, leading to neurological disease. We hypothesized that heterogeneous nuclear ribonuclear protein A1 (hnRNP A1), an autoantigen associated with multiple sclerosis (MS) would contain SNVs. MS patients develop antibodies to hnRNP A1 (293-304), an epitope within the M9 domain (AA (268-305)) of hnRNP A1. M9 is hnRNP A1's nucleocytoplasmic transport domain, which binds transportin-1 (TPNO-1) and allows for hnRNP A1's transport into and out of the nucleus. Genomic DNA sequencing of M9 revealed nine novel SNVs that resulted in an amino acid substitution in MS patients that were not present in controls. SNVs occurred within the TPNO-1 binding domain (hnRNP A1 (268-289)) and the MS IgG epitope (hnRNP A1 (293-304)), within M9. In contrast to the nuclear localization of wild type (WT) hnRNP A1, mutant hnRNP A1 mis-localized to the cytoplasm, co-localized with stress granules and caused cellular apoptosis. Whilst WT hnRNP A1 bound TPNO-1, mutant hnRNP A1 showed reduced TPNO-1 binding. These data suggest SNVs in hnRNP A1 might contribute to pathogenesis of MS.
Collapse
Affiliation(s)
- Sangmin Lee
- Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael Levin
- Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy/Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
28
|
Levin MC, Douglas JN, Meyers L, Lee S, Shin Y, Gardner LA. Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms. Degener Neurol Neuromuscul Dis 2014; 4:49-63. [PMID: 32669900 PMCID: PMC7337253 DOI: 10.2147/dnnd.s54391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease that impairs the central nervous system (CNS). The neurological disability and clinical course of the disease is highly variable and unpredictable from one patient to another. The cause of MS is still unknown, but it is thought to occur in genetically susceptible individuals who develop disease due to a nongenetic trigger, such as altered metabolism, a virus, or other environmental factors. MS patients develop progressive, irreversible, neurological disability associated with neuronal and axonal damage, collectively known as neurodegeneration. Neurodegeneration was traditionally considered as a secondary phenomenon to inflammation and demyelination. However, recent data indicate that neurodegeneration develops along with inflammation and demyelination. Thus, MS is increasingly recognized as a neurodegenerative disease triggered by an inflammatory attack of the CNS. While both inflammation and demyelination are well described and understood cellular processes, neurodegeneration might be defined by a diverse pool of any of the following: neuronal cell death, apoptosis, necrosis, and virtual hypoxia. In this review, we present multiple theories and supporting evidence that identify common biological processes that contribute to neurodegeneration in MS.
Collapse
Affiliation(s)
- Michael C Levin
- Veterans Administration Medical Center.,Department of Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joshua N Douglas
- Veterans Administration Medical Center.,Department of Neuroscience, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Sangmin Lee
- Veterans Administration Medical Center.,Department of Neurology
| | - Yoojin Shin
- Veterans Administration Medical Center.,Department of Neurology
| | - Lidia A Gardner
- Veterans Administration Medical Center.,Department of Neurology
| |
Collapse
|
29
|
Pahan K. Multiple Sclerosis and Experimental Allergic Encephalomyelitis. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2013; 4:e113. [PMID: 24478934 PMCID: PMC3903289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Darnen Avenue, Chicago, USA
| |
Collapse
|