1
|
Qin W, Liang A, Han X, Zhang M, Gao Y, Zhao C. Quantitative urinary proteome analysis reveals potential biomarkers for disease activity of Behcet's disease uveitis. BMC Ophthalmol 2024; 24:277. [PMID: 38982370 PMCID: PMC11232131 DOI: 10.1186/s12886-024-03557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
PURPOSE Behçet's disease-associated uveitis (BDU) is a severe, recurrent inflammatory condition affecting the eye and is part of a systemic vasculitis with unknown etiology, making biomarker discovery essential for disease management. In this study, we intend to investigate potential urinary biomarkers to monitor the disease activity of BDU. METHODS Firstly, label-free data-dependent acquisition (DDA) and tandem mass tag (TMT)-labeled quantitative proteomics methods were used to profile the proteomes of urine from active and quiescent BDU patients, respectively. For further exploration, the remaining fifty urine samples were analyzed by a data-independent acquisition (DIA) quantitative proteomics method. RESULTS Twenty-nine and 21 differential proteins were identified in the same urine from BDU patients by label-free DDA and TMT-labeled analyses, respectively. Seventy-nine differentially expressed proteins (DEPs) were significantly changed in other active BDU urine samples compared to those in quiescent BDU urine samples by IDA analysis. Gene Ontology (GO) and protein-protein interaction (PPI) analyses revealed that the DEPs were associated with multiple functions, including the immune and neutrophil activation responses. Finally, seven proteins were identified as candidate biomarkers for BDU monitoring and recurrence prediction, namely, CD38, KCRB, DPP4, FUCA2, MTPN, S100A8 and S100A9. CONCLUSIONS Our results showed that urine can be a good source of biomarkers for BDU. These dysregulated proteins provide potential urinary biomarkers for BDU activity monitoring and provide valuable clues for the analysis of the pathogenic mechanisms of BDU.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Anesthesiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing100875, China
| | - Anyi Liang
- Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiaoxu Han
- Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meifen Zhang
- Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Youhe Gao
- Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing100875, China.
| | - Chan Zhao
- Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
2
|
Kamounah S, Sembler-Møller ML, Nielsen CH, Pedersen AML. Sjögren's syndrome: novel insights from proteomics and miRNA expression analysis. Front Immunol 2023; 14:1183195. [PMID: 37275849 PMCID: PMC10232878 DOI: 10.3389/fimmu.2023.1183195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Sjögren's syndrome (SS) is a systemic autoimmune disease, which affects the exocrine glands leading to glandular dysfunction and, particularly, symptoms of oral and ocular dryness. The aetiology of SS remains unclear, and the disease lacks distinctive clinical features. The current diagnostic work-up is complex, invasive and often time-consuming. Thus, there is an emerging need for identifying disease-specific and, ideally, non-invasive immunological and molecular biomarkers that can simplify the diagnostic process, allow stratification of patients, and assist in monitoring the disease course and outcome of therapeutic intervention in SS. Methods This systematic review addresses the use of proteomics and miRNA-expression profile analyses in this regard. Results and discussion Out of 272 papers that were identified and 108 reviewed, a total of 42 papers on proteomics and 23 papers on miRNA analyses in saliva, blood and salivary gland tissue were included in this review. Overall, the proteomic and miRNA studies revealed considerable variations with regard to candidate biomarker proteins and miRNAs, most likely due to variation in sample size, processing and analytical methods, but also reflecting the complexity of SS and patient heterogeneity. However, interesting novel knowledge has emerged and further validation is needed to confirm their potential role as biomarkers in SS.
Collapse
Affiliation(s)
- Sarah Kamounah
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Lynn Sembler-Møller
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Rheumatology and Spine Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anne Marie Lynge Pedersen
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Jüngert K, Paulsen F, Jacobi C, Horwath-Winter J, Garreis F. Prolactin Inducible Protein, but Not Prolactin, Is Present in Human Tears, Is Involved in Tear Film Quality, and Influences Evaporative Dry Eye Disease. Front Med (Lausanne) 2022; 9:892831. [PMID: 35847789 PMCID: PMC9279896 DOI: 10.3389/fmed.2022.892831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Decreased production of the aqueous component of the tear film is an important cause of the development of dry eye disease (DED). Tear production is influenced by hormones and hormone-like factors. Prolactin (PLR), a multifunctional pituitary gland hormone, is regularly present in the lacrimal gland of rats and rabbits. In humans, serum PLR concentration correlates with tear quality. To gain deeper insights of possible effects of PRL, prolactin receptor (PRLR) and prolactin inducible protein (PIP), we analyzed the three proteins in the human lacrimal apparatus and in reflex tears of healthy volunteers as well as patients suffering from DED. Methods Gene expression of PRLR and PIP was analyzed by RT-PCR in cadaveric human lacrimal gland and ocular surface tissues, immortalized human corneal epithelial cells (HCE and hTEPI) and human Meibomian gland epithelial cells (HMGECs). At the protein level, the expression and localization of PRL, PRLR and PIP in formalin-fixed paraffin sections of the lacrimal apparatus were studied by immunohistochemistry. In addition, tear fluid from DED patients and healthy volunteers was analyzed by ELISA to determine the concentration of PRL and PIP. Results RT-PCR analyses revealed gene expression of PRLR and PIP in human tissue samples of cornea, lacrimal glands, and eyelids, whereas only PIP, but not PRLR, was detectable in immortalized corneal epithelial cells. Immunohistochemistry revealed for the first time the expression and localization of PRL, PRLR, and PIP in human tissues of the lacrimal apparatus and at the ocular surface. PRL and PRLR were detectable in corneal epithelium, lacrimal glands, and Meibomian glands. Reflex tears from DED patients revealed significantly increased PIP concentrations, whereas PRL was undetectable in tears of DED patients and healthy volunteers. Conclusion PRL, PRLR, and PIP are found in the lacrimal apparatus and on the ocular surface. PIP, but not PRL, is present in human tears and appears to be involved in the physiology of tear film quality. Our clinical data revealed that PIP may affect tear quality, but further functional analyses are needed to fully elucidate the effects of PRL and PIP-associated factors in tear secretion as well as in the connection of DED.
Collapse
Affiliation(s)
- Katharina Jüngert
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina Jacobi
- Eyes and Skin Practice Dr. Jacobi, Nürnberg, Germany
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Fabian Garreis
| |
Collapse
|
4
|
Salivary Proteomics Markers for Preclinical Sjögren’s Syndrome: A Pilot Study. Biomolecules 2022; 12:biom12060738. [PMID: 35740863 PMCID: PMC9221050 DOI: 10.3390/biom12060738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a complex autoimmune disorder that particularly affects the salivary and lachrymal glands, generally causing a typical dryness of the eyes and of the mouth. The disease encompasses diverse clinical representations and is characterized by B-cell polyclonal activation and autoantibodies production, including anti-Ro/SSA. Recently, it has been suggested that autoantibody profiling may enable researchers to identify susceptible asymptomatic individuals in a pre-disease state. In this pilot study, we used mass spectrometry to analyze and compare the salivary proteomics of patients with established pSS and patients with pre-clinical SS, identifying a common protein signature in their salivary fluid. We found that several inflammatory, immunity-related, and typical acinar proteins (such as MUC5B, PIP, CST4, and lipocalin 1) were differently expressed in pSS and in pre-clinical SSA+ carriers, compared to healthy controls. This suggests that saliva may closely reflect exocrine gland inflammation from the early phases of the disease. This study confirms the value of salivary proteomics for the identification of reliable biomarkers for SS that could be identified, even in a preclinical phase of the disease.
Collapse
|
5
|
Terceiro LEL, Blanchard AAA, Edechi CA, Freznosa A, Triggs-Raine B, Leygue E, Myal Y. Generation of prolactin-inducible protein (Pip) knockout mice by CRISPR/Cas9-mediated gene engineering. Can J Physiol Pharmacol 2022; 100:86-91. [PMID: 34379992 DOI: 10.1139/cjpp-2021-0306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolactin-inducible protein (PIP) is a multifunctional glycoprotein that is highly expressed and found in the secretions of apocrine glands such as salivary, lacrimal, and sweat glands including the mammary glands. PIP has been implicated in various diseases, including breast cancer, gross cystic disease of the breast, keratoconus of the eye, and the autoimmune Sjögren's syndrome. Here we have generated a Pip knockout (KO) mouse using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRSPR-associated (Cas)9 system. The Cas9 protein and two single guide RNAs targeting specific regions for both exons 1 and 2 of the Pip gene were microinjected into mouse embryos. The deletions and insertions promoted by CRISPR/Cas9 system on the Pip gene successfully disrupted Pip protein coding, as confirmed by PCR genotyping, sequencing, and ultimately Western blot analysis. This mouse model was generated in the inbred C57Bl/6J mouse, which exhibits lower genetic variation. This novel CRISPR Pip KO mouse model will not only be useful for future studies to interrogate the multifunctional role of PIP in physiological processes but will facilitate a broader understanding of the function of PIP in vivo while providing unprecedented insight into its role in a spectrum of diseases attributed to the deregulation of the PIP gene.
Collapse
Affiliation(s)
- Lucas E L Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Anne A A Blanchard
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Chidalu A Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Agnes Freznosa
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Etienne Leygue
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- CancerCareManitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
| | - Yvonne Myal
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCareManitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
6
|
Unraveling Human AQP5-PIP Molecular Interaction and Effect on AQP5 Salivary Glands Localization in SS Patients. Cells 2021; 10:cells10082108. [PMID: 34440877 PMCID: PMC8391295 DOI: 10.3390/cells10082108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
Saliva secretion requires effective translocation of aquaporin 5 (AQP5) water channel to the salivary glands (SGs) acinar apical membrane. Patients with Sjögren’s syndrome (SS) display abnormal AQP5 localization within acinar cells from SGs that correlate with sicca manifestation and glands hypofunction. Several proteins such as Prolactin-inducible protein (PIP) may regulate AQP5 trafficking as observed in lacrimal glands from mice. However, the role of the AQP5-PIP complex remains poorly understood. In the present study, we show that PIP interacts with AQP5 in vitro and in mice as well as in human SGs and that PIP misexpression correlates with an altered AQP5 distribution at the acinar apical membrane in PIP knockout mice and SS hMSG. Furthermore, our data show that the protein-protein interaction involves the AQP5 C-terminus and the N-terminal of PIP (one molecule of PIP per AQP5 tetramer). In conclusion, our findings highlight for the first time the role of PIP as a protein controlling AQP5 localization in human salivary glands but extend beyond due to the PIP-AQP5 interaction described in lung and breast cancers.
Collapse
|
7
|
Loukovitis E, Kozeis N, Gatzioufas Z, Kozei A, Tsotridou E, Stoila M, Koronis S, Sfakianakis K, Tranos P, Balidis M, Zachariadis Z, Mikropoulos DG, Anogeianakis G, Katsanos A, Konstas AG. The Proteins of Keratoconus: a Literature Review Exploring Their Contribution to the Pathophysiology of the Disease. Adv Ther 2019; 36:2205-2222. [PMID: 31363996 PMCID: PMC6822850 DOI: 10.1007/s12325-019-01026-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Keratoconus (KC) is a complex, genetically heterogeneous multifactorial degenerative disorder characterized by corneal ectasia and thinning. Its incidence is approximately 1/2000-1/50,000 in the general population. KC is associated with moderate to high myopia and irregular astigmatism, resulting in severe visual impairment. KC structural abnormalities primarily relate to the weakening of the corneal collagen. Their understanding is crucial and could contribute to effective management of the disease, such as with the aid of corneal cross-linking (CXL). The present article critically reviews the proteins involved in the pathophysiology of KC, with particular emphasis on the characteristics of collagen that pertain to CXL. METHODS PubMed, MEDLINE, Google Scholar and GeneCards databases were screened for relevant articles published in English between January 2006 and June 2018. Keyword combinations of the words "keratoconus," "risk factor(s)," "genetics," "genes," "genetic association(s)," "proteins", "collagen" and "cornea'' were used. In total, 272 articles were retrieved, reviewed and selected, with greater weight placed on more recently published evidence. Based on the reviewed literature, an attempt was made to tabulate the up- and down-regulation of genes involved in KC and their protein products and to delineate the mechanisms involved in CXL. RESULTS A total of 117 proteins and protein classes have been implicated in the pathogenesis and pathophysiology of KC. These have been tabulated in seven distinct tables according to their gene coding, their biochemistry and their metabolic control. CONCLUSION The pathogenesis and pathophysiology of KC remain enigmatic. Emerging evidence has improved our understanding of the molecular characteristics of KC and could further improve the success rate of CXL therapies.
Collapse
|
8
|
Sharif R, Bak-Nielsen S, Hjortdal J, Karamichos D. Pathogenesis of Keratoconus: The intriguing therapeutic potential of Prolactin-inducible protein. Prog Retin Eye Res 2018; 67:150-167. [PMID: 29758268 PMCID: PMC6235698 DOI: 10.1016/j.preteyeres.2018.05.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/25/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Keratoconus (KC) is the most common ectatic corneal disease, with clinical findings that include discomfort, visual disturbance and possible blindness if left untreated. KC affects approximately 1:400 to 1:2000 people worldwide, including both males and females. The aetiology and onset of KC remains a puzzle and as a result, the ability to treat or reverse the disease is hampered. Sex hormones are known to play a role in the maintenance of the structure and integrity of the human cornea. Hormone levels have been reported to alter corneal thickness, curvature, and sensitivity during different times of menstrual cycle. Surprisingly, the role of sex hormones in corneal diseases and KC has been largely neglected. Prolactin-induced protein, known to be regulated by sex hormones, is a new KC biomarker that has been recently proposed. Studies herein discuss the role of sex hormones as a control mechanism for KC onset and progression and evidence supporting the view that prolactin-induced protein is an important hormonally regulated biomarker in KC is discussed.
Collapse
Affiliation(s)
- Rabab Sharif
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, United States
| | - Sashia Bak-Nielsen
- Department of Ophthalmology, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Jesper Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Dimitrios Karamichos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, United States; Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Science Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, United States.
| |
Collapse
|
9
|
Baldini C, Cecchettini A, Gallo A, Bombardieri S. Updates on Sjögren's syndrome: from proteomics to protein biomarkers. Expert Rev Proteomics 2017; 14:491-498. [PMID: 28532233 DOI: 10.1080/14789450.2017.1333904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is a complex heterogeneous autoimmune disorder, typically affecting exocrine glands. Recently, a great interest has arisen in searching for novel biomarkers able to improve the diagnostic work-up of the disease as well as the general assessment and the prognostic stratification of pSS patients. From this perspective, salivary proteomics has appeared as a promising tool considering that salivary proteins may closely reflect the underlying disease processes in the salivary glands. Areas covered: Here we will provide an update on the state of the art of proteomics in pSS, focusing in particular on putative novel biomarkers for the disease. There is a special focus on candidate salivary protein and their role in non-invasive diagnosis of pSS. Expert commentary: Proteomics represents an emerging throughput omics-based approach for use in diagnosis of pSS. The studies that have been presented in this review have provided major contributions towards the identification of putative protein biomarkers, that once validated, could be able not only to contribute to a non-invasive diagnosis of pSS but also to the stratification of different disease subsets, ultimately allowing a better comprehension of the disease.
Collapse
Affiliation(s)
- Chiara Baldini
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Antonella Cecchettini
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Alessia Gallo
- b Department of Laboratory Medicine and Advanced Biotechnologies , IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione) , Palermo , Italy
| | - Stefano Bombardieri
- a Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| |
Collapse
|
10
|
Gabrielli L, Bonasoni MP, Chiereghin A, Piccirilli G, Santini D, Pavia C, Turello G, Squarzoni D, Lazzarotto T. Salivary glands and human congenital cytomegalovirus infection: What happens in early fetal life? J Med Virol 2016; 89:318-323. [DOI: 10.1002/jmv.24628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Liliana Gabrielli
- Operative Unit of Clinical Microbiology; St. Orsola-Malpighi University Hospital; Bologna Italy
| | - Maria Paola Bonasoni
- Operative Unit of Pathology; Arcispedale St. Maria Nuova-IRCCS; Reggio Emilia Italy
| | - Angela Chiereghin
- Operative Unit of Clinical Microbiology; St. Orsola-Malpighi University Hospital; Bologna Italy
| | - Giulia Piccirilli
- Operative Unit of Clinical Microbiology; St. Orsola-Malpighi University Hospital; Bologna Italy
| | - Donatella Santini
- Operative Unit of Pathology; St. Orsola-Malpighi University Hospital; Bologna Italy
| | - Claudia Pavia
- Operative Unit of Clinical Microbiology; St. Orsola-Malpighi University Hospital; Bologna Italy
| | - Gabriele Turello
- Operative Unit of Clinical Microbiology; St. Orsola-Malpighi University Hospital; Bologna Italy
| | - Diego Squarzoni
- Operative Unit of Clinical Microbiology; St. Orsola-Malpighi University Hospital; Bologna Italy
| | - Tiziana Lazzarotto
- Department of Specialized, Experimental, and Diagnostic Medicine; University of Bologna; Operative Unit of Clinical Microbiology; St. Orsola-Malpighi University Hospital; Bologna Italy
| |
Collapse
|
11
|
Ardito F, Perrone D, Cocchi R, Lo Russo L, DE Lillo A, Giannatempo G, Lo Muzio L. Novel possibilities in the study of the salivary proteomic profile using SELDI-TOF/MS technology. Oncol Lett 2016; 11:1967-1972. [PMID: 26998108 DOI: 10.3892/ol.2016.4219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 10/26/2015] [Indexed: 01/09/2023] Open
Abstract
There is currently an increasing interest in exploring human saliva to identify salivary diagnostic and prognostic biomarkers, since the collection of saliva is rapid, non-invasive and stress-free. Diagnostic tests on saliva are common and cost-effective, particularly for patients who need to monitor their hormone levels or the effectiveness of undergoing therapies. Furthermore, salivary diagnostics is ideal for surveillance studies and in situations where fast results and inexpensive technologies are required. The most important constituents of saliva are proteins, the expression levels of which may be modified due to variations of the cellular conditions. Therefore, the different profile of proteins detected in saliva, including their absence, presence or altered levels, is a potential biomarker of certain physiological and/or pathological conditions. A promising novel approach to study saliva is the global analysis of salivary proteins using proteomic techniques. In the present study, surface-enhanced laser desorption/ionization-time-of-flight/mass spectrometry (SELDI-TOF/MS), one of the most recent proteomic tools for the identification of novel biomarkers, is reviewed. In addition, the possible use of this technique in salivary proteomic studies is discussed, since SELDI technology combines the precision of matrix-assisted laser desorption/ionization-TOF/MS proteomic analysis and the high-throughput nature of protein array analysis.
Collapse
Affiliation(s)
- Fatima Ardito
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Donatella Perrone
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Roberto Cocchi
- Department of Maxillofacial Surgery, IRCCS Casa Sollievo della Sofferenza, I-71013 Foggia, Italy
| | - Lucio Lo Russo
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Alfredo DE Lillo
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Giovanni Giannatempo
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| |
Collapse
|
12
|
Laheij AMGA, Rasch CN, Brandt BW, de Soet JJ, Schipper RG, Loof A, Silletti E, van Loveren C. Proteins and peptides in parotid saliva of irradiated patients compared to that of healthy controls using SELDI-TOF-MS. BMC Res Notes 2015; 8:639. [PMID: 26530239 PMCID: PMC4632372 DOI: 10.1186/s13104-015-1641-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2015] [Indexed: 11/30/2022] Open
Abstract
Background Radiotherapy to the head and neck area damages the salivary glands. As a consequence hyposalivation may occur, but also the protein composition of saliva may be affected possibly compromising oral health. The aim of our study was to compare the relative abundance of proteins and peptides in parotid saliva of irradiated patients to that of healthy controls. Methods Using Lashley cups and citric acid, saliva from the parotid glands was collected from nine irradiated patients and ten healthy controls. The samples were analyzed with SELDI-TOF-MS using a NP20 and IMAC-30 chip in the molecular weight range of 1–30 kDa. Results On the NP20 chip 61 (out of 217) and on the IMAC-30 chip 32 (out of 218) peaks differed significantly in intensity between the saliva of the irradiated patients and healthy controls. 55 % of the significant peaks showed higher intensity and 45 % showed lower intensity in the saliva of irradiated patients. The peaks may represent, amongst others, the salivary proteins lysozyme, histatins, cystatin, protein S100 and PRP’s. Conclusions Large differences were found in the relative abundance of a wide range of proteins and peptides in the parotid saliva of irradiated patients compared to healthy controls. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1641-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexa M G A Laheij
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Coen N Rasch
- Department of Radiation Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Johannes J de Soet
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Raymond G Schipper
- Top Institute Food and Nutrition, PO Box 557, 6700 AN, Wageningen, The Netherlands.
| | - Arnoud Loof
- Central Laboratory for Haematology, Radboud University Nijmegen Medical Centre Post 476, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Erika Silletti
- NIZO Food Research B.V., P.O. Box 20, 6710 BA, Ede, The Netherlands.
| | - Cor van Loveren
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Kamiya K, Sakabe JI, Yamaguchi H, Suzuki T, Yatagai T, Aoshima M, Ito T, Tokura Y. Gross cystic disease fluid protein 15 in stratum corneum is a potential marker of decreased eccrine sweating for atopic dermatitis. PLoS One 2015; 10:e0125082. [PMID: 25919462 PMCID: PMC4412570 DOI: 10.1371/journal.pone.0125082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/20/2015] [Indexed: 01/29/2023] Open
Abstract
It is well known that eccrine sweating is attenuated in patients with atopic dermatitis (AD). We have reported by using proteome analysis that gross cystic disease fluid protein 15 (GCDFP15), a substance secreted from eccrine sweat glands, is decreased in tape-stripped stratum corneum (SC) samples from AD patients. The aim of this study was to evaluate GCDFP15 production by eccrine glands with SC samples and to assess sweating in AD. SC samples were obtained from 51 healthy control (HC) and 51 AD individuals. Sweat samples were from 18 HC and 12 AD subjects. GCDFP15 was quantified by ELISA. By immunohistochemistry, the expression of GCDFP15 in eccrine glands was examined in normal and AD skin specimens. To identify GCDFP15-producing cells, double immunofluorescence staining for GCDFP15 and S100 protein was performed in frozen sections. To address the mechanism underlying the decreased eccrine sweating in AD patients, we examined the expression of cholinergic receptor M3 (CHRM3), a receptor for acetylcholine-induced sweating, in eccrine sweat glands. The amounts of GCDFP15 in the SC extracts were significantly lower in AD than HC (P < 0.0001). The sweat samples from AD patients also had lower levels of GCDFP15 concentration (P < 0.05). Immunohistochemistry showed positive GCDFP15 staining in the eccrine gland secretory cells and the ductal and acrosyringial lumen in normal skin, but AD lacked clear staining. Immunofluorescence staining revealed that GCDFP15 was co-expressed with S100 protein, suggesting that the clear cell of eccrine glands produces GCDFP15. Finally, we found that the expression of CHRM3 was depressed in AD, suggesting contribution to the low sweating. The SC of AD patients contains a low amount of GCDFP15 due to both low sweating and low GCDFP15 concentration in the sweat. GCDFP15 in SC is a potential marker for dysregulated sweating in AD.
Collapse
Affiliation(s)
- Koji Kamiya
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- * E-mail:
| | - Jun-Ichi Sakabe
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hayato Yamaguchi
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro Suzuki
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsuyoshi Yatagai
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masahiro Aoshima
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taisuke Ito
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
14
|
Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease. PLoS One 2014; 9:e113310. [PMID: 25405607 PMCID: PMC4236164 DOI: 10.1371/journal.pone.0113310] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022] Open
Abstract
Keratoconus (KC) is a bilateral degenerative disease of the cornea characterized by corneal bulging, stromal thinning, and scarring. The etiology of the disease is unknown. In this study, we identified a new biomarker for KC that is present in vivo and in vitro. In vivo, tear samples were collected from age-matched controls with no eye disease (n = 36) and KC diagnosed subjects (n = 17). Samples were processed for proteomics using LC-MS/MS. In vitro, cells were isolated from controls (Human Corneal Fibroblasts-HCF) and KC subjects (Human Keratoconus Cells-HKC) and stimulated with a Vitamin C (VitC) derivative for 4 weeks, and with one of the three transforming growth factor-beta (TGF-β) isoforms. Samples were analyzed using real-time PCR and Western Blots. By using proteomics analysis, the Gross cystic disease fluid protein-15 (GCDFP-15) or prolactin-inducible protein (PIP) was found to be the best independent biomarker able to discriminate between KC and controls. The intensity of GCDFP-15/PIP was significantly higher in healthy subjects compared to KC-diagnosed. Similar findings were seen in vitro, using a 3D culture model. All three TGF-β isoforms significantly down-regulated the expression of GCDFP-15/PIP. Zinc-alpha-2-glycoprotein (AZGP1), a protein that binds to PIP, was identified by proteomics and cell culture to be highly regulated. In this study by different complementary techniques we confirmed the potential role of GCDFP-15/PIP as a novel biomarker for KC disease. It is likely that exploring the GCDFP-15/PIP-AZGP1 interactions will help better understand the mechanism of KC disease.
Collapse
|