1
|
Pongjantarasatian S, Kadegasem P, Sasanakul W, Sa-ngiamsuntorn K, Borwornpinyo S, Sirachainan N, Chuansumrit A, Tanratana P, Hongeng S. Coagulant activity of recombinant human factor VII produced by lentiviral human F7 gene transfer in immortalized hepatocyte-like cell line. PLoS One 2019; 14:e0220825. [PMID: 31381603 PMCID: PMC6681952 DOI: 10.1371/journal.pone.0220825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) have the potential to differentiate into hepatocyte-like cells, indicating that these cells may be the new target cell of interest to produce biopharmaceuticals. Our group recently established a hMSC-derived immortalized hepatocyte-like cell line (imHC) that demonstrates several liver-specific phenotypes. However, the ability of imHC to produce coagulation factors has not been characterized. Here, we examined the potential for imHC as a source of coagulation protein production by investigating the ability of imHC to produce human factor VII (FVII) using a lentiviral transduction system. Our results showed that imHC secreted a low amount of FVII (~22 ng/mL) into culture supernatant. Moreover, FVII from the transduced imHC (0.11 ± 0.005 IU/mL) demonstrated a similar coagulant activity compared with FVII from transduced HEK293T cells (0.12 ± 0.004 IU/mL) as determined by chromogenic assay. We demonstrate for the first time, to the best of our knowledge, that imHC produced FVII, albeit at a low level, indicating the unique characteristic of hepatocytes. Our study suggests the possibility of using imHC for the production of coagulation proteins.
Collapse
Affiliation(s)
| | - Praguywan Kadegasem
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Werasak Sasanakul
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nongnuch Sirachainan
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ampaiwan Chuansumrit
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pansakorn Tanratana
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Suradej Hongeng
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Successful Phenotype Improvement following Gene Therapy for Severe Hemophilia A in Privately Owned Dogs. PLoS One 2016; 11:e0151800. [PMID: 27011017 PMCID: PMC4807047 DOI: 10.1371/journal.pone.0151800] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 02/15/2016] [Indexed: 11/25/2022] Open
Abstract
Severe hemophilia A (HA) is an inherited bleeding disorder characterized by <1% of residual factor VIII (FVIII) clotting activity. The disease affects several mammals including dogs, and, like humans, is associated with high morbidity and mortality. In gene therapy using adeno-associated viral (AAV) vectors, the canine model has been one of the best predictors of the therapeutic dose tested in clinical trials for hemophilia B (factor IX deficiency) and other genetic diseases, such as congenital blindness. Here we report our experience with liver gene therapy with AAV-FVIII in two outbred, privately owned dogs with severe HA that resulted in sustained expression of 1–2% of normal FVIII levels and prevented 90% of expected bleeding episodes. A Thr62Met mutation in the F8 gene was identified in one dog. These data recapitulate the improvement of the disease phenotype in research animals, and in humans, with AAV liver gene therapy for hemophilia B. Our experience is a novel example of the benefits of a relevant preclinical canine model to facilitate both translational studies in humans and improved welfare of privately owned dogs.
Collapse
|