1
|
Kim MJ, Lee JM, Min K, Choi YS. Xenogeneic transplantation of mitochondria induces muscle regeneration in an in vivo rat model of dexamethasone-induced atrophy. J Muscle Res Cell Motil 2024; 45:53-68. [PMID: 36802005 DOI: 10.1007/s10974-023-09643-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/16/2023] [Indexed: 02/21/2023]
Abstract
Muscle atrophy significantly impairs health and quality of life; however, there is still no cure. Recently, the possibility of regeneration in muscle atrophic cells was suggested through mitochondrial transfer. Therefore, we attempted to prove the efficacy of mitochondrial transplantation in animal models. To this end, we prepared intact mitochondria from umbilical cord-derived mesenchymal stem cells maintaining their membrane potential. To examine the efficacy of mitochondrial transplantation on muscle regeneration, we measured muscle mass, cross-sectional area of muscle fiber, and changes in muscle-specific protein. In addition, changes in the signaling mechanisms related to muscle atrophy were evaluated. As a result, in mitochondrial transplantation, the muscle mass increased by 1.5-fold and the lactate concentration decreased by 2.5-fold at 1 week in dexamethasone-induced atrophic muscles. In addition, a 2.3-fold increase in the expression of desmin protein, a muscle regeneration marker, showed a significant recovery in MT 5 µg group. Importantly, the muscle-specific ubiquitin E3-ligases MAFbx and MuRF-1 were significantly decreased through AMPK-mediated Akt-FoxO signaling pathway by mitochondrial transplantation compared with the saline group, reaching a level similar to that in the control. Based on these results, mitochondrial transplantation may have therapeutic applications in the treatment of atrophic muscle disorders.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea
| | - Ji Min Lee
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea
| | - Kyunghoon Min
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 13496, Seongnam, Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea.
| |
Collapse
|
2
|
Wang QQ, Jing XM, Bi YZ, Cao XF, Wang YZ, Li YX, Qiao BJ, Chen Y, Hao YL, Hu J. Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stromal Cells May Attenuate Sarcopenia in Aged Mice Induced by Hindlimb Suspension. Med Sci Monit 2018; 24:9272-9281. [PMID: 30571669 PMCID: PMC6320659 DOI: 10.12659/msm.913362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Since the use of human umbilical cord Wharton’s Jelly derived mesenchymal stromal cells (hWJ-MSCs) to treat sarcopenia has not been explored, we studied the effects of hWJ-MSCs in aged male C57BL/6J mice with sarcopenia induced by hindlimb suspension, and explored the potential mechanism. Material/Methods Hindlimb suspension was used to induce sarcopenia in 24-month-old C57BL/6J mice and green fluorescent protein-tagged hWJ-MSCs and controls were transplanted into mice via tail vein or local intramuscular injection. After hWJ-MSC transplantation, changes in whole body muscle strength and endurance, gastrocnemius muscle weight and myofiber cross-sectional area (CSA) were studied. Proliferation of skeletal muscle stem cell, apoptosis, and chronic inflammation were also investigated. Results We demonstrated that whole body muscle strength and endurance, gastrocnemius muscle mass, and CSA were significantly increased in hWJ-MSC-transplanted mice than in controls (P<0.05). In hWJ-MSC-transplanted mice, apoptotic myonuclei was reduced, and BrdU and Pax-7 expression indices of gastrocnemius muscles were increased (P<0.05). Tumor necrosis factor (TNF)-α and interleukin (IL)-6 were downregulated, and IL-4 and IL-10 were upregulated (P<0.05). Conclusions hWJ-MSCs may ameliorate sarcopenia in aged male C57BL/6J mice induced by hindlimb suspension, and this may be via activation of resident skeletal muscle satellite cells, reduction of apoptosis, and less chronic inflammation.
Collapse
Affiliation(s)
- Quan-Quan Wang
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Xiao-Ma Jing
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Yan-Zhen Bi
- Difficult and Complicated Liver Diseases and Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China (mainland)
| | - Xiao-Fu Cao
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yu-Zhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yan-Xin Li
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Bao-Jun Qiao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yun Chen
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Yan-Lei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
3
|
Loder SJ, Agarwal S, Chung MT, Cholok D, Hwang C, Visser N, Vasquez K, Sorkin M, Habbouche J, Sung HH, Peterson J, Fireman D, Ranganathan K, Breuler C, Priest C, Li J, Bai X, Li S, Cederna PS, Levi B. Characterizing the Circulating Cell Populations in Traumatic Heterotopic Ossification. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2464-2473. [PMID: 30142335 PMCID: PMC6222270 DOI: 10.1016/j.ajpath.2018.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/08/2018] [Accepted: 07/26/2018] [Indexed: 12/23/2022]
Abstract
Heterotopic ossification (HO) occurs secondary to trauma, causing pain and functional limitations. Identification of the cells that contribute to HO is critical to the development of therapies. Given that innate immune cells and mesenchymal stem cells are known contributors to HO, we sought to define the contribution of these populations to HO and to identify what, if any, contribution circulating populations have to HO. A shared circulation was obtained using a parabiosis model, established between an enhanced green fluorescent protein-positive/luciferase+ donor and a same-strain nonreporter recipient mouse. The nonreporter mouse received Achilles tendon transection and dorsal burn injury to induce HO formation. Bioluminescence imaging and immunostaining were performed to define the circulatory contribution of immune and mesenchymal cell populations. Histologic analysis showed circulating cells present throughout each stage of the developing HO anlagen. Circulating cells were present at the injury site during the inflammatory phase and proliferative period, with diminished contribution in mature HO. Immunostaining demonstrated that most early circulatory cells were from the innate immune system; only a small population of mesenchymal cells were present in the HO. We demonstrate the time course of the participation of circulatory cells in trauma-induced HO and identify populations of circulating cells present in different stages of HO. These findings further elucidate the relative contribution of local and systemic cell populations to HO.
Collapse
Affiliation(s)
- Shawn J Loder
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Shailesh Agarwal
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Michael T Chung
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - David Cholok
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Charles Hwang
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Noelle Visser
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Kaetlin Vasquez
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Michael Sorkin
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joe Habbouche
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Hsiao H Sung
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joshua Peterson
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - David Fireman
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Kavitha Ranganathan
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Christopher Breuler
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Caitlin Priest
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - John Li
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Xue Bai
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Shuli Li
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S Cederna
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Benjamin Levi
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
4
|
Nassari S, Duprez D, Fournier-Thibault C. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues. Front Cell Dev Biol 2017; 5:22. [PMID: 28386539 PMCID: PMC5362625 DOI: 10.3389/fcell.2017.00022] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.
Collapse
Affiliation(s)
- Sonya Nassari
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Delphine Duprez
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Claire Fournier-Thibault
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| |
Collapse
|
5
|
Naldaiz-Gastesi N, Goicoechea M, Alonso-Martín S, Aiastui A, López-Mayorga M, García-Belda P, Lacalle J, San José C, Araúzo-Bravo MJ, Trouilh L, Anton-Leberre V, Herrero D, Matheu A, Bernad A, García-Verdugo JM, Carvajal JJ, Relaix F, Lopez de Munain A, García-Parra P, Izeta A. Identification and Characterization of the Dermal Panniculus Carnosus Muscle Stem Cells. Stem Cell Reports 2016; 7:411-424. [PMID: 27594590 PMCID: PMC5032673 DOI: 10.1016/j.stemcr.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 01/05/2023] Open
Abstract
The dermal Panniculus carnosus (PC) muscle is important for wound contraction in lower mammals and represents an interesting model of muscle regeneration due to its high cell turnover. The resident satellite cells (the bona fide muscle stem cells) remain poorly characterized. Here we analyzed PC satellite cells with regard to developmental origin and purported function. Lineage tracing shows that they originate in Myf5+, Pax3/Pax7+ cell populations. Skin and muscle wounding increased PC myofiber turnover, with the satellite cell progeny being involved in muscle regeneration but with no detectable contribution to the wound-bed myofibroblasts. Since hematopoietic stem cells fuse to PC myofibers in the absence of injury, we also studied the contribution of bone marrow-derived cells to the PC satellite cell compartment, demonstrating that cells of donor origin are capable of repopulating the PC muscle stem cell niche after irradiation and bone marrow transplantation but may not fully acquire the relevant myogenic commitment. PC satellite cells originate from Myf5+, Pax3/Pax7+ cell lineages Skin and muscle wounding increase PC myofiber turnover Donor bone marrow cells repopulate the PC satellite niche after BMT Dermis-derived myogenesis originates from the PC satellite cell population
Collapse
Affiliation(s)
- Neia Naldaiz-Gastesi
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián 20014, Spain; Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María Goicoechea
- Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sonia Alonso-Martín
- INSERM U955-E10, Université Paris Est, Faculté de Médicine, IMRB U955-E10, Creteil 94000, France
| | - Ana Aiastui
- Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Macarena López-Mayorga
- Molecular Embryology Team, Centro Andaluz de Biología del Desarrollo, Sevilla 41013, Spain
| | - Paula García-Belda
- CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain; Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, Valencia 46980, Spain
| | - Jaione Lacalle
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián 20014, Spain; Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; Faculty of Medicine and Nursing, UPV-EHU, San Sebastián 20014, Spain
| | - Carlos San José
- Animal Facility and Experimental Surgery, Instituto Biodonostia, San Sebastián 20014, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Instituto Biodonostia, San Sebastián 20014, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Lidwine Trouilh
- INSA, UPS, INP, LISBP, Université de Toulouse, 31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France; CNRS, UMR5504, 31400 Toulouse, France
| | - Véronique Anton-Leberre
- INSA, UPS, INP, LISBP, Université de Toulouse, 31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France; CNRS, UMR5504, 31400 Toulouse, France
| | - Diego Herrero
- Immunology and Oncology Department, Spanish National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain
| | - Ander Matheu
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; Cellular Oncology Group, Oncology Area, Instituto Biodonostia, San Sebastián 20014, Spain
| | - Antonio Bernad
- Immunology and Oncology Department, Spanish National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain
| | - José Manuel García-Verdugo
- CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain; Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, Valencia 46980, Spain
| | - Jaime J Carvajal
- Molecular Embryology Team, Centro Andaluz de Biología del Desarrollo, Sevilla 41013, Spain
| | - Frédéric Relaix
- INSERM U955-E10, Université Paris Est, Faculté de Médicine, IMRB U955-E10, Creteil 94000, France
| | - Adolfo Lopez de Munain
- Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain; Faculty of Medicine and Nursing, Department of Neurosciences, UPV-EHU, San Sebastián 20014, Spain; Department of Neurology, Hospital Universitario Donostia, San Sebastián 20014, Spain
| | - Patricia García-Parra
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián 20014, Spain; Neuroscience Area, Instituto Biodonostia, San Sebastián 20014, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián 20014, Spain; Department of Biomedical Engineering, School of Engineering, Tecnun-University of Navarra, San Sebastián 20009, Spain.
| |
Collapse
|
6
|
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying mutations using new gene-editing technologies and corticosteroid analogs with better safety profiles offers renewed hope for many individuals with DMD and their families.
Collapse
Affiliation(s)
- Jean K Mah
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Improvement of endurance of DMD animal model using natural polyphenols. BIOMED RESEARCH INTERNATIONAL 2015; 2015:680615. [PMID: 25861640 PMCID: PMC4377377 DOI: 10.1155/2015/680615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD), the most common form of muscular dystrophy, is characterized by muscular wasting caused by dystrophin deficiency that ultimately ends in force reduction and premature death. In addition to primary genetic defect, several mechanisms contribute to DMD pathogenesis. Recently, antioxidant supplementation was shown to be effective in the treatment of multiple diseases including muscular dystrophy. Different mechanisms were hypothesized such as reduced hydroxyl radicals, nuclear factor-κB deactivation, and NO protection from inactivation. Following these promising evidences, we investigated the effect of the administration of a mix of dietary natural polyphenols (ProAbe) on dystrophic mdx mice in terms of muscular architecture and functionality. We observed a reduction of muscle fibrosis deposition and myofiber necrosis together with an amelioration of vascularization. More importantly, the recovery of the morphological features of dystrophic muscle leads to an improvement of the endurance of treated dystrophic mice. Our data confirmed that ProAbe-based diet may represent a strategy to coadjuvate the treatment of DMD.
Collapse
|