1
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
2
|
Rampoldi A, Crooke SN, Preininger MK, Jha R, Maxwell J, Ding L, Spearman P, Finn MG, Xu C. Targeted Elimination of Tumorigenic Human Pluripotent Stem Cells Using Suicide-Inducing Virus-like Particles. ACS Chem Biol 2018; 13:2329-2338. [PMID: 29979576 DOI: 10.1021/acschembio.8b00490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sensitization to prodrugs via transgenic expression of suicide genes is a leading strategy for the selective elimination of potentially tumorigenic human pluripotent stem cells (hPSCs) in regenerative medicine, but transgenic modification poses safety risks such as deleterious mutagenesis. We describe here an alternative method of delivering suicide-inducing molecules explicitly to hPSCs using virus-like particles (VLPs) and demonstrate its use in eliminating undifferentiated hPSCs in vitro. VLPs were engineered from Qβ bacteriophage capsids to contain enhanced green fluorescent protein (EGFP) or cytosine deaminase (CD) and to simultaneously display multiple IgG-binding ZZ domains. After labeling with antibodies against the hPSC-specific surface glycan SSEA-5, EGFP-containing particles were shown to specifically bind undifferentiated cells in culture, and CD-containing particles were able to eliminate undifferentiated hPSCs with virtually no cytotoxicity to differentiated cells upon treatment with the prodrug 5-fluorocytosine.
Collapse
Affiliation(s)
- Antonio Rampoldi
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Stephen N. Crooke
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Marcela K. Preininger
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Rajneesh Jha
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Joshua Maxwell
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Lingmei Ding
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Paul Spearman
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Stem cells in cancer therapy: opportunities and challenges. Oncotarget 2017; 8:75756-75766. [PMID: 29088907 PMCID: PMC5650462 DOI: 10.18632/oncotarget.20798] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Metastatic cancer cells generally cannot be eradicated using traditional surgical or chemoradiotherapeutic strategies, and disease recurrence is extremely common following treatment. On the other hand, therapies employing stem cells are showing increasing promise in the treatment of cancer. Stem cells can function as novel delivery platforms by homing to and targeting both primary and metastatic tumor foci. Stem cells engineered to stably express various cytotoxic agents decrease tumor volumes and extend survival in preclinical animal models. They have also been employed as virus and nanoparticle carriers to enhance primary therapeutic efficacies and relieve treatment side effects. Additionally, stem cells can be applied in regenerative medicine, immunotherapy, cancer stem cell-targeted therapy, and anticancer drug screening applications. However, while using stem cells to treat human cancers appears technically feasible, challenges such as treatment durability and tumorigenesis necessitate further study to improve therapeutic performance and applicability. This review focuses on recent progress toward stem cell-based cancer treatments, and summarizes treatment advantages, opportunities, and shortcomings, potentially helping to refine future trials and facilitate the translation from experimental to clinical studies.
Collapse
|
4
|
Malecki M. 'Above all, do no harm': safeguarding pluripotent stem cell therapy against iatrogenic tumorigenesis. Stem Cell Res Ther 2014; 5:73. [PMID: 25158017 PMCID: PMC4076624 DOI: 10.1186/scrt462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cells are the foundations of regenerative medicine. However, the worst possible complication of using pluripotent stem cells in therapy could be iatrogenic cancerogenesis. Nevertheless, despite the rapid progress in the development of new techniques for induction of pluripotency and for directed differentiation, risks of cancerogenic transformation of therapeutically implanted pluripotent stem cells still persist. 'Above all, do no harm', as quoted from the Hippocratic Oath, is our ultimate creed. Therefore, the primary goal in designing any therapeutic regimes involving stem cells should be the elimination of any possibilities of their neoplasmic transformation. I review here the basic strategies that have been designed to attain this goal: sorting out undifferentiated, pluripotent stem cells with antibodies targeting surface-displayed biomarkers; sorting in differentiating cells, which express recombinant proteins as reporters; killing undifferentiated stem cells with toxic antibodies or antibody-guided toxins; eliminating undifferentiated stem cells with cytotoxic drugs; making potentially tumorigenic stem cells sensitive to pro-drugs by transformation with suicide-inducing genes; eradication of differentiation-refractive stem cells by self-triggered transgenic expression of human recombinant DNases. Every pluripotent undifferentiated stem cell poses a risk of neoplasmic transformation. Therefore, the aforementioned or other novel strategies that would safeguard against iatrogenic transformation of these stem cells should be considered for incorporation into every stem cell therapy trial.
Collapse
|
5
|
Malecki M, Putzer E, Sabo C, Foorohar A, Quach C, Stampe C, Beauchaine M, Tombokan X, Malecki R, Anderson M. Directed cardiomyogenesis of autologous human induced pluripotent stem cells recruited to infarcted myocardium with bioengineered antibodies. MOLECULAR AND CELLULAR THERAPIES 2014; 2:13. [PMID: 25132967 PMCID: PMC4131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/01/2014] [Indexed: 11/21/2023]
Abstract
OBJECTIVE Myocardial infarctions constitute a major factor contributing to non-natural mortality world-wide. Clinical trials of myocardial regenerative therapy, currently pursued by cardiac surgeons, involve administration of stem cells into the hearts of patients suffering from myocardial infarctions. Unfortunately, surgical acquisition of these cells from bone marrow or heart is traumatic, retention of these cells to sites of therapeutic interventions is low, and directed differentiation of these cells in situ into cardiomyocytes is difficult. The specific aims of this work were: (1) to generate autologous, human, pluripotent, induced stem cells (ahiPSCs) from the peripheral blood of the patients suffering myocardial infarctions; (2) to bioengineer heterospecific antibodies (htAbs) and use them for recruitment of the ahiPSCs to infarcted myocardium; (3) to initiate in situ directed cardiomyogenesis of the ahiPSCs retained to infarcted myocardium. METHODS Peripheral blood was drawn from six patients scheduled for heart transplants. Mononuclear cells were isolated and reprogrammed, with plasmids carrying six genes (NANOG, POU5F1, SOX2, KLF4, LIN28A, MYC), to yield the ahiPSCs. Cardiac tissues were excised from the injured hearts of the patients, who received transplants during orthotopic surgery. These tissues were used to prepare in vitro models of stem cell therapy of infarcted myocardium. The htAbs were bioengineered, which simultaneously targeted receptors displayed on pluripotent stem cells (SSEA-4, SSEA-3, TRA-1-60, TRA-1-81) and proteins of myocardial sarcomeres (myosin, α-actinin, actin, titin). They were used to bridge the ahiPSCs to the infarcted myocardium. The retained ahiPSCs were directed with bone morphogenetic proteins and nicotinamides to differentiate towards myocardial lineage. RESULTS The patients' mononuclear cells were efficiently reprogrammed into the ahiPSCs. These ahiPSCs were administered to infarcted myocardium in in vitro models. They were recruited to and retained at the treated myocardium with higher efficacy and specificity, if were preceded with the htAbs, than with isotype antibodies or plain buffers. The retained cells differentiated into cardiomyocytes. CONCLUSIONS The proof of concept has been attained, for reprogramming the patients' blood mononuclear cells (PBMCs) into the ahiPSCs, recruiting these cells to infarcted myocardium, and initiating their cardiomyogenesis. This novel strategy is ready to support the ongoing clinical trials aimed at regeneration of infarcted myocardium.
Collapse
Affiliation(s)
- Marek Malecki
- />Phoenix Biomolecular Engineering Foundation, San Francisco, CA USA
- />National Magnetic Resonance Facility, National Institutes of Health, Madison, WI USA
- />University of Wisconsin, Madison, Madison, WI USA
| | - Emily Putzer
- />University of Wisconsin, Madison, Madison, WI USA
- />Latin American Youth Center, Washington, DC USA
| | - Chelsea Sabo
- />University of Wisconsin, Madison, Madison, WI USA
- />University of Sheffield, Sheffield, EU UK
| | - Afsoon Foorohar
- />Phoenix Biomolecular Engineering Foundation, San Francisco, CA USA
- />Western University, Lebanon, OR USA
| | - Carol Quach
- />Phoenix Biomolecular Engineering Foundation, San Francisco, CA USA
- />Western University, Pomona, CA USA
| | | | | | | | - Raf Malecki
- />San Francisco State University, San Francisco, CA USA
| | - Mark Anderson
- />National Magnetic Resonance Facility, National Institutes of Health, Madison, WI USA
- />University of Wisconsin, Madison, Madison, WI USA
| |
Collapse
|
6
|
Mavroudi M, Zarogoulidis P, Porpodis K, Kioumis I, Lampaki S, Yarmus L, Malecki R, Zarogoulidis K, Malecki M. Stem cells' guided gene therapy of cancer: New frontier in personalized and targeted therapy. JOURNAL OF CANCER RESEARCH & THERAPY 2014; 2:22-33. [PMID: 24860662 PMCID: PMC4031908 DOI: 10.14312/2052-4994.2014-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells' guided gene therapy. REVIEW OF THERAPEUTIC STRATEGIES IN PRECLINICAL AND CLINICAL TRIALS Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we discuss various strategies to safeguard stem cell guided gene therapy against iatrogenic cancerogenesis. PERSPECTIVES Defining cancer biomarkers to facilitate early diagnosis, elucidating cancer genomics and proteomics with modern tools of next generation sequencing, and analyzing patients' gene expression profiles provide essential data to elucidate molecular dynamics of cancer and to consider them for crafting pharmacogenomics-based personalized therapies. Streamlining of these data into genetic engineering of stem cells facilitates their use as the vectors delivering therapeutic genes into specific cancer cells. In this realm, stem cells guided gene therapy becomes a promising new frontier in personalized and targeted therapy of cancer.
Collapse
Affiliation(s)
- Maria Mavroudi
- “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU
| | - Paul Zarogoulidis
- “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU
| | - Konstantinos Porpodis
- “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU
| | - Ioannis Kioumis
- “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU
| | - Sofia Lampaki
- “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU
| | | | - Raf Malecki
- San Francisco State University, San Francisco, CA, USA
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
| | | | - Marek Malecki
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
- University of Wisconsin, Madison, WI, USA
| |
Collapse
|
7
|
Malecki M, Putzer E, Sabo C, Foorohar A, Quach C, Stampe C, Beauchaine M, Malecki R, Tombokan X, Anderson M. Directed cardiomyogenesis of autologous human induced pluripotent stem cells recruited to infarcted myocardium with bioengineered antibodies. MOLECULAR AND CELLULAR THERAPIES 2014; 2. [PMID: 25132967 PMCID: PMC4131312 DOI: 10.1186/2052-8426-2-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective Myocardial infarctions constitute a major factor contributing to non-natural mortality world-wide. Clinical trials ofmyocardial regenerative therapy, currently pursued by cardiac surgeons, involve administration of stem cells into the hearts of patients suffering from myocardial infarctions. Unfortunately, surgical acquisition of these cells from bone marrow or heart is traumatic, retention of these cells to sites of therapeutic interventions is low, and directed differentiation of these cells in situ into cardiomyocytes is difficult. The specific aims of this work were: (1) to generate autologous, human, pluripotent, induced stem cells (ahiPSCs) from the peripheral blood of the patients suffering myocardial infarctions; (2) to bioengineer heterospecific tetravalent antibodies (htAbs) and use them for recruitment of the ahiPSCs to infarcted myocardium; (3) to initiate in situ directed cardiomyogenesis of the ahiPSCs retained to infarcted myocardium. Methods Peripheral blood was drawn from six patients scheduled for heart transplants. Mononuclear cells were isolated and reprogrammed, with plasmids carrying six genes (NANOG, POU5F1, SOX2, KLF4, LIN28A, MYC), to yield the ahiPSCs. Cardiac tissues were excised from the injured hearts of the patients, who received transplants during orthotopic surgery. These tissues were used to prepare in vitro model of stem cell therapy of infarcted myocardium. The htAbs were bioengineered, which simultaneously targeted receptors displayed on pluripotent stem cells (SSEA-4, SSEA-3, TRA-1-60, TRA-1-81) and proteins of myocardial sarcomeres (myosin, α-actinin, actin, titin). They were used to bridge the ahiPSCs to the infarcted myocardium. The retained ahiPSCs were directed with bone morphogenetic proteins and nicotinamides to differentiate towards myocardial lineage. Results The patients’ mononuclear cells were efficiently reprogrammed into the ahiPSCs. These ahiPSCs were administered to infarcted myocardium in in vitro models. They were recruited to and retained at the treated myocardium with higher efficacy and specificity, if were preceded the htAbs, than with isotype antibodies or plain buffers. The retained cells differentiated into cardiomyocytes. Conclusions The proof of concept has been attained, for reprogramming the patients’ blood mononuclear cells (PBMCs) into the ahiPSCs, recruiting these cells to infarcted myocardium, and initiating their cardiomyogenesis. This novel strategy is ready to support the ongoing clinical trials aimed at regeneration of infarcted myocardium.
Collapse
Affiliation(s)
- Marek Malecki
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA ; National Magnetic Resonance Facility, National Institutes of Health, Madison, WI, USA ; University of Wisconsin, Madison, WI, USA
| | - Emily Putzer
- University of Wisconsin, Madison, WI, USA ; American Youth Center, Washington, DC, USA
| | - Chelsea Sabo
- University of Wisconsin, Madison, WI, USA ; University of Sheffield, Sheffield, UK, EU
| | - Afsoon Foorohar
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA ; Western University, Lebanon, OR, USA
| | - Carol Quach
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA ; Western University, Pomona, CA, USA
| | | | | | - Raf Malecki
- San Francisco State University, San Francisco, CA, USA
| | | | - Mark Anderson
- National Magnetic Resonance Facility, National Institutes of Health, Madison, WI, USA ; University of Wisconsin, Madison, WI, USA
| |
Collapse
|