1
|
Trumble BC, Finch CE. THE EXPOSOME IN HUMAN EVOLUTION: FROM DUST TO DIESEL. THE QUARTERLY REVIEW OF BIOLOGY 2019; 94:333-394. [PMID: 32269391 PMCID: PMC7141577 DOI: 10.1086/706768] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global exposures to air pollution and cigarette smoke are novel in human evolutionary history and are associated with about 16 million premature deaths per year. We investigate the history of the human exposome for relationships between novel environmental toxins and genetic changes during human evolution in six phases. Phase I: With increased walking on savannas, early human ancestors inhaled crustal dust, fecal aerosols, and spores; carrion scavenging introduced new infectious pathogens. Phase II: Domestic fire exposed early Homo to novel toxins from smoke and cooking. Phases III and IV: Neolithic to preindustrial Homo sapiens incurred infectious pathogens from domestic animals and dense communities with limited sanitation. Phase V: Industrialization introduced novel toxins from fossil fuels, industrial chemicals, and tobacco at the same time infectious pathogens were diminishing. Thereby, pathogen-driven causes of mortality were replaced by chronic diseases driven by sterile inflammogens, exogenous and endogenous. Phase VI: Considers future health during global warming with increased air pollution and infections. We hypothesize that adaptation to some ancient toxins persists in genetic variations associated with inflammation and longevity.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution & Social Change and Center for Evolution and Medicine, Arizona State University Tempe, Arizona 85287 USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California Los Angeles, California 90089-0191 USA
| |
Collapse
|
2
|
Pirzadroozbahani N, Ahmadi SAY, Hekmat H, Roozbahani GA, Shahsavar F. Autism and KIR genes of the human genome: A brief meta-analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
3
|
Dipasquale V, Cutrupi MC, Colavita L, Manti S, Cuppari C, Salpietro C. Neuroinflammation in Autism Spectrum Disorders: Role of High Mobility Group Box 1 Protein. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2017; 6:148-155. [PMID: 29682486 PMCID: PMC5898638 DOI: 10.22088/acadpub.bums.6.3.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
Abstract
The pathogenesis of autism spectrum disorder (ASD) likely involves genetic and environmental factors, impacting the complex neurodevelopmental and behavioral abnormalities of the disorder. Scientific research studies emerging within the past two decades suggest that immune dysfunction and inflammation have pathogenic influences through different mechanisms, all leading to both a chronic state of low grade inflammation, and alterations in the central nervous system and immune response, respectively. The high mobility group box-1 protein (HMGB1) is an inflammatory marker which has been shown to play a role in inducing and influencing neuroinflammation. Current evidences suggest a possible role in the multiple pathogenic mechanisms of ASD. The aim of this manuscript is to review the major hypothesis for ASD pathogenesis, with specific regards to the immunological ones, and to provide a comprehensive review of the current data about the association between HMGB1 and ASD. A systematic search has been carried out through Medline via Pubmed to identify all original articles published in English, on the basis of the following keywords: “HMGB1”, “autism”, “autism spectrum disorder”, “neuroinflammation”, and “child”.
Collapse
Affiliation(s)
- Valeria Dipasquale
- Department of Adult and Childhood Human Pathology, Unit of Pediatrics, University Hospital of Messina, Messina, Italy
| | - Maria Concetta Cutrupi
- Department of Adult and Childhood Human Pathology, Unit of Pediatrics, University Hospital of Messina, Messina, Italy
| | - Laura Colavita
- Department of Pediatrics, Hospital Umberto I of Siracusa, Siracusa, Italy
| | - Sara Manti
- Department of Adult and Childhood Human Pathology, Unit of Pediatrics, University Hospital of Messina, Messina, Italy
| | - Caterina Cuppari
- Department of Adult and Childhood Human Pathology, Unit of Pediatrics, University Hospital of Messina, Messina, Italy
| | - Carmelo Salpietro
- Department of Adult and Childhood Human Pathology, Unit of Pediatrics, University Hospital of Messina, Messina, Italy
| |
Collapse
|
4
|
Torres AR, Sweeten TL, Johnson RC, Odell D, Westover JB, Bray-Ward P, Ward DC, Davies CJ, Thomas AJ, Croen LA, Benson M. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder. Front Neurosci 2016; 10:463. [PMID: 27812316 PMCID: PMC5071356 DOI: 10.3389/fnins.2016.00463] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
The "common variant-common disease" hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the "common variant-common disease" hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations (Table 2). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in autism over control subjects. And, more importantly there is a 12% increase in activating KIR genes and their cognate HLA alleles over control populations (Torres et al., 2012a). These data suggest the interaction of HLA ligand/KIR receptor pairs encoded on two different chromosomes is more significant as a ligand/receptor complex than separately in autism.
Collapse
Affiliation(s)
- Anthony R. Torres
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| | | | - Randall C. Johnson
- BSP CCR Genetics Core, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer ResearchFrederick, MD, USA
| | - Dennis Odell
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| | - Jonna B. Westover
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| | - Patricia Bray-Ward
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| | - David C. Ward
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| | | | - Aaron J. Thomas
- Division of Research, Kaiser Permanente of Northern CaliforniaOakland, CA, USA
| | - Lisa A. Croen
- Center for Integrated BioSystems, Utah State UniversityLogan, UT, USA
| | - Michael Benson
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| |
Collapse
|