1
|
Wodrich APK, Harris BT, Giniger E. Manipulating mitochondrial reactive oxygen species alters survival in unexpected ways in a Drosophila Cdk5 model of neurodegeneration. Biol Open 2024; 13:bio060515. [PMID: 39292114 DOI: 10.1242/bio.060515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Reactive oxygen species (ROS) are associated with aging and neurodegeneration, but the significance of this association remains obscure. Here, using a Drosophila Cdk5 model of age-related neurodegeneration, we probe this relationship in the pathologically relevant tissue, the brain, by quantifying three specific mitochondrial ROS and manipulating these redox species pharmacologically. Our goal is to ask whether pathology-associated changes in redox state are detrimental for survival, whether they may be beneficial responses to pathology, or whether they are covariates of pathology that do not alter viability. We find, surprisingly, that increasing mitochondrial H2O2 correlates with improved survival. We also find evidence that drugs that alter the mitochondrial glutathione redox potential modulate survival primarily through the compensatory effects they induce rather than through their direct effects on the final mitochondrial glutathione redox potential. We also find that the response to treatment with a redox-altering drug varies depending on the age and genotype of the individual receiving the drug as well as the duration of the treatment. These data have important implications for the design and interpretation of studies investigating the effect of redox state on health and disease as well as on efforts to modify the redox state to achieve therapeutic goals.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892,USA
- Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC 20057, USA
- University of Kentucky school of Medicine, Lexington, KY 40536,USA
| | - Brent T Harris
- Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC 20057, USA
- Georgetown University, Department of Pathology, Washington, DC 20057,USA
- Georgetown University, Department of Neurology, Washington, DC 20057,USA
| | - Edward Giniger
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892,USA
| |
Collapse
|
2
|
Mucci S, Clas GS, Allio CP, Rodríguez-Varela MS, Isaja L, Marazita M, Sevlever GE, Scassa ME, Romorini L. CDK5 Deficiency Does not Impair Neuronal Differentiation of Human Induced Pluripotent Stem Cells but Affects Neurite Outgrowth. Mol Neurobiol 2024:10.1007/s12035-024-04325-y. [PMID: 38937422 DOI: 10.1007/s12035-024-04325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a protein kinase involved in neuronal homeostasis and development critical for neuronal survival. Besides, its deregulation is linked to neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. For that reason, we aimed to generate a deficient CDK5 genetic model in neurons derived from human-induced pluripotent stem cells (hiPSCs) using CRISPR/Cas9 technology. We obtained a heterozygous CDK5+/- clone for the FN2.1 hiPSC line that retained hiPSC stemness and pluripotent potential. Then, neural stem cells (NSCs) and further neurons were derived from the CDK5+/- KO FN2.1 hiPSCs, and their phenotype was validated by immunofluorescence staining using antibodies that recognize lineage-specific markers (SOX-1, SOX-2, and NESTIN for NSCs and TUJ-1, MAP-5, and MAP-2 for neurons). We found that the proliferation rate increased in CDK5+/- KO hiPSC-derived neurons concomitantly with a reduction in NEUN and P35 expression levels. However, the morphometric analysis revealed that CDK5 deficiency caused an increase in the length of the main, primary, and secondary neurites and the neuronal soma area. As a whole, we found that a deficit in CDK5 does not impair hiPSC neuronal differentiation but deregulates proliferation and neurite outgrowth, favoring elongation. The misregulated activity of specific kinases leads to abnormalities such as impaired axonal connectivity in neurodegenerative diseases. Thus, therapeutic approaches aimed at normalizing the activity of kinases, such as CDK5, may help prevent the degeneration of vulnerable neurons.
Collapse
Affiliation(s)
- Sofía Mucci
- Laboratorio de Investigación Aplicada a Neurociencias, Instituto de Neurociencias, Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (LIAN-INEU, Fleni-CONICET), B1625XAF, Belén de Escobar, Provincia de Buenos Aires, Argentina
| | - Giulia Solange Clas
- Laboratorio de Investigación Aplicada a Neurociencias, Instituto de Neurociencias, Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (LIAN-INEU, Fleni-CONICET), B1625XAF, Belén de Escobar, Provincia de Buenos Aires, Argentina
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Neurociencias (LEN-INEU, Fleni-CONICET), Buenos Aires, Argentina
| | - Camila Paola Allio
- Laboratorio de Investigación Aplicada a Neurociencias, Instituto de Neurociencias, Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (LIAN-INEU, Fleni-CONICET), B1625XAF, Belén de Escobar, Provincia de Buenos Aires, Argentina
| | - María Soledad Rodríguez-Varela
- Laboratorio de Investigación Aplicada a Neurociencias, Instituto de Neurociencias, Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (LIAN-INEU, Fleni-CONICET), B1625XAF, Belén de Escobar, Provincia de Buenos Aires, Argentina
| | - Luciana Isaja
- Laboratorio de Investigación Aplicada a Neurociencias, Instituto de Neurociencias, Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (LIAN-INEU, Fleni-CONICET), B1625XAF, Belén de Escobar, Provincia de Buenos Aires, Argentina
| | - Mariela Marazita
- Laboratorio de Investigación Aplicada a Neurociencias, Instituto de Neurociencias, Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (LIAN-INEU, Fleni-CONICET), B1625XAF, Belén de Escobar, Provincia de Buenos Aires, Argentina
| | - Gustavo Emilio Sevlever
- Laboratorio de Investigación Aplicada a Neurociencias, Instituto de Neurociencias, Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (LIAN-INEU, Fleni-CONICET), B1625XAF, Belén de Escobar, Provincia de Buenos Aires, Argentina
| | - María Elida Scassa
- Laboratorio de Investigación Aplicada a Neurociencias, Instituto de Neurociencias, Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (LIAN-INEU, Fleni-CONICET), B1625XAF, Belén de Escobar, Provincia de Buenos Aires, Argentina
| | - Leonardo Romorini
- Laboratorio de Investigación Aplicada a Neurociencias, Instituto de Neurociencias, Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (LIAN-INEU, Fleni-CONICET), B1625XAF, Belén de Escobar, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
3
|
Sun R, Yuan H, Wang J, Zhu K, Xiong Y, Zheng Y, Ni X, Huang M. Rehmanniae Radix Preparata ameliorates behavioral deficits and hippocampal neurodevelopmental abnormalities in ADHD rat model. Front Neurosci 2024; 18:1402056. [PMID: 38872946 PMCID: PMC11169733 DOI: 10.3389/fnins.2024.1402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives Abnormal hippocampal neurodevelopment, particularly in the dentate gyrus region, may be a key mechanism of attention-deficit/hyperactivity disorder (ADHD). In this study, we investigate the effect of the most commonly used Chinese herb for the treatment of ADHD, Rehmanniae Radix Preparata (RRP), on behavior and hippocampal neurodevelopment in spontaneously hypertensive rats (SHR). Methods Behavior tests, including Morris water maze (MWM) test, open field test (OFT) and elevated plus maze (EPM) test were performed to assess the effect of RRP on hyperactive and impulsive behavior. Hippocampal neurodevelopment was characterized by transmission electron microscopy, immunofluorescence, Golgi staining and Nissl staining approaches. Regulatory proteins such as Trkb, CDK5, FGF2/FGFR1 were examined by Western blot analysis. Results The results showed that RRP could effectively control the impulsive and spontaneous behavior and improve the spatial learning and memory ability. RRP significantly reduced neuronal loss and increased the number of hippocampal stem cells, and promoted synaptic plasticity. In addition, FGF/FGFR signaling was upregulated after RRP treatment. Conclusion RRP can effectively reduce impulsive and spontaneous behavior and ameliorate hippocampal neurodevelopmental abnormalities in ADHD rat model.
Collapse
Affiliation(s)
- Ruxin Sun
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Haixia Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Kanglin Zhu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yu Xiong
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yabei Zheng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinqiang Ni
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Min Huang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Wang J, Zhao J, Hu P, Gao L, Tian S, He Z. Long Non-coding RNA HOTAIR in Central Nervous System Disorders: New Insights in Pathogenesis, Diagnosis, and Therapeutic Potential. Front Mol Neurosci 2022; 15:949095. [PMID: 35813070 PMCID: PMC9259972 DOI: 10.3389/fnmol.2022.949095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
Central nervous system (CNS) disorders, such as ischemic stroke, neurodegenerative diseases, multiple sclerosis, traumatic brain injury, and corresponding neuropathological changes, often lead to death or long-term disability. Long non-coding RNA (lncRNA) is a class of non-coding RNA with a transcription length over 200 nt and transcriptional regulation. lncRNA is extensively involved in physiological and pathological processes through epigenetic, transcription, and post-transcriptional regulation. Further, dysregulated lncRNA is closely related to the occurrence and development of human diseases, including CNS disorders. HOX Transcript antisense RNA (HOTAIR) is the first discovered lncRNA with trans-transcriptional regulation. Recent studies have shown that HOTAIR may participate in the regulation of the occurrence and development of CNS disorders. In addition, HOTAIR has the potential to become a new biomarker for the diagnosis and prognosis assessment of CNS disorders and even provide a new therapeutic target for CNS disorders. Here, we reviewed the research results of HOTAIR in CNS disorders to provide new insights into the pathogenesis, diagnostic value, and therapeutic target potential of HOTAIR in human CNS disorders.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiuhan Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pan Hu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shen Tian
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhenwei He,
| |
Collapse
|
5
|
Nandi N, Zaidi Z, Tracy C, Krämer H. A phospho-switch at Acinus-Serine 437 controls autophagic responses to Cadmium exposure and neurodegenerative stress. eLife 2022; 11:72169. [PMID: 35037620 PMCID: PMC8794470 DOI: 10.7554/elife.72169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 12/09/2022] Open
Abstract
Neuronal health depends on quality control functions of autophagy, but mechanisms regulating neuronal autophagy are poorly understood. Previously, we showed that in Drosophila starvation-independent quality control autophagy is regulated by acinus (acn) and the Cdk5-dependent phosphorylation of its serine437 (Nandi et al., 2017). Here, we identify the phosphatase that counterbalances this activity and provides for the dynamic nature of acinus-serine437 (acn-S437) phosphorylation. A genetic screen identified six phosphatases that genetically interacted with an acn gain-of-function model. Among these, loss of function of only one, the PPM-type phosphatase Nil (CG6036), enhanced pS437-acn levels. Cdk5-dependent phosphorylation of acn-S437 in nil1 animals elevates neuronal autophagy and reduces the accumulation of polyQ proteins in a Drosophila Huntington’s disease model. Consistent with previous findings that Cd2+ inhibits PPM-type phosphatases, Cd2+ exposure elevated acn-S437 phosphorylation which was necessary for increased neuronal autophagy and protection against Cd2+-induced cytotoxicity. Together, our data establish the acn-S437 phosphoswitch as critical integrator of multiple stress signals regulating neuronal autophagy.
Collapse
Affiliation(s)
- Nilay Nandi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Zuhair Zaidi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Charles Tracy
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Helmut Krämer
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
6
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Xie X, Shen Z, Hu C, Zhang K, Guo M, Wang F, Qin K. Dexmedetomidine Ameliorates Postoperative Cognitive Dysfunction in Aged Mice. Neurochem Res 2021; 46:2415-2426. [PMID: 34159456 DOI: 10.1007/s11064-021-03386-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/20/2022]
Abstract
Neuroinflammation and oxidative stress coexist and interact in the progression of postoperative cognitive dysfunction (POCD) and other neurodegenerative disease. Mounting studies reveal that Dexmedetomidine (Dex) possesses anti-inflammatory and antioxidant properties. Nevertheless, whether Dex exerts neuroprotective effect on the cognitive sequelae of oxidative stress and inflammatory process remains unclear. A mouse model of abdominal exploratory laparotomy-induced cognitive dysfunction was employed to explore the underlying mechanism of neuroprotective effects exerted by Dex in POCD. Aged mice were treated with Dex (20 µg/kg) 20 min prior to surgery. Open field test (OFT) and Morris water maze (MWM) were employed to examine the cognitive function on postoperative day 3 (POD 3) or POD 7. In the present study, mice underwent surgery exhibited cognitive impairment without altering spontaneous locomotor activity, while the surgery-induced cognitive impairment could be alleviated by Dex pretreatment. Dex inhibited surgery-induced pro-inflammatory cytokines accumulation and microglial activation in the hippocampi of mice. Furthermore, Dex decreased MDA levels, enhanced SOD activity, modulated CDK5 activity and increased BDNF expression in the hippocampus. In addition, Dex remarkably reduced the surgery-induced increased ratio of Bax/Bcl-2 and apoptotic neurons in the hippocampi of aged mice. Collectively, our study provides evidence that Dex may exert neuroprotective effects against surgery-induced cognitive impairment through mechanisms involving its anti-inflammatory and antioxidant properties, as well as the suppression on the mitochondrial permeability transition pore and apoptosis-related pathway.
Collapse
Affiliation(s)
- Xiaolan Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhiwen Shen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chuwen Hu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Kun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Mingyan Guo
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Fei Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Kai Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Bei Y, Cheng N, Chen T, Shu Y, Yang Y, Yang N, Zhou X, Liu B, Wei J, Liu Q, Zheng W, Zhang W, Su H, Zhu W, Ji J, Shen P. CDK5 Inhibition Abrogates TNBC Stem-Cell Property and Enhances Anti-PD-1 Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001417. [PMID: 33240752 PMCID: PMC7675186 DOI: 10.1002/advs.202001417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, in which the higher frequency of cancer stem cells (CSCs) correlates with the poor clinical outcome. An aberrant activation of CDK5 is found to associate with TNBC progression closely. CDK5 mediates PPARγ phosphorylation at its Ser 273, which induces CD44 isoform switching from CD44s to CD44v, resulting in an increase of stemness of TNBC cells. Blocking CDK5/pho-PPARγ significantly reduces CD44v+ BCSCs population in tumor tissues, thus abrogating metastatic progression in TNBC mouse model. Strikingly, diminishing stemness transformation reverses immunosuppressive microenvironment and enhances anti-PD-1 therapeutic efficacy on TNBC. Mechanistically, CDK5 switches the E3 ubiquitin ligase activity of PPARγ and directly protects ESRP1 from a ubiquitin-dependent proteolysis. This finding firstly indicates that CDK5 blockade can be a potent strategy to diminish stemness transformation and increase the response to PD-1 blockade in TNBC therapy.
Collapse
Affiliation(s)
- Yuncheng Bei
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Nan Cheng
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Ting Chen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
- Laura and Isaac Perlmutter Cancer CenterNew York University Langone Medical CenterNew YorkNYUSA
| | - Yuxin Shu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Ye Yang
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023P. R. China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Xinyu Zhou
- State Key Laboratory of Protein and Plant Gene ResearchCollege of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Baorui Liu
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Jia Wei
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Qin Liu
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Wenlong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Huifang Su
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Wei‐Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human DiseaseShenzhen University Carson Cancer CenterDepartment of Biochemistry and Molecular BiologyShenzhen University School of MedicineShenzhen518060P. R. China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene ResearchCollege of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
- Guangdong Key Laboratory of Genome Instability and Human DiseaseShenzhen University Carson Cancer CenterDepartment of Biochemistry and Molecular BiologyShenzhen University School of MedicineShenzhen518060P. R. China
| |
Collapse
|
9
|
Cdk5-Dependent Phosphorylation of Ca V3.2 T-Type Channels: Possible Role in Nerve Ligation-Induced Neuropathic Allodynia and the Compound Action Potential in Primary Afferent C Fibers. J Neurosci 2019; 40:283-296. [PMID: 31744861 DOI: 10.1523/jneurosci.0181-19.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Voltage-gated T-type Ca2+ (CaV3) channels regulate diverse physiological events, including neuronal excitability, and have been linked to several pathological conditions such as absence epilepsy, cardiovascular diseases, and neuropathic pain. It is also acknowledged that calcium/calmodulin-dependent protein kinase II and protein kinases A and C regulate the activity of T-type channels. Interestingly, peripheral nerve injury induces tactile allodynia and upregulates CaV3.2 channels and cyclin-dependent kinase 5 (Cdk5) in dorsal root ganglia (DRG) and spinal dorsal horn. Here, we report that recombinant CaV3.2 channels expressed in HEK293 cells are regulatory targets of Cdk5. Site-directed mutagenesis showed that the relevant sites for this regulation are residues S561 and S1987. We also found that Cdk5 may regulate CaV3.2 channel functional expression in rats with mechanical allodynia induced by spinal nerve ligation (SNL). Consequently, the Cdk5 inhibitor olomoucine affected the compound action potential recorded in the spinal nerves, as well as the paw withdrawal threshold. Likewise, Cdk5 expression was upregulated after SNL in the DRG. These findings unveil a novel mechanism for how phosphorylation may regulate CaV3.2 channels and suggest that increased channel activity by Cdk5-mediated phosphorylation after SNL contributes nerve injury-induced tactile allodynia.SIGNIFICANCE STATEMENT Neuropathic pain is a current public health challenge. It can develop as a result of injury or nerve illness. It is acknowledged that the expression of various ion channels can be altered in neuropathic pain, including T-type Ca2+ channels that are expressed in sensory neurons, where they play a role in the regulation of cellular excitability. The present work shows that the exacerbated expression of Cdk5 in a preclinical model of neuropathic pain increases the functional expression of CaV3.2 channels. This finding is relevant for the understanding of the molecular pathophysiology of the disease. Additionally, this work may have a substantial translational impact, since it describes a novel molecular pathway that could represent an interesting therapeutic alternative for neuropathic pain.
Collapse
|
10
|
Spreafico M, Grillo B, Rusconi F, Battaglioli E, Venturin M. Multiple Layers of CDK5R1 Regulation in Alzheimer's Disease Implicate Long Non-Coding RNAs. Int J Mol Sci 2018; 19:ijms19072022. [PMID: 29997370 PMCID: PMC6073344 DOI: 10.3390/ijms19072022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/16/2022] Open
Abstract
Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) gene encodes for p35, the main activator of Cyclin-dependent kinase 5 (CDK5). The active p35/CDK5 complex is involved in numerous aspects of brain development and function, and its deregulation is closely associated to Alzheimer's disease (AD) onset and progression. We recently showed that miR-15/107 family can negatively regulate CDK5R1 expression modifying mRNA stability. Interestingly, miRNAs belonging to miR-15/107 family are downregulated in AD brain while CDK5R1 is upregulated. Long non-coding RNAs (lncRNAs) are emerging as master regulators of gene expression, including miRNAs, and their dysregulation has been implicated in the pathogenesis of AD. Here, we evaluated the existence of an additional layer of CDK5R1 expression regulation provided by lncRNAs. In particular, we focused on three lncRNAs potentially regulating CDK5R1 expression levels, based on existing data: NEAT1, HOTAIR, and MALAT1. We demonstrated that NEAT1 and HOTAIR negatively regulate CDK5R1 mRNA levels, while MALAT1 has a positive effect. We also showed that all three lncRNAs positively control miR-15/107 family of miRNAs. Moreover, we evaluated the expression of NEAT1, HOTAIR, and MALAT1 in AD and control brain tissues. Interestingly, NEAT1 displayed increased expression levels in temporal cortex and hippocampus of AD patients. Interestingly, we observed a strong positive correlation between CDK5R1 and NEAT1 expression levels in brain tissues, suggesting a possible neuroprotective role of NEAT1 in AD to compensate for increased CDK5R1 levels. Overall, our work provides evidence of another level of CDK5R1 expression regulation mediated by lncRNAs and points to NEAT1 as a biomarker, as well as a potential pharmacological target for AD therapy.
Collapse
Affiliation(s)
- Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Fratelli Cervi 93, 20090 Segrate, Italy.
| | - Barbara Grillo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Fratelli Cervi 93, 20090 Segrate, Italy.
| | - Francesco Rusconi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Fratelli Cervi 93, 20090 Segrate, Italy.
| | - Elena Battaglioli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Fratelli Cervi 93, 20090 Segrate, Italy.
- Istituto di Neuroscienze, CNR, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Marco Venturin
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Fratelli Cervi 93, 20090 Segrate, Italy.
| |
Collapse
|
11
|
Mazi AR, Arzuman AS, Gurel B, Sahin B, Tuzuner MB, Ozansoy M, Baykal AT. Neonatal Neurodegeneration in Alzheimer's Disease Transgenic Mouse Model. J Alzheimers Dis Rep 2018; 2:79-91. [PMID: 30480251 PMCID: PMC6159732 DOI: 10.3233/adr-170049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive disorder characterized by a variety of molecular pathologies causing cortical dementia with a prominent memory deficit. Formation of the pathology, which begins decades before the diagnosis of the disease, is highly correlated with the clinical symptoms. Several proteomics studies were performed using animal models to monitor the alterations of the brain tissue proteome at different stages of AD. However, proteome changes in the brain regions of newborn transgenic mouse model have not been investigated yet. To this end, we analyzed protein expression alterations in cortex, hippocampus and cerebellum of transgenic mice carrying five familial AD mutations (5XFAD) at neonatal day-1. Our results indicate a remarkable difference in protein expression profile of newborn 5XFAD brain with region specific variations. Additionally, the proteins, which show similar expression alteration pattern in postmortem human AD brains, were determined. Bioinformatics analysis showed that the molecular alterations were mostly related to the cell morphology, cellular assembly and organization, and neuroinflammation. Moreover, morphological analysis revealed that there is an increase in neurite number of 5XFAD mouse neurons in vitro. We suggest that, molecular alterations in the AD brain exist even at birth, and perhaps the disease is silenced until older ages when the brain becomes vulnerable.
Collapse
Affiliation(s)
- Aise Rumeysa Mazi
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul, Turkey.,Institute of Health Science, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Aysegul Sumeyye Arzuman
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul, Turkey.,Institute of Health Science, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Busra Gurel
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul, Turkey.,Institute of Health Science, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed R&D Laboratory, Istanbul, Turkey
| | | | - Mehmet Ozansoy
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Acibadem Labmed R&D Laboratory, Istanbul, Turkey.,Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
12
|
Spurrier J, Shukla AK, McLinden K, Johnson K, Giniger E. Altered expression of the Cdk5 activator-like protein, Cdk5α, causes neurodegeneration, in part by accelerating the rate of aging. Dis Model Mech 2018; 11:dmm031161. [PMID: 29469033 PMCID: PMC5897722 DOI: 10.1242/dmm.031161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is the greatest risk factor for neurodegeneration, but the connection between the two processes remains opaque. This is in part for want of a rigorous way to define physiological age, as opposed to chronological age. Here, we develop a comprehensive metric for physiological age in Drosophila, based on genome-wide expression profiling. We applied this metric to a model of adult-onset neurodegeneration, increased or decreased expression of the activating subunit of the Cdk5 protein kinase, encoded by the gene Cdk5α, the ortholog of mammalian p35. Cdk5α-mediated degeneration was associated with a 27-150% acceleration of the intrinsic rate of aging, depending on the tissue and genetic manipulation. Gene ontology analysis and direct experimental tests revealed that affected age-associated processes included numerous core phenotypes of neurodegeneration, including enhanced oxidative stress and impaired proteostasis. Taken together, our results suggest that Cdk5α-mediated neurodegeneration results from accelerated aging, in combination with cell-autonomous neuronal insults. These data fundamentally recast our picture of the relationship between neurodegeneration and its most prominent risk factor, natural aging.
Collapse
Affiliation(s)
- Joshua Spurrier
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
- The Johns Hopkins University/National Institutes of Health Graduate Partnership Program, National Institutes of Health, Bethesda, MD 02892, USA
| | - Arvind Kumar Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| | - Kristina McLinden
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| |
Collapse
|
13
|
Cdk5 Contributes to Huntington’s Disease Learning and Memory Deficits via Modulation of Brain Region-Specific Substrates. Mol Neurobiol 2017; 55:6250-6268. [DOI: 10.1007/s12035-017-0828-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/06/2017] [Indexed: 02/08/2023]
|
14
|
Nandi N, Tyra LK, Stenesen D, Krämer H. Stress-induced Cdk5 activity enhances cytoprotective basal autophagy in Drosophila melanogaster by phosphorylating acinus at serine 437. eLife 2017; 6:e30760. [PMID: 29227247 PMCID: PMC5760206 DOI: 10.7554/elife.30760] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
Cdk5 is a post-mitotic kinase with complex roles in maintaining neuronal health. The various mechanisms by which Cdk5 inhibits and promotes neurodegeneration are still poorly understood. Here, we show that in Drosophila melanogaster Cdk5 regulates basal autophagy, a key mechanism suppressing neurodegeneration. In a targeted screen, Cdk5 genetically interacted with Acinus (Acn), a primarily nuclear protein, which promotes starvation-independent, basal autophagy. Loss of Cdk5, or its required cofactor p35, reduces S437-Acn phosphorylation, whereas Cdk5 gain-of-function increases pS437-Acn levels. The phospho-mimetic S437D mutation stabilizes Acn and promotes basal autophagy. In p35 mutants, basal autophagy and lifespan are reduced, but restored to near wild-type levels in the presence of stabilized AcnS437D. Expression of aggregation-prone polyQ-containing proteins or the Amyloid-β42 peptide, but not alpha-Synuclein, enhances Cdk5-dependent phosphorylation of S437-Acn. Our data indicate that Cdk5 is required to maintain the protective role of basal autophagy in the initial responses to a subset of neurodegenerative challenges.
Collapse
Affiliation(s)
- Nilay Nandi
- Department of NeuroscienceUT Southwestern Medical CenterDallasUnited States
| | - Lauren K Tyra
- Department of NeuroscienceUT Southwestern Medical CenterDallasUnited States
| | - Drew Stenesen
- Department of NeuroscienceUT Southwestern Medical CenterDallasUnited States
| | - Helmut Krämer
- Department of NeuroscienceUT Southwestern Medical CenterDallasUnited States
- Department of Cell BiologyUT Southwestern Medical CenterDallasUnited States
| |
Collapse
|
15
|
Fast hyperbaric decompression after heliox saturation altered the brain proteome in rats. PLoS One 2017; 12:e0185765. [PMID: 28977037 PMCID: PMC5627932 DOI: 10.1371/journal.pone.0185765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/19/2017] [Indexed: 01/28/2023] Open
Abstract
Better understanding of the physiological mechanisms and neurological symptoms involved in the development of decompression sickness could contribute to improvements of diving procedures. The main objective of the present study was to determine effects on the brain proteome of fast decompression (1 bar/20 s) compared to controls (1 bar/10 min) after heliox saturation diving, using rats in a model system. The protein S100B, considered a biomarker for brain injury, was not significantly different in serum samples from one week before, immediately after, and one week after the dive. Alterations in the rat brain proteome due to fast decompression were investigated using both iontrap and orbitrap LC-MS, and 967 and 1062 proteins were quantified, respectively. Based on the significantly regulated proteins in the iontrap (56) and orbitrap (128) datasets, the networks “synaptic vesicle fusion and recycling in nerve terminals” and “translation initiation” were significantly enriched in a system biological database analysis (Metacore). Ribosomal proteins (RLA2, RS10) and the proteins hippocalcin-like protein 4 and proteasome subunit beta type-7 were significantly upregulated in both datasets. The heat shock protein 105 kDa, Rho-associated protein kinase 2 and Dynamin-1 were significantly downregulated in both datasets. Another main effect of hyperbaric fast decompression in our experiment is inhibition of endocytosis and stimulation of exocytosis of vesicles in the presynaptic nerve terminal. In addition, fast decompression affected several proteins taking parts in these two main mechanisms of synaptic strength, especially alteration in CDK5/calcineurin are associated with a broad range of neurological disorders. In summary, fast decompression after heliox saturation affected the brain proteome in a rat model for diving, potentially disturbing protein homeostasis, e.g. in synaptic vesicles, and destabilizing cytoskeletal components. Data are available via ProteomeXchange with identifier PXD006349
Collapse
|
16
|
Shah K, Rossie S. Tale of the Good and the Bad Cdk5: Remodeling of the Actin Cytoskeleton in the Brain. Mol Neurobiol 2017; 55:3426-3438. [PMID: 28502042 DOI: 10.1007/s12035-017-0525-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022]
Abstract
Cdk5 kinase, a cyclin-dependent kinase family member, is a key regulator of cytoskeletal remodeling in the brain. Cdk5 is essential for brain development during embryogenesis. After birth, it is essential for numerous neuronal processes such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity is deregulated in various brain disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and ischemic stroke, resulting in profound remodeling of the neuronal cytoskeleton, loss of synapses, and ultimately neurodegeneration. This review focuses on the "good and bad" Cdk5 in the brain and its pleiotropic contribution in regulating neuronal actin cytoskeletal remodeling. A vast majority of physiological and pathological Cdk5 substrates are associated with the actin cytoskeleton. Thus, our special emphasis is on the numerous Cdk5 substrates identified in the past two decades such as ephexin1, p27, Mst3, CaMKv, kalirin-7, RasGRF2, Pak1, WAVE1, neurabin-1, TrkB, 5-HT6R, talin, drebrin, synapsin I, synapsin III, CRMP1, GKAP, SPAR, PSD-95, and LRRK2. These substrates have unraveled the molecular mechanisms by which Cdk5 plays divergent roles in regulating neuronal actin cytoskeletal dynamics both in healthy and diseased states.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry and Purdue University Center of Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| | - Sandra Rossie
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
17
|
Fassio A, Fadda M, Benfenati F. Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals. Front Synaptic Neurosci 2016; 8:10. [PMID: 27242505 PMCID: PMC4863888 DOI: 10.3389/fnsyn.2016.00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/18/2016] [Indexed: 11/28/2022] Open
Abstract
The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, University of GenoaGenoa, Italy; Center of Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genoa Genoa, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of GenoaGenoa, Italy; Center of Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenova, Italy
| |
Collapse
|
18
|
Shi C, Viccaro K, Lee HG, Shah K. Cdk5-Foxo3 axis: initially neuroprotective, eventually neurodegenerative in Alzheimer's disease models. J Cell Sci 2016; 129:1815-1830. [PMID: 28157684 DOI: 10.1242/jcs.185009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
Deregulated Cdk5 causes neurotoxic amyloid beta peptide (Aβ) processing and cell death, two hallmarks of Alzheimer's disease, through the Foxo3 transcriptional factor in hippocampal cells, primary neurons and an Alzheimer's disease mouse model. Using an innovative chemical genetic screen, we identified Foxo3 as a direct substrate of Cdk5 in brain lysates. Cdk5 directly phosphorylates Foxo3, which increased its levels and nuclear translocation. Nuclear Foxo3 initially rescued cells from ensuing oxidative stress by upregulating MnSOD (also known as SOD2). However, following prolonged exposure, Foxo3 upregulated Bim (also known as BCL2L11) and FasL (also known as FASLG) causing cell death. Active Foxo3 also increased Aβ(1-42) levels in a phosphorylation-dependent manner. These events were completely inhibited either by expressing phosphorylation-resistant Foxo3 or by depleting Cdk5 or Foxo3, highlighting a key role for Cdk5 in regulating Foxo3. These results were confirmed in an Alzheimer's disease mouse model, which exhibited increased levels and nuclear localization of Foxo3 in hippocampal neurons, which preceded neurodegeneration and Aβ plaque formation, indicating this phenomenon is an early event in Alzheimer's disease pathogenesis. Collectively, these results show that Cdk5-mediated phospho-regulation of Foxo3 can activate several genes that promote neuronal death and aberrant Aβ processing, thereby contributing to the progression of neurodegenerative pathologies.
Collapse
Affiliation(s)
- Chun Shi
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Keith Viccaro
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Hyoung-Gon Lee
- Department of Pathology, Case Western Reserve University School of Medicine, Iris S. Bert L. Wolstein Research Building, 2103 Cornell Road, Room 5123, Cleveland, OH 44106, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Shah K, Lahiri DK. A Tale of the Good and Bad: Remodeling of the Microtubule Network in the Brain by Cdk5. Mol Neurobiol 2016; 54:2255-2268. [PMID: 26944284 DOI: 10.1007/s12035-016-9792-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Cdk5, a cyclin-dependent kinase family member, is a global orchestrator of neuronal cytoskeletal dynamics. During embryogenesis, Cdk5 is indispensable for brain development. In adults, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes through long-term potentiation and long-term depression, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity becomes deregulated in various brain disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, attention-deficit hyperactivity disorder, epilepsy, schizophrenia, and ischemic stroke; these all result in profound remodeling of the neuronal cytoskeleton. This Commentary specifically focuses on the pleiotropic contribution of Cdk5 in regulating neuronal microtubule remodeling. Because the vast majority of the physiological substrates of Cdk5 are associated with the neuronal cytoskeleton, our emphasis is on the Cdk5 substrates, such as CRMP2, stathmin, drebrin, dixdc1, axin, MAP2, MAP1B, doublecortin, kinesin-5, and tau, that have allowed to unravel the molecular mechanisms through which Cdk5 exerts its divergent roles in regulating neuronal microtubule dynamics, both in healthy and disease states.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical & Molecular Genetics, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, 46202-2266, USA
| |
Collapse
|
20
|
Smith-Trunova S, Prithviraj R, Spurrier J, Kuzina I, Gu Q, Giniger E. Cdk5 regulates developmental remodeling of mushroom body neurons in Drosophila. Dev Dyn 2015; 244:1550-63. [PMID: 26394609 DOI: 10.1002/dvdy.24350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/10/2015] [Accepted: 09/19/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND During metamorphosis, axons and dendrites of the mushroom body (MB) in the Drosophila central brain are remodeled extensively to support the transition from larval to adult behaviors. RESULTS We show here that the neuronal cyclin-dependent kinase, Cdk5, regulates the timing and rate of mushroom body remodeling: reduced Cdk5 activity causes a delay in pruning of MB neurites, while hyperactivation accelerates it. We further show that Cdk5 cooperates with the ubiquitin-proteasome system in this process. Finally, we show that Cdk5 modulates the first overt step in neurite disassembly, dissolution of the neuronal tubulin cytoskeleton, and provide evidence that it also acts at additional steps of MB pruning. CONCLUSIONS These data show that Cdk5 regulates the onset and extent of remodeling of the Drosophila MB. Given the wide phylogenetic conservation of Cdk5, we suggest that it is likely to play a role in developmental remodeling in other systems, as well. Moreover, we speculate that the well-established role of Cdk5 in neurodegeneration may involve some of the same cellular mechanisms that it uses during developmental remodeling.
Collapse
Affiliation(s)
- Svetlana Smith-Trunova
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Ranjini Prithviraj
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Joshua Spurrier
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.,The Johns Hopkins University/National Institutes of Health Graduate Partnership Program, National Institutes of Health, Bethesda, Maryland
| | - Irina Kuzina
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Qun Gu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|