1
|
Jun I, Li N, Shin J, Park J, Kim YJ, Jeon H, Choi H, Cho JG, Chan Choi B, Han HS, Song JJ. Synergistic stimulation of surface topography and biphasic electric current promotes muscle regeneration. Bioact Mater 2022; 11:118-129. [PMID: 34938917 PMCID: PMC8665271 DOI: 10.1016/j.bioactmat.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Developing a universal culture platform that manipulates cell fate is one of the most important tasks in the investigation of the role of the cellular microenvironment. This study focuses on the application of topographical and electrical field stimuli to human myogenic precursor cell (hMPC) cultures to assess the influences of the adherent direction, proliferation, and differentiation, and induce preconditioning-induced therapeutic benefits. First, a topographical surface of commercially available culture dishes was achieved by femtosecond laser texturing. The detachable biphasic electrical current system was then applied to the hMPCs cultured on laser-textured culture dishes. Laser-textured topographies were remarkably effective in inducing the assembly of hMPC myotubes by enhancing the orientation of adherent hMPCs compared with flat surfaces. Furthermore, electrical field stimulation through laser-textured topographies was found to promote the expression of myogenic regulatory factors compared with nonstimulated cells. As such, we successfully demonstrated that the combined stimulation of topographical and electrical cues could effectively enhance the myogenic maturation of hMPCs in a surface spatial and electrical field-dependent manner, thus providing the basis for therapeutic strategies.
Collapse
Affiliation(s)
- Indong Jun
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), Saarbrücken, 66123, Germany
| | - Na Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jaehee Shin
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jaeho Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), Saarbrücken, 66123, Germany
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Gu Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Byoung Chan Choi
- Laser Surface Texturing Group, AYECLUS, Gyeonggi-do, 14255, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Lee H, Han NR, Kim SJ, Yun JI, Lee ST. Development of a High-Yield Isolation Protocol Optimized for the Retrieval of Active Muscle Satellite Cells from Mouse Skeletal Muscle Tissue. Int J Stem Cells 2022; 15:283-290. [PMID: 35220284 PMCID: PMC9396018 DOI: 10.15283/ijsc21179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Objectives Difficulties often encountered in separating and purifying active muscle satellite cells (MSCs) from skeletal muscle tissues have limited the supply of cells for muscle therapy and artificial meat production. Here, we report an effective isolation protocol to economically and conveniently retrieve active MSCs from skeletal muscle tissues in mice. Methods and Results We optimized an enzyme-based tissue digestion protocol for isolating skeletal muscle-derived primary cell population having a large number of active MSCs and described a method of differential plating (DP) for improving purity of active MSCs from skeletal muscle-derived primary cell population. Then, the age of the mouse appropriate to the isolation of a large number of active MSCs was elucidated. The best isolation yield of active MSCs from mouse skeletal muscle tissues was induced by the application of DP method to the primary cell population harvested from skeletal muscle tissues of 2-week-old mice digested in 0.2% (w/v) collagenase type II for 30 min at 37℃ and then in 0.1% (w/v) pronase for 5 min at 37℃. Conclusions The protocol we developed not only facilitates the isolation of MSCs but also maximizes the retrieval of active MSCs. Our expectation is that this protocol will contribute to the development of original technologies essential for muscle therapy and artificial meat industrialization in the future.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | | | - Seong Jae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | | | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
- KustoGen Inc., Chuncheon, Korea
- Department of Applied Animal Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
3
|
Benedetti A, Cera G, De Meo D, Villani C, Bouche M, Lozanoska-Ochser B. A Simple Method for the Isolation and in vitro Expansion of Highly Pure Mouse and Human Satellite Cells. Bio Protoc 2021; 11:e4238. [PMID: 35005083 PMCID: PMC8678546 DOI: 10.21769/bioprotoc.4238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2023] Open
Abstract
Satellite cells (SCs) are muscle stem cells capable of regenerating injured muscle. The study of their functional potential depends on the availability of methods for the isolation and expansion of pure SCs, which retain myogenic properties after serial passages in vitro. Here, we describe a protocol for the isolation and in vitro expansion of highly pure mouse and human SCs based on ice-cold treatment (ICT). The ICT is carried out by briefly incubating the dish containing a heterogeneous mix of adherent muscle mononuclear cells on ice for 15-30 min, which leads to the detachment only of the SCs, and gives rise to SC cultures with 95-100% purity. This approach can also be used to passage the cells, allowing SC expansion over extended periods of time without compromising their proliferation or differentiation potential. Overall, the ICT method is cost-effective, accessible, technically simple, reproducible, and highly efficient. Graphic abstract: Figure 1.Satellite cell isolation using the ice-cold treatment method.
Collapse
Affiliation(s)
- Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianluca Cera
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Daniele De Meo
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Ciro Villani
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Marina Bouche
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Shuler KT, Wilson BE, Muñoz ER, Mitchell AD, Selsby JT, Hudson MB. Muscle Stem Cell-Derived Extracellular Vesicles Reverse Hydrogen Peroxide-Induced Mitochondrial Dysfunction in Mouse Myotubes. Cells 2020; 9:E2544. [PMID: 33256005 PMCID: PMC7760380 DOI: 10.3390/cells9122544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle stem cells (MuSCs) hold great potential as a regenerative therapeutic but have met numerous challenges in treating systemic muscle diseases. Muscle stem cell-derived extracellular vesicles (MuSC-EVs) may overcome these limitations. We assessed the number and size distribution of extracellular vesicles (EVs) released by MuSCs ex vivo, determined the extent to which MuSC-EVs deliver molecular cargo to myotubes in vitro, and quantified MuSC-EV-mediated restoration of mitochondrial function following oxidative injury. MuSCs released an abundance of EVs in culture. MuSC-EVs delivered protein cargo into myotubes within 2 h of incubation. Fluorescent labeling of intracellular mitochondria showed co-localization of delivered protein and mitochondria. Oxidatively injured myotubes demonstrated a significant decline in maximal oxygen consumption rate and spare respiratory capacity relative to untreated myotubes. Remarkably, subsequent treatment with MuSC-EVs significantly improved maximal oxygen consumption rate and spare respiratory capacity relative to the myotubes that were damaged but received no subsequent treatment. Surprisingly, MuSC-EVs did not affect mitochondrial function in undamaged myotubes, suggesting the cargo delivered is able to repair but does not expand the existing mitochondrial network. These data demonstrate that MuSC-EVs rapidly deliver proteins into myotubes, a portion of which co-localizes with mitochondria, and reverses mitochondria dysfunction in oxidatively-damaged myotubes.
Collapse
Affiliation(s)
- Kyle T. Shuler
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Brittany E. Wilson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Eric R. Muñoz
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Andrew D. Mitchell
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Joshua T. Selsby
- Department of Animal Science, Iowa State University, 2356G Kildee Hall, Ames, IA 50011, USA;
| | - Matthew B. Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| |
Collapse
|
5
|
van de Vlekkert D, Qiu X, Annunziata I, d'Azzo A. Isolation and Characterization of Exosomes from Skeletal Muscle Fibroblasts. J Vis Exp 2020. [PMID: 32478721 DOI: 10.3791/61127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Exosomes are small extracellular vesicles released by virtually all cells and secreted in all biological fluids. Many methods have been developed for the isolation of these vesicles, including ultracentrifugation, ultrafiltration, and size exclusion chromatography. However, not all are suitable for large scale exosome purification and characterization. Outlined here is a protocol for establishing cultures of primary fibroblasts isolated from adult mouse skeletal muscles, followed by purification and characterization of exosomes from the culture media of these cells. The method is based on the use of sequential centrifugation steps followed by sucrose density gradients. Purity of the exosomal preparations is then validated by western blot analyses using a battery of canonical markers (i.e., Alix, CD9, and CD81). The protocol describes how to isolate and concentrate bioactive exosomes for electron microscopy, mass spectrometry, and uptake experiments for functional studies. It can easily be scaled up or down and adapted for exosome isolation from different cell types, tissues, and biological fluids.
Collapse
Affiliation(s)
| | - Xiaohui Qiu
- Department of Genetics, St. Jude Children's Research Hospital
| | - Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital
| | | |
Collapse
|
6
|
Fish KD, Rubio NR, Stout AJ, Yuen JSK, Kaplan DL. Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends Food Sci Technol 2020; 98:53-67. [PMID: 32123465 PMCID: PMC7051019 DOI: 10.1016/j.tifs.2020.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In vitro meat production has been proposed as a solution to environmental and animal welfare issues associated with animal agriculture. While most academic work on cell-cultured meat has focused on innovations for scalable muscle tissue culture, fat production is an important and often neglected component of this technology. Developing suitable biomanufacturing strategies for adipose tissue from agriculturally relevant animal species may be particularly beneficial due to the potential use of cell-cultured fat as a novel food ingredient. SCOPE AND APPROACH Here we review the relevant studies from areas of meat science, cell biology, tissue engineering, and bioprocess engineering to provide a foundation for the development of in vitro fat production systems. We provide an overview of adipose tissue biology and functionality with respect to meat products, then explore cell lines, bioreactors, and tissue engineering strategies of potential utility for in vitro adipose tissue production for food. Regulation and consumer acceptance are also discussed. KEY FINDINGS AND CONCLUSIONS Existing strategies and paradigms are insufficient to meet the full set of unique needs for a cell-cultured fat manufacturing platform, as tradeoffs are often present between simplicity, scalability, stability, and projected cost. Identification and validation of appropriate cell lines, bioprocess strategies, and tissue engineering techniques must therefore be an iterative process as a deeper understanding of the needs and opportunities for cell-cultured fat develops.
Collapse
Affiliation(s)
- Kyle D Fish
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St., Medford, MA 02155, United States
| | - Natalie R Rubio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St., Medford, MA 02155, United States
| | - Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St., Medford, MA 02155, United States
| | - John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St., Medford, MA 02155, United States
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St., Medford, MA 02155, United States
| |
Collapse
|
7
|
Rodriguez BL, Nguyen MH, Armstrong RE, Vega-Soto EE, Polkowski PM, Larkin LM. A Comparison of Ovine Facial and Limb Muscle as a Primary Cell Source for Engineered Skeletal Muscle. Tissue Eng Part A 2019; 26:167-177. [PMID: 31469044 DOI: 10.1089/ten.tea.2019.0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Volumetric muscle loss (VML) contributes to the number of soft tissue injuries that necessitate reconstructive surgery, but treatment options are often limited by tissue availability and donor site morbidity. To combat these issues, our laboratory has developed scaffold-free tissue-engineered skeletal muscle units (SMUs) as a novel treatment for VML injuries. Recently, we have begun experiments addressing VML in facial muscle, and the optimal starting cell population for engineered skeletal muscle tissue for this application may not be cells derived from hindlimb muscles due to reported heterogeneity of cell populations. Thus, the purpose of this study was to compare SMUs fabricated from both craniofacial and hindlimb sources to determine which cell source is best suited for the engineering of skeletal muscle. Herein, we assessed the development, structure, and function of SMUs derived from four muscle sources, including two hindlimb muscles (i.e., soleus and semimembranosus [SM]) and two craniofacial muscles (i.e., zygomaticus major and masseter). Overall, the zygomaticus major exhibited the least efficient digestion, and SMUs fabricated from this muscle exhibited the least aligned myosin heavy chain staining and consequently, the lowest average force production. Conversely, the SM muscle exhibited the most efficient digestion and the highest number of myotubes/mm2; however, the SM, masseter, and soleus groups were roughly equivalent in terms of force production and histological structure. Impact Statement An empirical comparison of the development, structure, and function of engineered skeletal muscle tissue fabricated from different muscles, including both craniofacial and hindlimb sources, will not only provide insight into innate regenerative mechanisms of skeletal muscle but also will give our team and other researchers the information necessary to determine which cell sources are best suited for the skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | - Matthew H Nguyen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Rachel E Armstrong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Emmanuel E Vega-Soto
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Phillip M Polkowski
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Larkin
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy. Nat Commun 2018; 9:3950. [PMID: 30262909 PMCID: PMC6160489 DOI: 10.1038/s41467-018-06267-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system refers to a widespread signaling system and its alteration is implicated in a growing number of human diseases. However, the potential role of endocannabinoids in skeletal muscle disorders remains unknown. Here we report the role of the endocannabinoid CB1 receptors in Duchenne's muscular dystrophy. In murine and human models, CB1 transcripts show the highest degree of expression at disease onset, and then decline overtime. Similar changes are observed for PAX7, a key regulator of muscle stem cells. Bioinformatics and biochemical analysis reveal that PAX7 binds and upregulates the CB1 gene in dystrophic more than in healthy muscles. Rimonabant, an antagonist of CB1, promotes human satellite cell differentiation in vitro, increases the number of regenerated myofibers, and prevents locomotor impairment in dystrophic mice. In conclusion, our study uncovers a PAX7-CB1 cross talk potentially exacerbating DMD and highlights the role of CB1 receptors as target for potential therapies.
Collapse
|
10
|
Sohn J, Lin H, Fritch MR, Tuan RS. Influence of cholesterol/caveolin-1/caveolae homeostasis on membrane properties and substrate adhesion characteristics of adult human mesenchymal stem cells. Stem Cell Res Ther 2018; 9:86. [PMID: 29615119 PMCID: PMC5883280 DOI: 10.1186/s13287-018-0830-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Adult mesenchymal stem cells (MSCs) are an important resource for tissue growth, repair, and regeneration. To utilize MSCs more effectively, a clear understanding of how they react to environmental cues is essential. Currently, relatively little is known about how the composition of the plasma membranes affects stem cell phenotype and properties. The presence of lipid molecules, including cholesterol in particular, in the plasma membrane plays a crucial role in regulating a variety of physiological processes in cells. In this study, we examined the effects of perturbations in cholesterol/caveolin-1 (CAV-1)/caveolae homeostasis on the membrane properties and adhesive characteristics of MSCs. Findings from this study will contribute to the understanding of how cholesterol/CAV-1/caveolae regulates aspects of the cell membrane important to cell adhesion, substrate sensing, and microenvironment interaction. METHODS We generated five experimental MSC groups: 1) untreated MSCs; 2) cholesterol-depleted MSCs; 3) cholesterol-supplemented MSCs; 4) MSCs transfected with control, nonspecific small interfering (si)RNA; and 5) MSCs transfected with CAV-1 siRNA. Each cell group was analyzed for perturbation of cholesterol status and CAV-1 expression by performing Amplex Red cholesterol assay, filipin fluorescence staining, and real-time polymerase chain reaction (PCR). The membrane fluidity in the five experimental cell groups were measured using pyrene fluorescence probe staining followed by FACS analysis. Cell adhesion to collagen and fibronectin as well as cell surface integrin expression were examined. RESULTS Cholesterol supplementation to MSCs increased membrane cholesterol, and resulted in decreased membrane fluidity and localization of elevated numbers of caveolae and CAV-1 to the cell membrane. These cells showed increased expression of α1, α4, and β1 integrins, and exhibited higher adhesion rates to fibronectin and collagen. Conversely, knockdown of CAV-1 expression or cholesterol depletion on MSCs caused a parallel decrease in caveolae content and an increase in membrane fluidity due to decreased delivery of cholesterol to the cell membrane. Cells with depleted CAV-1 expression showed decreased cell surface integrin expression and slower adhesion to different substrates. CONCLUSIONS Our results demonstrate that perturbations in cholesterol/CAV-1 levels significantly affect the membrane properties of MSCs. These findings suggest that modification of membrane cholesterol and/or CAV-1 and caveolae may be used to manipulate the biological activities of MSCs.
Collapse
Affiliation(s)
- Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA
| | - Madalyn Rose Fritch
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA. .,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
11
|
Syverud BC, Lin E, Nagrath S, Larkin LM. Label-Free, High-Throughput Purification of Satellite Cells Using Microfluidic Inertial Separation. Tissue Eng Part C Methods 2017; 24:32-41. [PMID: 28946802 DOI: 10.1089/ten.tec.2017.0316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle satellite cells have tremendous therapeutic potential in cell therapy or skeletal muscle tissue engineering. Obtaining a sufficiently pure satellite cell population, however, presents a significant challenge. We hypothesized that size differences between satellite cells and fibroblasts, two primary cell types obtained from skeletal muscle dissociation, would allow for label-free, inertial separation in a microfluidic device, termed a "Labyrinth," and that these purified satellite cells could be used to engineer skeletal muscle. Throughout tissue fabrication, Labyrinth-purified cells were compared with unsorted controls to assess the efficiency of this novel sorting process and to examine potential improvements in myogenic proliferation, differentiation, and tissue function. Immediately after dissociation and Labyrinth sorting, cells were immunostained to identify myogenic cells and fibroblast progenitors. Remaining cells were cultured for 14 days to form a confluent monolayer that was induced to delaminate and was captured as a 3D skeletal muscle construct. During monolayer development, myogenic proliferation (BrdU assay on Day 4), differentiation and myotube fusion index (α-actinin on Day 11), and myotube structural development (light microscopy on Day 14) were assessed. Isometric tetanic force production was measured in 3D constructs on Day 16. Immediately following sorting, unsorted cells exhibited a myogenic purity of 39.9% ± 3.99%, and this purity was enriched approximately two-fold to 75.5% ± 1.59% by microfluidic separation. The BrdU assay on Day 4 similarly showed significantly enhanced myogenic proliferation: in unsorted controls 47.0% ± 2.77% of proliferating cells were myogenic, in comparison to 61.7% ± 2.55% following purification. Myogenic differentiation and fusion, assessed by fusion index quantification, showed improvement from 82.7% ± 3.74% in control to 92.3% ± 2.04% in the purified cell population. Myotube density in unsorted controls, 18.6 ± 3.26 myotubes/mm2, was significantly enriched in the purified cell population to 33.9 ± 3.74 myotubes/mm2. Constructs fabricated from Labyrinth-purified cells also produced significantly greater tetanic forces (143.6 ± 16.9 μN) than unsorted controls (70.7 ± 8.03 μN). These results demonstrate the promise of microfluidic sorting in purifying isolated satellite cells. This unique technology could assist researchers in translating the regenerative potential of satellite cells to cell therapies and engineered tissues.
Collapse
Affiliation(s)
- Brian C Syverud
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Eric Lin
- 2 Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Sunitha Nagrath
- 2 Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Lisa M Larkin
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan.,3 Department of Molecular and Integrated Physiology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|