1
|
Carpenter AD, Fatanmi OO, Wise SY, Tyburski JB, Cheema AK, Singh VK. Proteomic analysis of plasma at the preterminal stage of rhesus nonhuman primates exposed to a lethal total-body dose of gamma-radiation. Sci Rep 2024; 14:13571. [PMID: 38866887 PMCID: PMC11169553 DOI: 10.1038/s41598-024-64316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
The identification and validation of radiation biomarkers is critical for assessing the radiation dose received in exposed individuals and for developing radiation medical countermeasures that can be used to treat acute radiation syndrome (ARS). Additionally, a fundamental understanding of the effects of radiation injury could further aid in the identification and development of therapeutic targets for mitigating radiation damage. In this study, blood samples were collected from fourteen male nonhuman primates (NHPs) that were exposed to 7.2 Gy ionizing radiation at various time points (seven days prior to irradiation; 1, 13, and 25 days post-irradiation; and immediately prior to the euthanasia of moribund (preterminal) animals). Plasma was isolated from these samples and was analyzed using a liquid chromatography tandem mass spectrometry approach in an effort to determine the effects of radiation on plasma proteomic profiles. The primary objective was to determine if the radiation-induced expression of specific proteins could serve as an early predictor for health decline leading to a preterminal phenotype. Our results suggest that radiation induced a complex temporal response in which some features exhibit upregulation while others trend downward. These statistically significantly altered features varied from pre-irradiation levels by as much as tenfold. Specifically, we found the expression of integrin alpha and thrombospondin correlated in peripheral blood with the preterminal stage. The differential expression of these proteins implicates dysregulation of biological processes such as hemostasis, inflammation, and immune response that could be leveraged for mitigating radiation-induced adverse effects.
Collapse
Affiliation(s)
- Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
2
|
Cheema AK, Byrum SD, Sharma NK, Altadill T, Kumar VP, Biswas S, Balgley BM, Hauer-Jensen M, Tackett AJ, Ghosh SP. Proteomic Changes in Mouse Spleen after Radiation-Induced Injury and its Modulation by Gamma-Tocotrienol. Radiat Res 2018; 190:449-463. [PMID: 30070965 PMCID: PMC6297072 DOI: 10.1667/rr15008.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-tocotrienol (GT3), a naturally occurring vitamin E isomer, a promising radioprotector, has been shown to protect mice against radiation-induced hematopoietic and gastrointestinal injuries. We analyzed changes in protein expression profiles of spleen tissue after GT3 treatment in mice exposed to gamma radiation to gain insights into the molecular mechanism of radioprotective efficacy. Male CD2F1 mice, 12-to-14 weeks old, were treated with either vehicle or GT3 at 24 h prior to 7 Gy total-body irradiation. Nonirradiated vehicle, nonirradiated GT3 and age-matched naïve animals were used as controls. Blood and tissues were harvested on days 0, 1, 2, 4, 7, 10 and 14 postirradiation. High-resolution mass-spectrometry-based radioproteomics was used to identify differentially expressed proteins in spleen tissue with or without drug treatment. Subsequent bioinformatic analyses helped delineate molecular markers of biological pathways and networks regulating the cellular radiation responses in spleen. Our results show a robust alteration in spleen proteomic profiles including upregulation of the Wnt signaling pathway and actin-cytoskeleton linked proteins in mediating the radiation injury response in spleen. Furthermore, we show that 24 h pretreatment with GT3 attenuates radiation-induced hematopoietic injury in the spleen by modulating various cell signaling proteins. Taken together, our results show that the radioprotective effects of GT3 are mediated, via alleviation of radiation-induced alterations in biochemical pathways, with wide implications on overall hematopoietic injury.
Collapse
Affiliation(s)
- Amrita K. Cheema
- Departments of Oncology, Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Stephanie D. Byrum
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Neel Kamal Sharma
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| | - Tatiana Altadill
- Departments of Oncology, Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
- Institut d’Investigacio Biomedica de Bellvitge (IDIBELL), Gynecological Department, Vall Hebron University Hospital, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| | - Shukla Biswas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| | | | - Martin Hauer-Jensen
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Alan J. Tackett
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| |
Collapse
|
3
|
Singh VK, Newman VL, Romaine PL, Hauer-Jensen M, Pollard HB. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev Mol Diagn 2015; 16:65-81. [PMID: 26568096 PMCID: PMC4732464 DOI: 10.1586/14737159.2016.1121102] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several candidate drugs for acute radiation syndrome (ARS) have been identified that have low toxicity and significant radioprotective and radiomitigative efficacy. Inasmuch as exposing healthy human volunteers to injurious levels of radiation is unethical, development and approval of new radiation countermeasures for ARS are therefore presently based on animal studies and Phase I safety study in healthy volunteers. The Animal Efficacy Rule, which underlies the Food and Drug Administration approval pathway, requires a sound understanding of the mechanisms of injury, drug efficacy, and efficacy biomarkers. In this context, it is important to identify biomarkers for radiation injury and drug efficacy that can extrapolate animal efficacy results, and can be used to convert drug doses deduced from animal studies to those that can be efficacious when used in humans. Here, we summarize the progress of studies to identify candidate biomarkers for the extent of radiation injury and for evaluation of countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Victoria L Newman
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Patricia Lp Romaine
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Martin Hauer-Jensen
- c Departments of Pharmaceutical Sciences, Surgery, and Pathology , University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems , Little Rock , AR , USA
| | - Harvey B Pollard
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|