1
|
Kim BH, Ashrafudoulla M, Shaila S, Park HJ, Sul JD, Park SH, Ha SD. Isolation, characterization, and application of bacteriophage on Vibrio parahaemolyticus biofilm to control seafood contamination. Int J Antimicrob Agents 2024; 64:107194. [PMID: 38723695 DOI: 10.1016/j.ijantimicag.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/07/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVE This study intended to isolate a Vibrio-particular phage from the natural environment, analyse its characteristics and genome sequence, and investigate its reduction effect on V. parahaemolyticus biofilm as a biocontrol agent in squid and mackerel. METHODS Among 21 phages, phage CAU_VPP01, isolated from beach mud, was chosen for further experiments based on host range and EOP tests. When examining the reduction effect of phage CAU_VPP01 against Vibrio parahaemolyticus biofilms on surfaces (stainless steel [SS] and polyethylene terephthalate [PET]) and food surfaces (squid and mackerel). RESULTS The phage showed the most excellent reduction effect at a multiplicity-of-infection (MOI) 10. Three-dimensional images acquired with confocal laser scanning microscopy (CLSM) analysis were quantified using COMSTAT, which showed that biomass, average thickness, and roughness coefficient decreased when treated with the phage. Colour and texture analysis confirmed that the quality of squid and mackerel was maintained after the phage treatment. Finally, a comparison of gene expression levels determined by qRT-PCR analysis showed that the phage treatment induced a decrease in the gene expression of flaA, vp0962, andluxS, as examples. CONCLUSION This study indicated that Vibrio-specific phage CAU_VPP01 effectively controlled V. parahaemolyticus biofilms under various conditions and confirmed that the isolated phage could possibly be used as an effective biocontrol weapon in the seafood manufacturing industry.
Collapse
Affiliation(s)
- Byoung Hu Kim
- Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; Food Quality Technology Center, Food Safety division, Pulmuone Co. Ltd., Cheongju, Republic of Korea
| | - Md Ashrafudoulla
- Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; National Institute of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Shanjida Shaila
- Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Hyung Jin Park
- College of Sport Sciences, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Jeong Dug Sul
- College of Sport Sciences, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea.
| |
Collapse
|
2
|
Borkar SB, Negi M, Acharya TR, Lamichhane P, Kaushik N, Choi EH, Kaushik NK. Mitigation of T3SS-mediated virulence in waterborne pathogenic bacteria by multi-electrode cylindrical-DBD plasma-generated nitric oxide water. CHEMOSPHERE 2024; 350:140997. [PMID: 38128737 DOI: 10.1016/j.chemosphere.2023.140997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
S. enterica, S. flexneri, and V. parahaemolyticus bacteria are globally recognized to cause severe diarrheal diseases, consisting of Type III Secretion System (T3SS) effectors that help in bacterial infection and virulence in host cells. This study investigates the properties of multi-electrode cylindrical DBD plasma-generated nitric oxide water (MCDBD-PG-NOW) treatment on the survival and virulence of S. enterica, S. flexneri, and V. parahaemolyticus bacteria. The Colony Forming Unit (CFU) assay, live/dead cell staining, lipid peroxidation assay, and bacteria morphological analysis showed substantial growth inhibition of bacteria. Moreover, to confirm the interaction of reactive nitrogen species (RNS) with bacterial membrane biotin switch assay, DAF-FM, and FTIR analysis were carried out, which established the formation of S-nitrosothiols in the cell membrane, intracellular accumulation of RNS, and changes in the cell composition post-PG-NOW treatment. Furthermore, the conventional culture-based method and a quantitative PCR using propidium monoazide showed minimal VBNC induction under similar condition. The efficiency of bacteria to adhere to mammalian colon cells was significantly reduced. In addition, the infection rate was also controlled by disrupting the virulent genes, leading to the collapse of the infection mechanism. This study provides insights into whether RNS generated from PG-NOW might be beneficial for preventing diarrheal infections.
Collapse
Affiliation(s)
- Shweta B Borkar
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Manorma Negi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Prajwal Lamichhane
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Eun Ha Choi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
3
|
Siriphap A, Prapasawat W, Borthong J, Tanomsridachchai W, Muangnapoh C, Suthienkul O, Chonsin K. Prevalence, virulence characteristics, and antimicrobial resistance of Vibrio parahaemolyticus isolates from raw seafood in a province in Northern Thailand. FEMS Microbiol Lett 2024; 371:fnad134. [PMID: 38111221 DOI: 10.1093/femsle/fnad134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/26/2023] [Accepted: 12/17/2023] [Indexed: 12/20/2023] Open
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is commonly found in seawater and seafood products, but evidence is limited of its presence in seafood marketed in locations very distant from coastal sources. This study determined the prevalence and characterization of V. parahaemolyticus in seafood from markets in landlocked Phayao province, Northern Thailand. Among 120 samples, 26 (21.7%) were positive for V. parahaemolyticus, being highest in shrimp (43.3%), followed by shellfish (36.7%), and squid (6.7%), but was not found in fish. V. parahaemolyticus comprised 33 isolates that were non-pathogenic and non-pandemic. Almost all isolates from shrimp and shellfish samples were positive for T3SS1. Only five isolates (15.2%) showed two antimicrobial resistance patterns, namely, kanamycin-streptomycin (1) carrying sul2 and ampicillin-kanamycin-streptomycin (4) that carried tetA (2), tetA-sul2 (1), as well as one negative. Antimicrobial susceptible V. parahaemolyticus isolates possessing tetA (67.9%) and sul2 (3.5%) were also found. Six isolates positive for integron class 1 and/or class 2 were detected in 4 antimicrobial susceptible and 2 resistant isolates. While pathogenic V. parahaemolyticus was not detected, contamination of antimicrobial resistance V. parahaemolyticus in seafood in locations distant from coastal areas requires ongoing monitoring to improve food safety in the seafood supply chain.
Collapse
Affiliation(s)
- Achiraya Siriphap
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Watsawan Prapasawat
- Department of Clinic, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Jednipit Borthong
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Wimonrat Tanomsridachchai
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Hokkaido 001-0020, Japan
| | - Chonchanok Muangnapoh
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Orasa Suthienkul
- Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Kaknokrat Chonsin
- Faculty of Science and Technology, Suratthani Rajabhat University, Surat Thani 84100, Thailand
| |
Collapse
|
4
|
Brauge T, Mougin J, Ells T, Midelet G. Sources and contamination routes of seafood with human pathogenic Vibrio spp.: A Farm-to-Fork approach. Compr Rev Food Sci Food Saf 2024; 23:e13283. [PMID: 38284576 DOI: 10.1111/1541-4337.13283] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Vibrio spp., known human foodborne pathogens, thrive in freshwater, estuaries, and marine settings, causing vibriosis upon ingestion. The rising global vibriosis cases due to climate change necessitate a deeper understanding of Vibrio epidemiology and human transmission. This review delves into Vibrio contamination in seafood, scrutinizing its sources and pathways. We comprehensively assess the contamination of human-pathogenic Vibrio in the seafood chain, covering raw materials to processed products. A "Farm-to-Fork" approach, aligned with the One Health concept, is essential for grasping the complex nature of Vibrio contamination. Vibrio's widespread presence in natural and farmed aquatic environments establishes them as potential entry points into the seafood chain. Environmental factors, including climate, human activities, and wildlife, influence contamination sources and routes, underscoring the need to understand the origin and transmission of pathogens in raw seafood. Once within the seafood chain, the formation of protective biofilms on various surfaces in production and processing poses significant food safety risks, necessitating proper cleaning and disinfection to prevent microbial residue. In addition, inadequate seafood handling, from inappropriate processing procedures to cross-contamination via pests or seafood handlers, significantly contributes to Vibrio food contamination, thus warranting attention to reduce risks. Information presented here support the imperative for proactive measures, robust research, and interdisciplinary collaboration in order to effectively mitigate the risks posed by human pathogenic Vibrio contamination, safeguarding public health and global food security. This review serves as a crucial resource for researchers, industrials, and policymakers, equipping them with the knowledge to develop biosecurity measures associated with Vibrio-contaminated seafood.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| | - Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| |
Collapse
|
5
|
Li M, Xu H, Tian Y, Zhang Y, Jiao X, Gu D. Comparative genomic analysis reveals the potential transmission of Vibrio parahaemolyticus from freshwater food to humans. Food Microbiol 2023; 113:104277. [PMID: 37098434 DOI: 10.1016/j.fm.2023.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Vibrio parahaemolyticus is an increasingly important foodborne pathogen that cause acute gastroenteritis in humans. However, the prevalence and transmission of this pathogen in freshwater food remains unclear. This study aimed to determine the molecular characteristics and genetic relatedness of V. parahaemolyticus isolates obtained from freshwater food, seafood, environmental, and clinical samples. A total of 138 (46.6%) isolates were detected from 296 food and environmental samples, and 68 clinical isolates from patients. Notably, V. parahaemolyticus was more prevalent in freshwater food (56.7%, 85/150) than in seafood (38.8%, 49/137). Virulence phenotype analyses revealed that the high motility of isolates from freshwater food (40.0%) and clinical isolates (42.0%) was higher than that of isolates from seafood (12.2%), whereas the biofilm-forming capacity of freshwater food isolates (9.4%) was lower than that of seafood (22.4%) and clinical isolates (15.9%). Virulence genes analysis showed that 46.4% of the clinical isolates contained the tdh gene encoding thermostable direct hemolysin (TDH) and only two freshwater food isolates contained the trh gene encoding TDH-related hemolysin (TRH). Multilocus sequence typing (MLST) analysis divided the 206 isolates into 105 sequence types (STs), including 56 (53.3%) novel STs. ST2583, ST469, and ST453 have been isolated from freshwater food and clinical samples. Whole-genome sequence (WGS) analyses revealed that the 206 isolates were divided into five clusters. Cluster II contained isolates from freshwater food and clinical samples, whereas the other clusters contained isolates from seafood, freshwater food, and clinical samples. In addition, we observed that ST2516 had the same virulence pattern, with a close phylogenetic relationship to ST3. The increased prevalence and adaption of V. parahaemolyticus in freshwater food is a potential cause of clinical cases closely related to the consumption of V. parahaemolyticus contaminated freshwater food.
Collapse
|
6
|
Chen L, Wang J, Chen J, Zhang R, Zhang H, Qi X, He Y. Epidemiological characteristics of Vibrio parahaemolyticus outbreaks, Zhejiang, China, 2010-2022. Front Microbiol 2023; 14:1171350. [PMID: 37448578 PMCID: PMC10336542 DOI: 10.3389/fmicb.2023.1171350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Background Vibrio parahaemolyticus is one of the most common foodborne pathogens and poses a significant disease burden. The purpose of the study was to elucidate the epidemiological characteristics of Vibrio parahaemolyticus outbreaks in Zhejiang Province, and provide insights for the targeted prevention and control of foodborne diseases. Methods Descriptive statistical methods were utilized to analyze the data on Vibrio parahaemolyticus outbreaks reported by all Centers for Disease Control and Prevention (CDCs) through Foodborne Disease Outbreaks Surveillance System (FDOSS) in Zhejiang Province from 2010 to 2022. Results From 2010 to 2022, a total of 383 outbreaks caused by Vibrio parahaemolyticus were reported by 90 CDCs in 11 prefectures of Zhejiang Province, resulting in 4,382 illnesses, 326 hospitalizations and 1 death. The main symptoms of the outbreak-related cases were diarrhea (95.18%), abdominal pain (89.23%), nausea (55.64%), vomiting (50.57%), fever (24.21%), etc. The outbreaks occurring between July and September accounted for 77.54% of all outbreaks (297 out of 383). Outbreaks associated with restaurants accounted for the majority (57.96%, 222/383) of all outbreaks, followed by those linked to staff canteens (15.40%, 59/383) and rural banquets (11.23%, 43/383). 31.85% of all outbreaks were associated with the consumption of aquatic products, while ready-to-eat foods such as Chinese cold dishes and cooked meat products accounted for 12.53% of all outbreaks. Serotype O3:K6 (81.94%, 118/144) was the predominant serotype responsible for outbreaks from 2010 to 2020, while serotype O10:K4 (57.89%, 33/57) was the predominant serotype from 2021 to 2022. Conclusion In-depth and comprehensive analysis of long-term surveillance data on Vibrio parahaemolyticus outbreaks is essential to gain insight into the epidemiological characteristics, identify long-term patterns and recent trends, and enable governments to prioritize interventions and develop targeted policies to mitigate such outbreaks.
Collapse
Affiliation(s)
| | | | - Jiang Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | | | | |
Collapse
|
7
|
Ghozzi K, Nakbi A, Challouf R, Dhiab RB. A review on microbial contamination cases in Tunisian coastal marine areas. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2142-2158. [PMID: 37186620 PMCID: wst_2023_123 DOI: 10.2166/wst.2023.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Microbial pollution in marine environments is one of the critical issues with regard to the sanitary status of recreational activities and seafood harvesting due to a potential contamination by pathogenic microorganisms. This review's objectives were to identify instances of bacterial, viral and protozoan parasite pollution in the Tunisian coastal region and to make recommendations for further research. Fecal indicators such as Escherichia coli and Salmonella spp. were detected in samples of clams and mussels. Vibrionaceae species were also recorded in seawater, sediment, fish and clams in different sites from north to south with the dominance of Vibrio alginolyticus. Bivalve mollusks collected from the Tunisian coast have been revealed to harbor viruses as well as protozoan parasites. Furthermore, the isolation of multidrug-resistant bacterial strains from Tunisian coastlines proves the significant spread and circulation of antibiotic resistance caused by the massive use of antibiotics. In conclusion, we suggest intensive monitoring and cutting-edge wastewater treatment technologies to enhance seawater quality and preserve the biodiversity of aquatic life. Rapid detection techniques for the most important pathogenic microorganisms in seafood and seawater must be also developed to reduce human health risk.
Collapse
Affiliation(s)
- Khemissa Ghozzi
- Laboratoire de Biodiversité Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisie E-mail:
| | - Amel Nakbi
- Laboratoire de Biodiversité Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisie E-mail:
| | - Rafika Challouf
- Laboratoire de Biodiversité Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisie E-mail:
| | - Rym Ben Dhiab
- Laboratoire de Biodiversité Marine, Institut National des Sciences et Technologies de la Mer, Monastir, Tunisie E-mail:
| |
Collapse
|
8
|
Afum T, Asandem DA, Asare P, Asante-Poku A, Mensah GI, Musah AB, Opare D, Taniguchi K, Guinko NM, Aphour T, Arhin D, Ishikawa K, Matano T, Mizutani T, Asiedu-Bekoe F, Kiyono H, Anang AK, Koram KA, Yeboah-Manu D. Diarrhea-Causing Bacteria and Their Antibiotic Resistance Patterns Among Diarrhea Patients From Ghana. Front Microbiol 2022; 13:894319. [PMID: 35663873 PMCID: PMC9161929 DOI: 10.3389/fmicb.2022.894319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diarrheal disease remains a major global health problem particularly in children under 5 years and the emergence of antibiotic-resistant strains of causative pathogens could slow control efforts, particularly in settings where treatment options are limited. This surveillance study conducted in Ghana aimed to determine the prevalence and antimicrobial susceptibility profile of diarrhea-causing bacteria. This was a cross-sectional study carried out in five health facilities in the Ga West Municipality of Ghana between 2017 and 2021. Diarrheic stool samples from patients were collected and cultured on standard differential/selective media and isolates identified by standard biochemical tests, MALDI-TOF assay, and serological analysis. The antibiogram was determined using Kirby-Bauer disk diffusion and Microscan autoScan4 MIC panels which were used for extended-spectrum beta-lactamase (ESBL) detection. Bacteria were isolated from 97.5% (772/792) of stool samples, and 167 of the isolates were diarrheagenic and met our inclusion criteria for antimicrobial resistance (AMR) analysis. These included Escherichia coli (49.1%, 82/167), Salmonella species (23.9%, 40/167), Vibrio species (16.8%, 28/167), and Shigella species (10.2%, 17/167). Among 24 Vibrio species, we observed resistances to cefotaxime (21/24, 87.5%), ceftriaxone (20/24, 83.3%), and ciprofloxacin (6/24, 25%), including four multi-drug resistant isolates. All 13 Vibrio parahaemolyticus isolates were resistant to cefazolin. All 17 Shigella isolates were resistant to tetracycline with resistance to shigellosis drugs such as norfloxacin and ciprofloxacin. Salmonella isolates were highly susceptible to norfloxacin (40/40, 100%) and tetracycline (12/34, 35%). Two ESBL-producing E. coli were also identified with marked susceptibility to gentamicin (66/72, 91.7%) and amikacin (57/72, 79.2%) prescribed in the treatment of E. coli infections. This study showed the different bacteria implicated in diarrhea cases in Ghana and the need for differential diagnoses for better treatment outcomes. Escherichia coli, Shigella, Salmonella, and Vibrio have all been implicated in diarrhea cases in Ghana. The highest prevalence was E. coli and Salmonella with Shigella the least prevalent. Resistance to commonly used drugs found in these isolates may render bacteria infection treatment in the near future nearly impossible. Routine antimicrobial susceptibility testing, effective monitoring, and nationwide surveillance of AMR pathogens should be implemented to curb the increase of antimicrobial resistance in Ghana.
Collapse
Affiliation(s)
- Theophilus Afum
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Diana Asema Asandem
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince Asare
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Gloria Ivy Mensah
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Abdul Basit Musah
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Kiyosi Taniguchi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | | | | | | | - Koichi Ishikawa
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Tetsuro Matano
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | | | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California San Diego, San Diego, CA, United States
| | - Abraham Kwabena Anang
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwadwo Ansah Koram
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- *Correspondence: Dorothy Yeboah-Manu,
| |
Collapse
|
9
|
Lian L, Li W, Xue T, Ren J, Tang F, Liu Y, Xue F, Dai J. Comparative transcriptomic analysis provides insights into transcription mechanisms of Vibrio parahaemolyticus T3SS during interaction with HeLa cells. Braz J Microbiol 2022; 53:289-301. [PMID: 34652743 PMCID: PMC8882520 DOI: 10.1007/s42770-021-00627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022] Open
Abstract
Vibrio parahaemolyticus is an important foodborne pathogenic bacterium that harbors the type III secretion system 1 (T3SS1) as an essential virulence factor. However, the pathogenesis and infection mechanism mediated by T3SS1 are not entirely clarified. Similar to previous studies on other T3SS-positive bacteria, the T3SS1 needle is a major extracellular component in V. parahaemolyticus. We recently showed that the needle gene-deletion mutant (ΔvscF) exhibited markedly decreased cytotoxicity and effector translocation during interaction with HeLa cells. To further elucidate the pathogenesis of T3SS1 during host cell infection, bacterial RNA was extracted from wild-type POR-1 and ΔvscF mutants under infected condition for comparative RNA sequencing analysis in HeLa cell. The results showed that 120 differentially expressed genes (DEGs) were identified in the ΔvscF-infected group. These encoded proteins of DEGs, such as VP2088, VP2089, and VP2091, were annotated as ABC transporter system, whereas VP0757, VP1123, and VP1289 may be new transcriptional regulators. In addition, the downregulation of T3SS1 had a positive influence on the expression of T3SS2. Moreover, the transcription of the basal body is unaffected by the needle, and there was a close relation among the tip, translocon, and needle, because bacterial adenylate cyclase two-hybrid system (BACTH system) assay indicated the interaction of VP1656, VP1670, VP1693, and VP1694 (VscF). This study provides insights into transcription mechanism of T3SS1 upon infecting HeLa cell, which is expected to better clarify the T3SS1 virulent mechanism.
Collapse
Affiliation(s)
- Lele Lian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanjun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingyue Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Wang R, Deng Y, Zhang Y, Li X, Sun L, Deng Q, Liu Y, Gooneratne R, Li J. Modulation of Intestinal Barrier, Inflammatory Response, and Gut Microbiota by Pediococcus pentosaceus zy-B Alleviates Vibrio parahaemolyticus Infection in C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1865-1877. [PMID: 35107008 DOI: 10.1021/acs.jafc.1c07450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modulation of the intestinal barrier, inflammation, and gut microbiota by Pediococcus pentosaceus zy-B (zy-B) in Vibrio parahaemolyticus (Vp)-infected C57BL/6J mice was studied. Mice intragastrically pretreated with 108 colony-forming units (CFU) zy-B significantly alleviated Vp infection as evidenced by maintaining body weight and reduced disease activity index score and intestine ratio. In addition, zy-B reduced the Vp load in the ileum and cecum, significantly reduced the load in the colon, prevented colonic atrophy, and strengthened mucosal integrity. Mechanistically, zy-B ameliorated intestinal barrier dysfunction by upregulating tight junction protein expression, which in turn reduced the lipopolysaccharide, d-lactic acid (d-LA), and diamine oxidase concentrations and downregulated the cannabinoid receptor 1 (CB1) and CB2 mRNA expressions. Moreover, zy-B systemically reduced inflammation by decreasing interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α levels, and increased interleukin-10 (IL-10), immunoglobulin M (IgM), and immunoglobulin G (IgG) levels in the colon and serum. Furthermore, zy-B markedly altered the gut microbiota composition by enriching Bifidobacterium, Akkermansia, and Lactobacillus in the colon. Overall, zy-B appears to act as a probiotic to alleviate Vp infection by protecting the intestinal barrier, reducing inflammation, and promoting the growth of "beneficial" gut microbiota.
Collapse
Affiliation(s)
- Rundong Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Yijia Deng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| | - Jianrong Li
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
11
|
Predictive models for the effect of environmental factors on the abundance of Vibrio parahaemolyticus in oyster farms in Taiwan using extreme gradient boosting. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Boyce JM, Schaffner DW. Scientific Evidence Supports the Use of Alcohol-Based Hand Sanitizers as an Effective Alternative to Hand Washing in Retail Food and Food Service Settings When Heavy Soiling Is Not Present on Hands. J Food Prot 2021; 84:781-801. [PMID: 33290525 DOI: 10.4315/jfp-20-326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022]
Abstract
ABSTRACT Suboptimal food worker health and hygiene has been a common contributing factor in foodborne disease outbreaks for many years. Despite clear U.S. Food and Drug Administration (FDA) Model Food Code recommendations for hand washing and glove use, food worker compliance with hand washing recommendations has remained poor for >20 years. Food workers' compliance with recommended hand washing guidelines is adversely impacted by a number of barriers, including complaints of time pressure, inadequate number and/or location of hand washing sinks and hand washing supplies, lack of food knowledge and training regarding hand washing, the belief that wearing gloves obviates the need for hand washing, insufficient management commitment, and adverse skin effects caused by frequent hand washing. Although many of the issues related to poor hand washing practices in food service facilities are the same as those in health care settings, a new approach to health care hand hygiene was deemed necessary >15 years ago due to persistently low compliance rates among health care personnel. Evidence-based hand hygiene guidelines for health care settings were published by both the Centers for Disease Control and Prevention in 2002 and by the World Health Organization in 2009. Despite similar low hand washing compliance rates among retail food establishment workers, no changes in the Food Code guidelines for hand washing have been made since 2001. In direct contrast to health care settings, where frequent use of alcohol-based hand sanitizers (ABHSs) in lieu of hand washing has improved hand hygiene compliance rates and reduced infections, the Food Code continues to permit the use of ABHSs only after hands have been washed with soap and water. This article provides clear evidence to support modifying the FDA Model Food Code to allow the use of ABHSs as an acceptable alternative to hand washing in situations where heavy soiling is not present. Emphasis on the importance of hand washing when hands are heavily soiled and appropriate use of gloves is still indicated. HIGHLIGHTS
Collapse
Affiliation(s)
- John M Boyce
- J. M. Boyce Consulting, 62 Sonoma Lane, Middletown, Connecticut 06457 (ORCID: https://orcid.org/0000-0002-4626-1471)
| | - Donald W Schaffner
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA (ORCID: https://orcid.org/0000-0001-9200-0400)
| |
Collapse
|
13
|
The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Pian YY, Nie JJ, Wang CC, Liu Q, Liu Z, Zhang LQ, Ou-Yang QG, Fan GQ, Zeng LT, Dang YM, Ma YQ, Zhang W, Gao ZX, Hu JH, Cai JP. Systemic RNA oxidation can be used as a biomarker of infection in challenged with Vibrio parahaemolyticus. Free Radic Res 2021; 55:41-52. [PMID: 33470868 DOI: 10.1080/10715762.2020.1857376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
More and more evidence support the concept that RNA oxidation plays a substantial role in the progress of multiple diseases; however, only a few studies have reported RNA oxidation caused by microbial pathogens. Urinary 8-oxo-7,8-dihydroguanosine (8-oxo-Gsn) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGsn), which are broadly used as indicators of oxidative damage of RNA and DNA, were analyzed in this study to determine which can be used as a biomarker of infection in challenged with Vibrio parahaemolyticus (V. parahaemolyticus). In this work, 24 specific-pathogen-free (SPF) male SD rats were randomly divided into two groups: an infection group and a phosphate-buffered saline (PBS) control group. Our results proved that 8-oxo-Gsn rather than 8-oxo-dGsn was significantly increased after challenged with V. parahaemolyticus in urine and tissue samples of SD rats compared with the PBS control group. Simultaneously, white blood cells (WBCs) counts, intestinal inflammation and inflammatory factors (including CRP, IL-6, IL-1β, TNF-α, IL-10, and IL-17A) were also increased sharply. Which has more clinical value is that the trend of urinary 8-oxo-Gsn was consistent with WBCs, intestinal inflammation and all kinds of inflammatory factors. More importantly is that urinary 8-oxo-Gsn of infection group was positively correlated with WBCs and various inflammatory cytokines. In a word, our results demonstrated that as a systemic RNA oxidation biomarker, we hope 8-oxo-Gsn can be used as a biomarker of the severity of microbial pathogens infection, rather than a specific biomarker of microbial pathogens infection.
Collapse
Affiliation(s)
- Ya-Ya Pian
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing-Jing Nie
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen-Chen Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Qian Liu
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Zhen Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-Qun Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiu-Geng Ou-Yang
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ya-Min Dang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ya-Qing Ma
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Pathology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Zhen-Xiang Gao
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji-Hong Hu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Bauer J, Teitge F, Neffe L, Adamek M, Jung A, Peppler C, Steinhagen D, Jung-Schroers V. Impact of a reduced water salinity on the composition of Vibrio spp. in recirculating aquaculture systems for Pacific white shrimp (Litopenaeus vannamei) and its possible risks for shrimp health and food safety. JOURNAL OF FISH DISEASES 2021; 44:89-105. [PMID: 32971569 DOI: 10.1111/jfd.13270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 05/27/2023]
Abstract
Tropical shrimp, like Litopenaeus vannamei, in land-based recirculating aquaculture systems (RAS) are often kept at low water salinities to reduce costs for artificial sea salt and the amount of salty wastewater. Although these shrimp are tolerant against low salinities, innate immunity suppression and changes in the microbial composition in the water can occur. As especially Vibrio spp. are relevant for shrimp health, alterations in the species composition of the Vibrio community were analysed in water from six RAS, run at 15‰ or 30‰. Additionally, pathogenicity factors including pirA/B, VPI, toxR, toxS, vhh, vfh, tdh, trh, flagellin genes and T6SS1/2 of V. parahaemolyticus were analysed. The Vibrio composition differed significantly depending on water salinity. In RAS at 15‰, higher numbers of the potentially pathogenic species V. parahaemolyticus, V. owensii and V. campbellii were detected, and especially in V. parahaemolyticus, various pathogenicity factors were present. A reduced salinity may therefore pose a higher risk of disease outbreaks in shrimp RAS. Because some of the detected pathogenicity factors are relevant for human health, this might also affect food safety. In order to produce healthy shrimp as a safe food for human consumption, maintaining high water salinities seems to be recommendable.
Collapse
Affiliation(s)
- Julia Bauer
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Neffe
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
16
|
Hadi J, Wu S, Brightwell G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020; 9:E1895. [PMID: 33353056 PMCID: PMC7767196 DOI: 10.3390/foods9121895] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. Laboratory measurements indicate that antimicrobial blue light has minimal effects on the sensorial and nutritional properties of foods, although future research using human panels is required to ascertain these findings. Food properties also affect the efficacy of antimicrobial blue light, with attenuation or enhancement of the bactericidal activity observed in the presence of absorptive materials (for example, proteins on meats) or photosensitizers (for example, riboflavin in milk), respectively. Blue light can also be coupled with other treatments, such as polyphenols, essential oils and organic acids. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light-for example, the inactivation of spoilage bacteria in vacuum-packed meats.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
17
|
Yan W, Ji L, Xu D, Chen L, Wu X. Molecular characterization of clinical and environmental Vibrio parahaemolyticus isolates in Huzhou, China. PLoS One 2020; 15:e0240143. [PMID: 33007026 PMCID: PMC7531842 DOI: 10.1371/journal.pone.0240143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/20/2020] [Indexed: 11/19/2022] Open
Abstract
Vibrio parahaemolyticus is responsible for seafood-borne gastroenteritis worldwide. Isolates of V. parahaemolyticus from clinical samples (n = 54) and environmental samples (n = 38) in Huzhou were analyzed by serological typing, virulence gene detection, antibiotic resistance testing, and pulsed-field gel electrophoresis (PFGE) for molecular typing. O3:K6 was the main serotype and tlh+tdh+trh- was the most frequently detected virulence genotype in clinical strains. O2:Kut was the main serotype and tlh+tdh-trh- was the most frequently detected virulence genotype in environmental strains. Antibiotic resistance testing indicated that the isolates were highly resistant to ampicillin (90.76%), followed by gentamicin and tetracycline. Following the restriction enzyme NotI digestion, the 91 strains yielded 81 PFGE patterns, and 16 clones had similarity values of > 85.00%, indicating a high level of diversity. Finally, there may be cross-contamination between freshwater and seawater products, so it is necessary to strengthen supervision of food processing.
Collapse
Affiliation(s)
- Wei Yan
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
- * E-mail:
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| |
Collapse
|
18
|
Hasan M, Azim KF, Imran MAS, Chowdhury IM, Urme SRA, Parvez MSA, Uddin MB, Ahmed SSU. Comprehensive genome based analysis of Vibrio parahaemolyticus for identifying novel drug and vaccine molecules: Subtractive proteomics and vaccinomics approach. PLoS One 2020; 15:e0237181. [PMID: 32813697 PMCID: PMC7444560 DOI: 10.1371/journal.pone.0237181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Multidrug-resistant Vibrio parahaemolyticus has become a significant public health concern. The development of effective drugs and vaccines against Vibrio parahaemolyticus is the current research priority. Thus, we aimed to find out effective drug and vaccine targets using a comprehensive genome-based analysis. A total of 4822 proteins were screened from V. parahaemolyticus proteome. Among 16 novel cytoplasmic proteins, 'VIBPA Type II secretion system protein L' and 'VIBPA Putative fimbrial protein Z' were subjected to molecular docking with 350 human metabolites, which revealed that Eliglustat, Simvastatin and Hydroxocobalamin were the top drug molecules considering free binding energy. On the contrary, 'Sensor histidine protein kinase UhpB' and 'Flagellar hook-associated protein of 25 novel membrane proteins were subjected to T-cell and B-cell epitope prediction, antigenicity testing, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking analysis to generate the most immunogenic epitopes. Three subunit vaccines were constructed by the combination of highly antigenic epitopes along with suitable adjuvant, PADRE sequence and linkers. The designed vaccine constructs (V1, V2, V3) were analyzed by their physiochemical properties and molecular docking with MHC molecules- results suggested that the V1 is superior. Besides, the binding affinity of human TLR-1/2 heterodimer and construct V1 could be biologically significant in the development of the vaccine repertoire. The vaccine-receptor complex exhibited deformability at a minimum level that also strengthened our prediction. The optimized codons of the designed construct was cloned into pET28a(+) vector of E. coli strain K12. However, the predicted drug molecules and vaccine constructs could be further studied using model animals to combat V. parahaemolyticus associated infections.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Abdus Shukur Imran
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ishtiak Malique Chowdhury
- Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Md. Sorwer Alam Parvez
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Bashir Uddin
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
19
|
Ndraha N, Wong HC, Hsiao HI. Managing the risk of Vibrio parahaemolyticus infections associated with oyster consumption: A review. Compr Rev Food Sci Food Saf 2020; 19:1187-1217. [PMID: 33331689 DOI: 10.1111/1541-4337.12557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative bacterium that is naturally present in the marine environment. Oysters, which are water filter feeders, may accumulate this pathogen in their soft tissues, thus increasing the risk of V. parahaemolyticus infection among people who consume oysters. In this review, factors affecting V. parahaemolyticus accumulation in oysters, the route of the pathogen from primary production to consumption, and the potential effects of climate change were discussed. In addition, intervention strategies for reducing accumulation of V. parahaemolyticus in oysters were presented. A literature review revealed the following information relevant to the present study: (a) managing the safety of oysters (for human consumption) from primary production to consumption remains a challenge, (b) there are multiple factors that influence the concentration of V. parahaemolyticus in oysters from primary production to consumption, (c) climate change could possibly affect the safety of oysters, both directly and indirectly, placing public health at risk, (d) many intervention strategies have been developed to control and/or reduce the concentration of V. parahaemolyticus in oysters to acceptable levels, but most of them are mainly focused on the downstream steps of the oyster supply chain, and (c) although available regulation and/or guidelines governing the safety of oyster consumption are mostly available in developed countries, limited food safety information is available in developing countries. The information provided in this review may serve as an early warning for managing the future effects of climate change on the safety of oyster consumption.
Collapse
Affiliation(s)
- Nodali Ndraha
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| | - Hin-Chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan (R.O.C.)
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.).,Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| |
Collapse
|
20
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Arason S, Bekaert K, García MR, Georgiadis M, Messens W, Mosbach‐Schulz O, Bover‐Cid S. The use of the so-called 'tubs' for transporting and storing fresh fishery products. EFSA J 2020; 18:e06091. [PMID: 32874299 PMCID: PMC7448070 DOI: 10.2903/j.efsa.2020.6091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
On-land transport/storage of fresh fishery products (FFP) for up to 3 days in 'tubs' of three-layered poly-ethylene filled with freshwater and ice was compared to the currently authorised practice (fish boxes of high-density poly-ethylene filled with ice). The impact on the survival and growth of biological hazards in fish and the histamine production in fish species associated with a high amount of histidine was assessed. In different modelling scenarios, the FFP are stored on-board in freshwater or seawater/ice (in tubs) and once on-land they are 'handled' (i.e. sorted or gutted and/or filleted) and transferred to either tubs or boxes. The temperature of the FFP was assumed to be the most influential factor affecting relevant hazards. Under reasonably foreseeable 'abusive' scenarios and using a conservative modelling approach, the growth of the relevant hazards (i.e. Listeria monocytogenes, Aeromonas spp. and non-proteolytic Clostridium botulinum), is expected to be < 0.2 log10 units higher in tubs than in boxes after 3 days when the initial temperature of the fish is 0°C ('keeping' process). Starting at 7°C ('cooling-keeping' process), the expected difference in the growth potential is higher (< 1 log10 for A. hydrophila and < 0.5 log10 for the other two hazards) due to the poorer cooling capacity of water and ice (tub) compared with ice (box). The survival of relevant hazards is not or is negligibly impacted. Histamine formation due to growth of Morganella psychrotolerans under the 'keeping' or 'cooling-keeping' process can be up to 0.4 ppm and 1.5 ppm higher, respectively, in tubs as compared to boxes after 3 days, without reaching the legal limit of 100 ppm. The water uptake associated with the storage of the FFP in tubs (which may be up to 6%) does not make a relevant contribution to the differences in microbial growth potential compared to boxes.
Collapse
|
21
|
Pinkerton L, Linton M, Kelly C, Ward P, Gradisteanu Pircalabioru G, Pet I, Stef L, Sima F, Adamov T, Gundogdu O, Corcionivoschi N. Attenuation of Vibrio parahaemolyticus Virulence Factors by a Mixture of Natural Antimicrobials. Microorganisms 2019; 7:microorganisms7120679. [PMID: 31835728 PMCID: PMC6956168 DOI: 10.3390/microorganisms7120679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 01/19/2023] Open
Abstract
Reducing acute mortality in aquatic crustaceans using natural alternatives to antibiotics has become a necessity, firstly for its positive impact on the aquaculture industry and, secondly, because the extensive use of antibiotics may lead to increased levels of drug resistance in pathogenic microorganisms. This study aimed to investigate the effect of a mixture of natural antimicrobials on the in vitro and in vivo virulence abilities of Type VI secretion system (T6SS)-positive Vibrio parahaemolyticus (A3 and D4), strains known as having potentially harmful health consequences for aquatic crustaceans and consumers. Herein, we report that a natural antimicrobial mixture (A3009) was capable of significantly reducing the virulence of V. parahaemolyticus strains A3 and D4 in an in vitro infection model, using the fish cell line CHSE-214, an effect which correlates with the bacterial downregulation of hcp1 and hcp2 gene expression and with the ability of the antimicrobial to efficiently retain low cytotoxic levels (p < 0.001). We show for the first time that a natural antimicrobial is able to significantly reduce the mortality of shrimps in a challenge experiment and is able to significantly attenuate H2O2 release during infection (p < 0.001), indicating that it could harbor positive intestinal redox balance effects.
Collapse
Affiliation(s)
- Laurette Pinkerton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
| | - Mark Linton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
| | - Carmel Kelly
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
| | | | | | - Ioan Pet
- Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, 300645 Timisoara, Romania
| | - Lavinia Stef
- Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, 300645 Timisoara, Romania
| | - Filip Sima
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
- Auranta, NovaUCD, Dublin 4, Ireland
- Research Institute of University of Bucharest, 300645 Bucharest, Romania
| | - Tabita Adamov
- Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, 300645 Timisoara, Romania
| | - Ozan Gundogdu
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
- Auranta, NovaUCD, Dublin 4, Ireland
- Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, 300645 Timisoara, Romania
| |
Collapse
|
22
|
Jeong HW, Kim JA, Jeon SJ, Choi SS, Kim MK, Yi HJ, Cho SJ, Kim IY, Chon JW, Kim DH, Bae D, Kim H, Seo KH. Prevalence, Antibiotic-Resistance, and Virulence Characteristics of Vibrio parahaemolyticus in Restaurant Fish Tanks in Seoul, South Korea. Foodborne Pathog Dis 2019; 17:209-214. [PMID: 31692375 DOI: 10.1089/fpd.2019.2691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vibrio parahaemolyticus is a marine bacterium that causes foodborne diarrhea. Many seafood restaurants keep live fish and shellfish in fish tanks for use in raw seafood dishes; thus, the present study aimed to investigate the prevalence, antibiotic-resistance, and virulence characteristics exhibited by V. parahaemolyticus detected in restaurant fish-tank water samples collected in Seoul, South Korea. Fish-tank water samples were collected from 69 restaurants in Seoul, and screened for the presence of V. parahaemolyticus via both a commercial detection kit, and a real-time polymerase chain reaction (RT-PCR) to detect the toxR gene. Antibiotic susceptibility and virulence determinants of V. parahaemolyticus isolates were evaluated and identified using standard disk-diffusion and RT-PCR methods, respectively. Thirty-five (50.7%) of the 69 analyzed water samples were found to be contaminated with V. parahaemolyticus. Those isolates were most often resistant to ampicillin (51.4% of isolates), followed by amikacin and tetracycline (11.4%), and ceftazidime (8.6%). Thirty (85.7%) out of the 35 isolates carried all four cytotoxicity-inducing type III secretion system 1 (T3SS1) genes [specifically, 34 (97.1%), 33 (94.3%), 35 (100%), and 32 (91.4%) isolates carried genes encoding the VP1670, VP1686, VP1689, and VP1694 T3SS1 proteins, respectively]. The type VI secretion systems (T6SS1 and T6SS2) genes were also detected in 11 (31.4%) and 27 (77.1%) isolates, respectively. However, virulence determinants such as the hemolysin (tdh and trh), urease (ureC), T3SS2α, or T3SS2β genes that are known to be associated with enterotoxicity were not detected in all isolates. Although some known major virulence genes were not detected in the V. parahaemolyticus isolates, the results of this study indicate that restaurant fish tanks are a potential source of antibiotic-resistant V. parahaemolyticus. The presented data support the need for strict guidelines to regulate the maintenance of restaurant fish tanks to prevent antibiotic-resistant foodborne vibriosis.
Collapse
Affiliation(s)
- Hyo-Won Jeong
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea.,Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Jin-Ah Kim
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Su-Jin Jeon
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Seong-Seon Choi
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Min-Kyeong Kim
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Hye-Jin Yi
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Seok-Ju Cho
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Il-Young Kim
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Jung-Whan Chon
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dong-Hyeon Kim
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dongryeoul Bae
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Hyunsook Kim
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul, Korea
| | - Kun-Ho Seo
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|