1
|
Marchyshak T, Yakovenko T, Shmarakov I, Tkachuk Z. The Potential Protective Effect of Oligoribonucleotides-d-Mannitol Complexes against Thioacetamide-Induced Hepatotoxicity in Mice. Pharmaceuticals (Basel) 2018; 11:ph11030077. [PMID: 30082619 PMCID: PMC6161262 DOI: 10.3390/ph11030077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
This study investigated the potential hepatoprotective effect of oligoribonucleotides-d-mannitol complexes (ORNs-d-M) against thioacetamide (TAA)-induced hepatotoxicity in mice. The hepatoprotective activity of ORNs-d-M was evaluated in thioacetamide (TAA)-treated C57BL/6J. Results indicate that treatment with ORNs-d-M displayed a protective effect at the TAA-induced liver injury. Treatment with ORNs-d-M, starting at 0 h after the administration of TAA, decreased TAA-elevated serum alanine aminotransferase (ALT) and γ-glutamyl transpeptidase (GGT). Activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx), and levels of glutathione (GSH), were enhanced with ORNs-d-M administration, while the hepatic oxidative biomarkers (TBA-reactive substances, protein carbonyl derivatives, protein-SH group) and myeloperoxidase (MPO) activity were reduced. Furthermore, genetic analysis has shown that the ORNs-d-M decreases the expression of mRNA pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), profibrogenic cytokine-transforming growth factor β1 (TGF-β1), as well as the principal protein of the extracellular matrix—collagen I. The present study demonstrates that ORNs-d-M exerts a protective effect against TAA-induced liver injury, which may be associated with its anti-inflammatory effects, inhibition of overexpression of mRNA cytokines, and direct effects on the metabolism of the toxin.
Collapse
Affiliation(s)
- Tetiana Marchyshak
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| | - Tetiana Yakovenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| | - Igor Shmarakov
- Department of Biochemistry and Biotechnology, Yurii Fedkovych Chernivtsi National University, 58012 Chernivtsi, Ukraine.
| | - Zenoviy Tkachuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| |
Collapse
|
2
|
Lim JD, Lee SR, Kim T, Jang SA, Kang SC, Koo HJ, Sohn E, Bak JP, Namkoong S, Kim HK, Song IS, Kim N, Sohn EH, Han J. Fucoidan from Fucus vesiculosus protects against alcohol-induced liver damage by modulating inflammatory mediators in mice and HepG2 cells. Mar Drugs 2015; 13:1051-67. [PMID: 25690093 PMCID: PMC4344618 DOI: 10.3390/md13021051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/30/2015] [Accepted: 02/10/2015] [Indexed: 12/19/2022] Open
Abstract
Fucoidan is an l-fucose-enriched sulfated polysaccharide isolated from brown algae and marine invertebrates. In this study, we investigated the protective effect of fucoidan from Fucus vesiculosus on alcohol-induced murine liver damage. Liver injury was induced by oral administration of 25% alcohol with or without fucoidan (30 mg/kg or 60 mg/kg) for seven days. Alcohol administration increased serum aspartate aminotransferase and alanine aminotransferase levels, but these increases were suppressed by the treatment of fucoidan. Transforming growth factor beta 1 (TGF-β1), a liver fibrosis-inducing factor, was highly expressed in the alcohol-fed group and human hepatoma HepG2 cell; however, the increase in TGF-β1 expression was reduced following fucoidan administration. Treatment with fucoidan was also found to significantly reduce the production of inflammation-promoting cyclooygenase-2 and nitric oxide, while markedly increasing the expression of the hepatoprotective enzyme, hemeoxygenase-1, on murine liver and HepG2 cells. Taken together, the antifibrotic and anti-inflammatory effects of fucoidan on alcohol-induced liver damage may provide valuable insights into developing new therapeutics or interventions.
Collapse
Affiliation(s)
- Jung Dae Lim
- Department of Herbal Medicine Resource, Kangwon National University, Gangwon-do 245-905, Korea.
| | - Sung Ryul Lee
- College of Medicine, Cardiovascular and Metabolic Disease Center and Department of Health Sciences and Technology, Graduate School of Inje University, Inje University, Busan 614-735, Korea.
| | - Taeseong Kim
- Department of Herbal Medicine Resource, Kangwon National University, Gangwon-do 245-905, Korea.
| | - Seon-A Jang
- Department of Life Science, Gachon University, Seongnam 461-701, Korea.
| | - Se Chan Kang
- Department of Life Science, Gachon University, Seongnam 461-701, Korea.
| | - Hyun Jung Koo
- Department of Medicinal and Industrial Crops, Korea National College of Agriculture and Fisheries, Hwasung 445-760, Korea.
| | - Eunsoo Sohn
- Division of Information Analysis Research, Korea Institute of Science and Technology Information, KISTI, Seoul 130-741, Korea.
| | - Jong Phil Bak
- The Clinical Center for Bio-industry, Semyung University, Jecheon, 390-711, Korea.
| | - Seung Namkoong
- Department of Physical Therapy, Kangwon National University, Gangwon-do 245-711, Korea.
| | - Hyoung Kyu Kim
- College of Medicine, Cardiovascular and Metabolic Disease Center and Department of Health Sciences and Technology, Graduate School of Inje University, Inje University, Busan 614-735, Korea.
| | - In Sung Song
- College of Medicine, Cardiovascular and Metabolic Disease Center and Department of Health Sciences and Technology, Graduate School of Inje University, Inje University, Busan 614-735, Korea.
| | - Nari Kim
- College of Medicine, Cardiovascular and Metabolic Disease Center and Department of Health Sciences and Technology, Graduate School of Inje University, Inje University, Busan 614-735, Korea.
| | - Eun-Hwa Sohn
- Department of Herbal Medicine Resource, Kangwon National University, Gangwon-do 245-905, Korea.
| | - Jin Han
- College of Medicine, Cardiovascular and Metabolic Disease Center and Department of Health Sciences and Technology, Graduate School of Inje University, Inje University, Busan 614-735, Korea.
| |
Collapse
|
3
|
Cong M, Liu T, Wang P, Fan X, Yang A, Bai Y, Peng Z, Wu P, Tong X, Chen J, Li H, Cong R, Tang S, Wang B, Jia J, You H. Antifibrotic effects of a recombinant adeno-associated virus carrying small interfering RNA targeting TIMP-1 in rat liver fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1607-16. [PMID: 23474083 DOI: 10.1016/j.ajpath.2013.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 12/13/2022]
Abstract
Elevated tissue inhibitor of metalloproteinase 1 (TIMP-1) expression contributes to excess production of extracellular matrix in liver fibrosis. Herein, we constructed a recombinant adeno-associated virus (rAAV) carrying siRNA of the TIMP-1 gene (rAAV/siRNA-TIMP-1) and investigated its effects on liver fibrosis in rats. Two models of rat liver fibrosis, the carbon tetrachloride and bile duct ligation models, were treated with rAAV/siRNA-TIMP-1. In the carbon tetrachloride model, rAAV/siRNA-TIMP-1 administration attenuated fibrosis severity, as determined by histologic analysis of hepatic collagen accumulation, hydroxyproline content, and concentrations of types I and III collagen in livers and sera. Levels of mRNA and active matrix metalloproteinase (MMP) 13 were elevated, whereas levels of mRNA and active MMP-2 were decreased. Moreover, a marked decrease was noted in the expression of α-smooth muscle actin, a biomarker of activated hepatic stellate cells (HSCs), and transforming growth factor-β1, critical for the development of liver fibrosis. Similarly, rAAV/siRNA-TIMP-1 treatment significantly alleviated bile duct ligation-induced liver fibrosis. Furthermore, this treatment dramatically suppressed TIMP-1 expression in HSCs from both model rats. These data indicate that the administration of rAAV/siRNA-TIMP-1 attenuated liver fibrosis by directly elevating the function of MMP-13 and diminishing activated HSCs. It also resulted in indirect decreased expression of type I collagen, MMP-2, and transforming growth factor-β1. In conclusion, rAAV/siRNA-TIMP-1 may be an effective antifibrotic gene therapy agent.
Collapse
Affiliation(s)
- Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
He Y, Huang C, Zhang SP, Sun X, Long XR, Li J. The potential of microRNAs in liver fibrosis. Cell Signal 2012; 24:2268-72. [PMID: 22884954 DOI: 10.1016/j.cellsig.2012.07.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/28/2012] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a class of ~22-nucleotides noncoding RNAs that regulate gene expression by specifically binding with 3'-untranslated region (3'-UTR) of target gene mRNAs to posttranscriptionally effect mRNA stability and translation,and play essential roles in a variety of biological processes, including cell development, proliferation, differentiation, and apoptosis. Liver fibrosis is the occurrence of liver cell necrosis and inflammatory stimulation, and is characterized by excessive accumulation of extracellular matrices(ECMs). In the fibrotic liver, hepatic stellate cells (HSCs), which are regulated by multiple signal transduction pathways, undergo myofibroblastic transdifferentiation and are generally regarded as the major ECM producer responsible for liver fibrosis. A growing body of evidence suggests that divergent miRNAs participate in liver fibrotic process and activation of HSC. Moreover, members of many signal transduction pathways are important targets for miRNAs. In this review, we make a summary on current understanding of the roles of miRNAs in the development of liver fibrosis, HSC functions and their potential as novel drug targets.
Collapse
Affiliation(s)
- Yong He
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natrual Products, Anhui Medical University, Hefei 230032, China
| | | | | | | | | | | |
Collapse
|