1
|
Sweeney M, Cook SA, Gil J. Therapeutic opportunities for senolysis in cardiovascular disease. FEBS J 2023; 290:1235-1255. [PMID: 35015342 PMCID: PMC10952275 DOI: 10.1111/febs.16351] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Cellular senescence within the cardiovascular system has, until recently, been understudied and unappreciated as a factor in the development of age-related cardiovascular diseases such as heart failure, myocardial infarction and atherosclerosis. This is in part due to challenges with defining senescence within post-mitotic cells such as cardiomyocytes. However, recent evidence has demonstrated senescent-like changes, including a senescence-associated secretory phenotype (SASP), in cardiomyocytes in response to ageing and cell stress. Other replicating cells, including fibroblasts and vascular smooth muscle cells, within the cardiovascular system have also been shown to undergo senescence and contribute to disease pathogenesis. These findings coupled with the emergence of senolytic therapies, to target and eliminate senescent cells, have provided fascinating new avenues for management of several age-related cardiovascular diseases with high prevalence. In this review, we discuss the role of senescent cells within the cardiovascular system and highlight the contribution of senescence cells to common cardiovascular diseases. We discuss the emerging role for senolytics in cardiovascular disease management while highlighting important aspects of senescence biology which must be clarified before the potential of senolytics can be fully realized.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
- Wellcome Trust / National Institute of Health Research 4i Clinical Research FellowLondonUK
| | - Stuart A. Cook
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
| |
Collapse
|
2
|
Bian S, Jiang Y, Dai Z, Wu X, Li B, Wang N, Bian W, Zhong W. Lin28b delays vasculature aging by reducing platelet-derived growth factor-beta resistance in senescent vascular smooth muscle cells. Atherosclerosis 2023; 364:29-38. [PMID: 36529087 DOI: 10.1016/j.atherosclerosis.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Platelet-derived growth factor-β (PDGFB) is an important mediator of vascular smooth muscle cell (VSMC) proliferation, and PDGFB resistance is observed in senescent VSMCs. Lin28b is a stemness regulator in the embryo; however, its role in vasculature aging and VSMC senescence is unknown. We aimed to investigate whether Lin28b could restore the VSMC response to PDGFB and delay vasculature aging. METHODS ApoE-/- mice were fed a high-fat diet for different weeks to establish an aging model. PDGFB resistance was observed using EdU staining in vessel culture in vitro. Quantitative polymerase chain reaction and in situ hybridization were used to detect let-7 expression. Senescence was identified by Western blotting, senescence-associated beta-galactosidase activity or Sudan Black B staining, and VSMC function was determined using CCK-8, migration, and enzyme-linked immunosorbent assays. RESULTS Vessels from aged mice showed poor responses to PDGFB stimulation compared with those from young mice; similar results were found in senescent VSMCs. The expression levels of Lin28b and PDGF receptor-β were downregulated in aging vasculature and senescent VSMCs, whereas let-7 family levels increased with aging and VSMC passage growth. Transfection of VSMCs with let-7c induced PDGFB resistance and accelerated VSMC senescence, whereas blocking let-7c restored PDGFB reactions in VSMCs. Overexpression of Lin28b protein by lentivirus resulted in the restoration of PDGFB reactions and delayed VSMC senescence, which was blocked by a let-7c mimic. CONCLUSIONS This study reveals the role of Lin28b in delaying vasculature aging by decreasing senescent VSMC PDGFB resistance mediated by let-7.
Collapse
Affiliation(s)
- Shihui Bian
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yu Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhiyin Dai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xi Wu
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Bo Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Nan Wang
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Wenyan Bian
- Department of Geriatrics, Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Wei Zhong
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
3
|
Kim HS, Kim HY. Hypertensive effects of transforming growth factor-β1 in vascular smooth muscles cells from spontaneously hypertensive rats are mediated by sulfatase 2. Cytokine 2021; 150:155754. [PMID: 34808537 DOI: 10.1016/j.cyto.2021.155754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022]
Abstract
Extracellular sulfatases (sulfatase 1 and sulfatase 2) mediate up- or down-regulatory effects of cytokines on angiotensin II (Ang II)-induced expression of hypertensive mediators in hypertensive cells. The overproduction of transforming growth factor-β1 (TGF-β1) is associated with chronic hypertension. In this study, we examined the role of extracellular sulfatases on TGF-β1-induced effects associated with the expression of mediators related to hypertension in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). First, TGF-β1 increased the expression of 12-lipoxygenase (12-LO) and endothelin-1 (ET-1), inhibited dimethylarginine dimethylaminohydrolase-1 (DDAH-1) expression and showed additive effects on Ang II-induced 12-LO and ET-1 expression as well as Ang II-induced inhibition of DDAH-1 expression in SHR VSMCs. However, it had no effect on the expression of 12-LO, ET-1, and DDAH-1 in VSMCs from normotensive Wistar Kyoto rats. Downregulation of sulfatase 2 (Sulf2) inhibited all of these hypertensive effects caused by TGF-β1, while sulfatase 1 (Sulf1) had no effect on these events in SHR VSMCs. All these hypertensive effects of TGF-β1 were dependent on the Ang II subtype 1 receptor (AT1 R) pathway, and not on Ang II subtype 2 receptor (AT2 R). In addition, downregulation of Sulf2 inhibited the expression of TGF-β1-induced AT1 R and the additive effect of TGF-β1 on Ang II-induced AT1 R expression. Additionally, downregulation of Sulf2, but not Sulf1, abrogated TGF-β1-induced inhibition of AMP-activated protein kinase (AMPK) activation and the additive effect of TGF-β1 on Ang II-induced inhibition of AMPK activation via the AT1 R pathway. Moreover, TGF-β1-induced VSMCs proliferation and the additive effect of TGF-β1 on Ang II-induced VSMCs proliferation were abrogated in Sulf2 siRNA-transfected SHR VSMCs, while these effects were maintained in Sulf1 siRNA-transfected SHR VSMCs. The hypertensive effects of TGF-β1 through the AT1 R pathway were mainly dependent on Sulf2 activity in SHR VSMCs. Taken together, these results suggest that Sulf2, but not Sulf1, plays a major role in mediating the increased effects of TGF-β1 in hypertensive VSMCs.
Collapse
Affiliation(s)
- Hee Sun Kim
- Department of Microbiology College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| | - Hye Young Kim
- Department of Microbiology College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1810-1821. [DOI: 10.1016/j.bbadis.2018.08.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
5
|
Kim HY, Jeong DW, Kim HS. Sulfatase 2 mediates, partially, the expression of endothelin-1 and the additive effect of Ang II-induced endothelin-1 expression by CXCL8 in vascular smooth muscle cells from spontaneously hypertensive rats. Cytokine 2019; 114:98-105. [DOI: 10.1016/j.cyto.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023]
|
6
|
Cha HJ, Kim HY, Kim HS. Sulfatase 1 mediates the attenuation of Ang II-induced hypertensive effects by CCL5 in vascular smooth muscle cells from spontaneously hypertensive rats. Cytokine 2018; 110:1-8. [DOI: 10.1016/j.cyto.2017.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022]
|
7
|
Zhang Y, Ma G, Li C, Cao Z, Qie F, Xu X. Baicaleininhibits VSMCs proliferation via regulating LncRNAAK021954 gene expression. Int J Clin Exp Med 2015; 8:22129-22138. [PMID: 26885187 PMCID: PMC4729973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Atherosclerosis is responsible for the global medical burden of cardiovascular diseases, of which the proliferation of vascular smooth muscle cells (VSMCs) plays a key role in the development. Recent evidences demonstrated that baicalein could attenuate the proliferation of VSMCs and had no influence on VSMCs migration. However, the precise molecular mechanisms of baicalein inhibiting the proliferation of VSMCs were not clear. In this study, we investigated the viability and apoptosis behaviour of VSMCs and its downstream molecular changes with exposed to different dose of baicalein. Firstly, we observed significant reducing in the VSMCs proliferation and decreasing of FGF18 expression in a dose dependent manner after addition of baicalein for 24 h and 72 h. Moreover, the mRNA expression profile of VSMCs after treatments was evaluated by microarray analysis. Microarray analysis showed that long non-coding RNA (lncRNA) AK021954 gene expression was significantly increased in the baicalein treated group compared with the control group. Inversely, the VSMCs proliferation showed a notable increase after small silent RNA of lncRNAAK021954 treatment. These results indicated that lncRNAAK021954 gene and FGF18 involved in baicalein inhibiting the proliferation of VSMCs. It may provide a promising method in treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of The Heart of Non-invasive Examination, Daqing Oil Field General HospitalDaqing, Heilongjiang, China
| | - Guangtao Ma
- Department of Neurosurgery, Daqing Oil Field General HospitalDaqing, Heilongjiang, China
| | - Chenlong Li
- The Second Affiliated Hospital of Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Zhenyu Cao
- Department of Neurosurgery, Daqing Oil Field General HospitalDaqing, Heilongjiang, China
| | - Fuzhong Qie
- Department of Neurosurgery, Daqing Oil Field General HospitalDaqing, Heilongjiang, China
| | - Xinmiao Xu
- Department of Emergency, Daqing Oil Field General HospitalDaqing, Heilongjiang, China
| |
Collapse
|
8
|
Kim HY, Cha HJ, Kim HS. CCL5 upregulates IL-10 expression and partially mediates the antihypertensive effects of IL-10 in the vascular smooth muscle cells of spontaneously hypertensive rats. Hypertens Res 2015; 38:666-74. [PMID: 25971630 DOI: 10.1038/hr.2015.62] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/15/2015] [Accepted: 03/17/2015] [Indexed: 02/05/2023]
Abstract
Interleukin (IL)-10 inhibits angiotensin (Ang) II-induced vascular dysfunction and reduces blood pressure in hypertensive pregnant rats. The chemokine CCL5 has also been shown to downregulate Ang II-induced hypertensive mediators in spontaneously hypertensive rats (SHRs). This study investigated the effects of CCL5 on IL-10 expression, as well as its mechanisms of action in the vascular smooth muscle cells (VSMCs) of SHRs. CCL5 increased IL-10 expression in the VSMCs of SHRs; the s.c. injection of CCL5 (1.5 μg kg(-1), twice a day) for 3 weeks into SHRs with established hypertension upregulated IL-10 expression in both the thoracic aorta and the VSMCs and decreased systolic blood pressure. CCL5-induced the elevation of IL-10 expression, an effect mediated primarily via the activation of an Ang II subtype II receptor (AT2 R). Dimethylarginine dimethylaminohydrolase (DDAH)-1 activity also contributed to the elevation of IL-10 expression via CCL5 in the VSMCs of SHRs. Moreover, CCL5 partially mediated the inhibitory effects of IL-10 on Ang II-induced 12-lipoxygenase (LO) and endothelin (ET)-1 expression in the VSMCs of SHRs. Taken together, this study provides novel evidence that CCL5 plays a role in the upregulation of IL-10 activity in the VSMCs of SHRs.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Hye Ju Cha
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Hee Sun Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
9
|
Kim HY, Cha HJ, Choi JH, Kang YJ, Park SY, Kim HS. CCL5 Inhibits Elevation of Blood Pressure and Expression of Hypertensive Mediators in Developing Hypertension State Spontaneously Hypertensive Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.4167/jbv.2015.45.2.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hye Ju Cha
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Jin Hee Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea
| | - So Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hee Sun Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
10
|
Kim HY, Kim HS. IL-10 up-regulates CCL5 expression in vascular smooth muscle cells from spontaneously hypertensive rats. Cytokine 2014; 68:40-9. [DOI: 10.1016/j.cyto.2014.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/14/2014] [Accepted: 02/25/2014] [Indexed: 01/14/2023]
|
11
|
Kim HY, Cha HJ, Kim HS. CCL5 upregulates activation of AMP-activated protein kinases in vascular smooth muscle cells of spontaneously hypertensive rats. Cytokine 2014; 67:77-84. [DOI: 10.1016/j.cyto.2014.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/15/2014] [Accepted: 02/25/2014] [Indexed: 11/25/2022]
|
12
|
Kim HY, Kim JH, Kim HS. Effect of CCL5 on dimethylarginine dimethylaminohydrolase-1 production in vascular smooth muscle cells from spontaneously hypertensive rats. Cytokine 2013; 64:227-33. [DOI: 10.1016/j.cyto.2013.06.316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/10/2013] [Accepted: 06/16/2013] [Indexed: 11/28/2022]
|
13
|
Kim HY, Jeong DW, Park HS, Lee TY, Kim HS. Comparison of 12-lipoxygenase expression in vascular smooth muscle cells from old normotensive Wistar-Kyoto rats with spontaneously hypertensive rats. Hypertens Res 2012; 36:65-73. [PMID: 22875070 DOI: 10.1038/hr.2012.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular aging and essential hypertension cause similar structural and molecular modifications in the vasculature. The 12-lipoxygenase (LO) pathway of arachidonic acid metabolism is linked to cell growth and the pathology of hypertension. Thus, elevated expression of 12-LO has been observed in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). In the present study, we investigated the differences in 12-LO expression and activity between VSMCs from old normotensive Wistar-Kyoto rats (old WKY, 90-week old) and SHR (13-week old). The protein and mRNA expression of basal or angiotensin II (Ang II)-induced 12-LO in old WKY VSMCs were higher than those in SHR VSMCs. The degradation rate of 12-LO mRNA in old WKY VSMCs was slower than that in SHR VSMCs. However, basal or Ang II-induced 12-LO mRNAs in both old WKY and SHR VSMCs decayed more rapidly than that in young WKY (13-week old) VSMCs. Higher expression of 12-LO in old WKY VSMCs than in SHR VSMCs was correlated with the expression level of Ang II subtype 1 receptor (AT(1)R). The reduced levels of nitric oxide (NO) in old WKY and SHR VSMCs compared with young WKY VSMCs were similar, and there was no significant difference in NO production between old WKY and SHR VSMCs transfected with 12-LO siRNA. In addition, in contrast to the proliferation of SHR VSMCs, the proliferation of old WKY VSMCs was not dependent on 12-LO activation. These results suggest that the potential role of 12-LO in normotensive aging vasculature may be different from that in SHR vasculature.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | | | | | | | | |
Collapse
|
14
|
Angiotensin II inhibits chemokine CCL5 expression in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertens Res 2011; 34:1313-20. [DOI: 10.1038/hr.2011.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Vital SA, Terao S, Nagai M, Granger DN. Mechanisms underlying the cerebral microvascular responses to angiotensin II-induced hypertension. Microcirculation 2011; 17:641-9. [PMID: 21044218 DOI: 10.1111/j.1549-8719.2010.00060.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Angiotensin II (AngII) and AngII type-1 receptors (AT1r) have been implicated in the pathogenesis of hypertension and ischemic stroke. The objectives of this study was to determine if/how chronic AngII administration affects blood-brain barrier (BBB) function and blood cell adhesion in the cerebral microvasculature. AngII-loaded osmotic pumps were implanted in wild type (WT) and mutant mice. Leukocyte and platelet adhesion were monitored in cerebral venules by intravital microscopy and BBB permeability detected by Evans blue leakage. AngII (two week) infusion increased blood pressure in WT mice. This was accompanied by an increased BBB permeability and a high density of adherent leukocytes and platelets. AT1r (on the vessel wall, but not on blood cells) was largely responsible for the microvascular responses to AngII. Immunodeficient (Rag-1(-/-) ) mice exhibited blunted blood cell recruitment responses without a change in BBB permeability. A similar protection pattern was noted in RANTES(-/-) and P-selectin(-/-) mice, with bone marrow chimeras (blood cell deficiency only) yielding responses comparable to the respective knockouts. These findings implicate AT1r in the microvascular dysfunction associated with AngII-induced hypertension and suggest that immune cells and blood cell-associated RANTES and P-selectin contribute to the blood cell recruitment, but not the BBB failure, elicited by AngII.
Collapse
Affiliation(s)
- Shantel A Vital
- Department of Molecular & Cellular Physiology Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | | | | |
Collapse
|