1
|
Nageen B, Sarfraz I, Rasul A, Hussain G, Rukhsar F, Irshad S, Riaz A, Selamoglu Z, Ali M. Eupatilin: a natural pharmacologically active flavone compound with its wide range applications. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1-16. [PMID: 29973097 DOI: 10.1080/10286020.2018.1492565] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is a pharmacologically active flavone which has been isolated from a variety of medicinal plants. Eupatilin is known to possess various pharmacological properties such as anti-cancer, anti-oxidant, and anti-inflammatory. It is speculated that eupatilin could be subjected to structural optimization for the synthesis of derivative analogs to reinforce its efficacy, to minimize toxicity, and to optimize absorption profiles, which will ultimately lead towards potent drug candidates. Although, reported data acclaim multiple pharmacological activities of eupatilin but further experimentations on its molecular mechanism of action are yet mandatory to elucidate full spectrum of its pharmacological activities.
Collapse
Affiliation(s)
- Bushra Nageen
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Faculty of Life Sciences, Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fariha Rukhsar
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Somia Irshad
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad (Sub-campus Layyah), Layyah 31200, Pakistan
| | - Ammara Riaz
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zeliha Selamoglu
- Faculty of Medicine, Department of Medical Biology, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| | - Muhammad Ali
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Choo SH, Lee SW, Chae MR, Kang SJ, Sung HH, Han DH, Chun JN, Park JK, Kim CY, Kim HK, So I. Effects of eupatilin on the contractility of corpus cavernosal smooth muscle through nitric oxide-independent pathways. Andrology 2017; 5:1016-1022. [PMID: 28719725 DOI: 10.1111/andr.12397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/26/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
Eupatilin (5,7-dihydroxy-3,4,6-trimethoxyflavone) is one of the main compounds present in Artemisia species. Eupatilin has both antioxidative and anti-inflammatory properties and a relaxation effect on vascular contraction regardless of endothelial function. We evaluated the relaxant effects of eupatilin on the corpus cavernosum (CC) of rabbits and the underlying mechanisms of its activity in human corpus cavernosum smooth muscle (CCSM) cells. Isolated rabbit CC strips were mounted in an organ bath system. A conventional whole-cell patch clamp technique was used to measure activation of calcium-sensitive K+ -channel currents in human CCSM cells. The relaxation effect of eupatilin was evaluated by cumulative addition (10-5 m ~ 3 × 10-4 m) to CC strips precontracted with 10-5 m phenylephrine. Western blotting analysis was performed to measure myosin phosphatase targeting subunit 1 (MYPT1) and protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase of 17-kDa (CPI-17) expression and to evaluate the effect of eupatilin on the RhoA/Rho-kinase pathway. Eupatilin effectively relaxed the phenylephrine-induced tone in the rabbit CC strips in a concentration-dependent manner with an estimated EC50 value of 1.2 ± 1.6 × 10-4 m (n = 8, p < 0.05). Iberiotoxin and tetraethylammonium significantly reduced the relaxation effect (n = 8, p < 0.001 and p = 0.003, respectively). Removal of the endothelium or the presence of L-NAME or indomethacin did not affect the relaxation effect of eupatilin. In CCSM cells, the extracellular application of eupatilin 10-4 m significantly increased the outward currents, and the eupatilin-stimulated currents were significantly attenuated by treatment with 10-7 m iberiotoxin (n = 13, p < 0.05). Eupatilin reduced the phosphorylation level of MYPT1 at Thr853 of MLCP and CPI-17 at Thr38. Eupatilin-induced relaxation of the CCSM cells via NO-independent pathways. The relaxation effects of eupatilin on CCSM cells were partially due to activation of BKCa channels and inhibition of RhoA/Rho-kinase.
Collapse
Affiliation(s)
- S H Choo
- Department of Urology, Ajou University School of Medicine, Suwon, Korea
| | - S W Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - M R Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S J Kang
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - H H Sung
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - D H Han
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J N Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - J K Park
- Department of Urology, Institute for Medical Sciences, Medical School, Chonbuk National University, Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju, Korea
| | - C Y Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - H K Kim
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - I So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Kang G, Lee YR, Joo HK, Park MS, Kim CS, Choi S, Jeon BH. Trichostatin A Modulates Angiotensin II-induced Vasoconstriction and Blood Pressure Via Inhibition of p66shc Activation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:467-72. [PMID: 26330760 PMCID: PMC4553407 DOI: 10.4196/kjpp.2015.19.5.467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/21/2023]
Abstract
Histone deacetylase (HDAC) has been recognized as a potentially useful therapeutic target for cardiovascular disorders. However, the effect of the HDAC inhibitor, trichostatin A (TSA), on vasoreactivity and hypertension remains unknown. We performed aortic coarctation at the inter-renal level in rats in order to create a hypertensive rat model. Hypertension induced by abdominal aortic coarctation was significantly suppressed by chronic treatment with TSA (0.5 mg/kg/day for 7 days). Nicotinamide adenine dinucleotide phosphate-driven reactive oxygen species production was also reduced in the aortas of TSA-treated aortic coarctation rats. The vasoconstriction induced by angiotensin II (Ang II, 100 nM) was inhibited by TSA in both endothelium-intact and endothelium-denuded rat aortas, suggesting that TSA has mainly acted in vascular smooth muscle cells (VSMCs). In cultured rat aortic VSMCs, Ang II increased p66shc phosphorylation, which was inhibited by the Ang II receptor type I (AT1R) inhibitor, valsartan (10 µM), but not by the AT2R inhibitor, PD123319. TSA (1~10 µM) inhibited Ang II-induced p66shc phosphorylation in VSMCs and in HEK293T cells expressing AT1R. Taken together, these results suggest that TSA treatment inhibited vasoconstriction and hypertension via inhibition of Ang II-induced phosphorylation of p66shc through AT1R.
Collapse
Affiliation(s)
- Gun Kang
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Yu Ran Lee
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Hee Kyoung Joo
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Myoung Soo Park
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Cuk-Seong Kim
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Sunga Choi
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | - Byeong Hwa Jeon
- Research Institute for Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747, Korea
| |
Collapse
|