1
|
Budnik N, Leroux AE, Cooke M, Kazanietz MG, Vigliano C, Kobayashi K, Perez-Castro C. The role of S-adenosylhomocysteine hydrolase-like 1 in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119819. [PMID: 39154900 DOI: 10.1016/j.bbamcr.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
This integrative review aims to highlight the importance of investigating the functional role of AHCYL1, also known as IRBIT, in cancer cells. It has recently been suggested that AHCYL1 regulates cell survival/death, stemness capacity, and the host adaptive response to the tumor microenvironment. Despite this knowledge, the role of AHCYL1 in cancer is still controversial, probably due to its ability to interact with multiple factors in a tissue-specific manner. Understanding the mechanisms regulating the functional interplay between the tumor and the tumor microenvironment that controls the expression of AHCYL1 could provide a deeper comprehension of the regulation of tumor development. Addressing how AHCYL1 modulates cellular plasticity processes in a tumoral context is potentially relevant to developing translational approaches in cancer biology.
Collapse
Affiliation(s)
- Nicolás Budnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Cooke
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marcelo G Kazanietz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Carlos Vigliano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI Buenos Aires, Argentina; Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS Buenos Aires, Argentina
| | - Ken Kobayashi
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Laboratorio de Agrobiotecnología, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Itoh R, Hatano N, Murakami M, Mitsumori K, Kawasaki S, Wakagi T, Kanzaki Y, Kojima H, Kawaai K, Mikoshiba K, Hamada K, Mizutani A. Both IRBIT and long-IRBIT bind to and coordinately regulate Cl -/HCO 3- exchanger AE2 activity through modulating the lysosomal degradation of AE2. Sci Rep 2021; 11:5990. [PMID: 33727633 PMCID: PMC7966362 DOI: 10.1038/s41598-021-85499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Anion exchanger 2 (AE2) plays crucial roles in regulating cell volume homeostasis and cell migration. We found that both IRBIT and Long-IRBIT (L-IRBIT) interact with anion exchanger 2 (AE2). The interaction occurred between the conserved AHCY-homologous domain of IRBIT/L-IRBIT and the N-terminal cytoplasmic region of AE2. Interestingly, AE2 activity was reduced in L-IRBIT KO cells, but not in IRBIT KO cells. Moreover, AE2 activity was slightly increased in IRBIT/L-IRBIT double KO cells. These changes in AE2 activity resulted from changes in the AE2 expression level of each mutant cell, and affected the regulatory volume increase and cell migration. The activity and expression level of AE2 in IRBIT/L-IRBIT double KO cells were downregulated if IRBIT, but not L-IRBIT, was expressed again in the cells, and the downregulation was cancelled by the co-expression of L-IRBIT. The mRNA levels of AE2 in each KO cell did not change, and the downregulation of AE2 in L-IRBIT KO cells was inhibited by bafilomycin A1. These results indicate that IRBIT binding facilitates the lysosomal degradation of AE2, which is inhibited by coexisting L-IRBIT, suggesting a novel regulatory mode of AE2 activity through the binding of two homologous proteins with opposing functions.
Collapse
Affiliation(s)
- Ryo Itoh
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Naoya Hatano
- Division of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Momoko Murakami
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Kosuke Mitsumori
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Satoko Kawasaki
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tomoka Wakagi
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yoshino Kanzaki
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hiroyuki Kojima
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Koichi Hamada
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Akihiro Mizutani
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
3
|
Integrated Transcriptomic Analysis Reveals the Molecular Mechanism of Meningiomas by Weighted Gene Coexpression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4927547. [PMID: 32596316 PMCID: PMC7303753 DOI: 10.1155/2020/4927547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/28/2020] [Accepted: 05/09/2020] [Indexed: 02/04/2023]
Abstract
Meningiomas are the most common primary intracranial tumor in adults. However, to date, systemic coexpression analyses for meningiomas fail to explain its pathogenesis. The aim of the present study was to construct coexpression modules and identify potential biomarkers associated with meningioma progression. Weighted gene coexpression network analysis (WGCNA) was performed based on GSE43290, and module preservation was tested by GSE74385. Functional annotations were performed to analyze biological significance. Hub genes were selected for efficacy evaluations and correlation analyses using two independent cohorts. A total of 14 coexpression modules were identified, and module lightcyan was significantly associated with WHO grades. Functional enrichment analyses of module lightcyan were associated with tumor pathogenesis. The top 10 hub genes were extracted. Ten biomarkers, particularly AHCYL2, FGL2, and KCNMA1, were significantly related to grades and prognosis of meningioma. These findings not only construct coexpression modules leading to the better understanding of its pathogenesis but also provide potential biomarkers that represent specific on tumor grades and identify recurrence, predicting prognosis and progression of meningiomas.
Collapse
|
4
|
Wang M, Wu H, Liu Y, Chen LM. Activation of mouse NBCe1-B by Xenopus laevis and mouse IRBITs: Role of the variable Nt appendage of IRBITs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183240. [PMID: 32119862 DOI: 10.1016/j.bbamem.2020.183240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
The IP3 receptor binding protein released with inositol 1,4,5-trisphosphate (IRBIT) plays important roles in the regulation of intracellular Ca2+ signaling and intracellular pH. The mammals express two IRBIT paralogs, i.e., IRBIT1 (encoded by AHCYL1) and IRBIT2 (encoded by AHCYL2). The clawed frog Xenopus laevis oocyte is widely used for biophysical studies on ion channels and transporters. It remains unknown whether endogenous IRBIT is expressed in Xenopus oocytes. Here, we cloned from frog oocyte irbit2.L and irbit2.S, orthologs of mammalian IRBIT2. When over-expressed, the frog IRBITs powerfully stimulate the electrogenic Na+/HCO3- cotransporter NBCe1-B as mouse IRBIT2-V2 does. Expression of an isolated Nt fragment of NBCe1-B containing the IRBIT-binding domain greatly decreases NBCe1-B activity in oocytes, suggesting that the basal activity of NBCe1-B contains a large component derived from the stimulation by endogenous frog IRBIT. The frog IRBITs are highly homologous to the mammalian ones in the carboxyl-terminal region, but varies greatly in the amino-terminal (Nt) appendage. Interestingly, truncation study showed that the Nt appendage of IRBIT1 and the long Nt appendage of IRBIT2-V2 modestly enhance, whereas the short Nt appendage of IRBIT2-V4 greatly inhibits the functional interaction between IRBIT and NBCe1-B. Finally, Ala-substitution of Ser68, a key phosphorylation site in the PEST domain of IRBIT, causes distinct functional consequences depending on the structural context of the Nt appendage in different IRBIT isoforms. We conclude that the Nt appendage of IRBITs is not necessary for, but plays an important regulatory role in the functional interaction between IRBIT and NBCe1-B.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
5
|
Fang L, Lee HW, Chen C, Harris AN, Romero MF, Verlander JW, Weiner ID. Expression of the B splice variant of NBCe1 (SLC4A4) in the mouse kidney. Am J Physiol Renal Physiol 2018; 315:F417-F428. [PMID: 29631353 PMCID: PMC6172571 DOI: 10.1152/ajprenal.00515.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
Sodium-coupled bicarbonate transporters are critical for renal electrolyte transport. The electrogenic, sodium-coupled bicarbonate cotransporter, isoform 1 (NBCe1), encoded by the SLC4A4 geneencoded by the SLC4A4 gene has five multiple splice variants; the A splice variant, NBCe1-A, is the primary basolateral bicarbonate transporter in the proximal convoluted tubule. This study's purpose was to determine if there is expression of additional NBCe1 splice variants in the mouse kidney, their cellular distribution, and their regulation by metabolic acidosis. In wild-type mice, an antibody reactive only to NBCe1-A showed basolateral immunolabel only in cortical proximal tubule (PT) segments, whereas an antibody reactive to all NBCe1 splice variants (pan-NBCe1) showed basolateral immunolabel in PT segments in both the cortex and outer medulla. In mice with NBCe1-A deletion, the pan-NBCe1 antibody showed basolateral PT immunolabel in both the renal cortex and outer stripe of the outer medulla, and immunoblot analysis showed expression of a ~121-kDa protein. RT-PCR of mRNA from NBCe1-A knockout mice directed at splice variant-specific regions showed expression of only NBCe1-B mRNA. In wild-type kidney, RT-PCR confirmed expression of mRNA for the NBCe1-B splice variant and absence of mRNA for the C, D, and E splice variants. Finally, exogenous acid loading increased expression in the proximal straight tubule in the outer stripe of the outer medulla. These studies demonstrate that the NBCe1-B splice variant is present in the PT, and its expression increases in response to exogenous acid loading, suggesting it participates in the PT contribution to acid-base homeostasis.
Collapse
Affiliation(s)
- Lijuan Fang
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Chao Chen
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
6
|
Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins. Proc Natl Acad Sci U S A 2017; 114:3921-3926. [PMID: 28348216 DOI: 10.1073/pnas.1618514114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IRBIT [inositol 1,4,5-trisphosphate receptor (IP3R) binding protein released with inositol 1,4,5-trisphosphate (IP3)] is a multifunctional protein that regulates several target molecules such as ion channels, transporters, polyadenylation complex, and kinases. Through its interaction with multiple targets, IRBIT contributes to calcium signaling, electrolyte transport, mRNA processing, cell cycle, and neuronal function. However, the regulatory mechanism of IRBIT binding to particular targets is poorly understood. Long-IRBIT is an IRBIT homolog with high homology to IRBIT, except for a unique N-terminal appendage. Long-IRBIT splice variants have different N-terminal sequences and a common C-terminal region, which is involved in multimerization of IRBIT and Long-IRBIT. In this study, we characterized IRBIT and Long-IRBIT splice variants (IRBIT family). We determined that the IRBIT family exhibits different mRNA expression patterns in various tissues. The IRBIT family formed homo- and heteromultimers. In addition, N-terminal splicing of Long-IRBIT changed the protein stability and selectivity to target molecules. These results suggest that N-terminal diversity of the IRBIT family and various combinations of multimer formation contribute to the functional diversity of the IRBIT family.
Collapse
|