1
|
Dolatshahi M, Bahrami AR, Sheikh QI, Ghanbari M, Matin MM. Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles. Arch Pharm Res 2024; 47:1-19. [PMID: 38151649 DOI: 10.1007/s12272-023-01477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies in the world, with a high mortality rate in both women and men. Conventional treatments, like chemotherapy, radiotherapy and surgery, are facing some drawbacks like acquired drug resistance and various side effects, leading to cancer recurrence and increased morbidity; thus, development of novel approaches in targeted therapy would be very beneficial. Exosomes, extracellular vesicles with a size distribution of sub-150 nm, interplay in physiological and pathophysiological cell-cell communications and can pave the way for targeted cancer therapy. Accumulating pieces of evidence have indicated that exosomes derived from mesenchymal stem cells (MSC-EXs) can act as a double-edged sword in some cancers. The purpose of this review is to assess the differences between stem cell therapy and exosome therapy. Moreover, our aim is to demonstrate how naïve MSCs transform into GC-MSCs in the tumor microenvironment. Additionally, the tumorigenic and anti-proliferation effects of MSC-EXs derived from different origins were investigated. Finally, we suggest potential modifications and combination options that involve utilizing MSC-EXs from the foreskin and umbilical cord as promising sources to enhance the efficacy of gastric cancer treatment. This approach is presented in contrast to bone marrow cells, which are more heterogeneous, age-related, and are also easily affected by the patient's circulation system.
Collapse
Affiliation(s)
- Maryam Dolatshahi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Qaiser Iftikhar Sheikh
- School of Biosciences, Western Bank, Firth Court, University of Sheffield, Sheffield, S10 2TN, England, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Pereira J, Santos M, Delabio R, Barbosa M, Smith M, Payão S, Rasmussen L. Analysis of Gene Expression of miRNA-106b-5p and TRAIL in the Apoptosis Pathway in Gastric Cancer. Genes (Basel) 2020; 11:genes11040393. [PMID: 32260540 PMCID: PMC7230378 DOI: 10.3390/genes11040393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the main causes of gastric gancer. TNF-related apoptosis-inducing ligand (TRAIL) is a protein able to promote apoptosis in cancer cells, however not in gastric cancer, which presents resistance to apoptosis via TRAIL. It is believed that MicroRNA-106b-5p might be involved in this resistance, although its role in Gastric Cancer is unclear. We aimed to determine the expression of microRNA-106b-5p and TRAIL in patients with gastric diseases, infected by H. pylori, and understand the relationship between these genes and their role in apoptosis and the gastric cancer pathways. H. pylori was detected by PCR, gene expression analysis was performed by real-time-qPCR, and bioinformatics analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cytoscape software. A total of 244 patients were divided into groups (Control, Gastritis, and Cancer); H. pylori was detected in 42.2% of the samples. The cancer group had a poor expression of TRAIL (p < 0.0001) and overexpression of microRNA-106b-5p (p = 0.0005), however, our results confirmed that these genes are not directly related to each other although both are apoptosis-related regulators. Our results also indicated that H. pylori decreases microRNA-106b-5p expression and that this is a carcinogenic bacterium responsible for gastric diseases.
Collapse
Affiliation(s)
- Jéssica Pereira
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Mônica Santos
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Roger Delabio
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Mônica Barbosa
- Department of Biosciences and Technology of Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiânia, Goiás 74605-050, Brazil;
| | - Marília Smith
- Department of Morphology and Genetics, Escola Paulista de Medicina, Federal University of Sao Paulo (UNIFESP), São Paulo 04023-062, Brazil;
| | - Spencer Payão
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Lucas Rasmussen
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
- Correspondence: ; Tel.: +55-14-34021856
| |
Collapse
|
3
|
Llavero F, Luque Montoro M, Arrazola Sastre A, Fernández-Moreno D, Lacerda HM, Parada LA, Lucia A, Zugaza JL. Epidermal growth factor receptor controls glycogen phosphorylase in T cells through small GTPases of the RAS family. J Biol Chem 2019; 294:4345-4358. [PMID: 30647127 DOI: 10.1074/jbc.ra118.005997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
We recently uncovered a regulatory pathway of the muscle isoform of glycogen phosphorylase (PYGM) that plays an important role in regulating immune function in T cells. Here, using various enzymatic, pulldown, and immunoprecipitation assays, we describe signaling cross-talk between the small GTPases RAS and RAP1A, member of RAS oncogene family (RAP1) in human Kit 225 lymphoid cells, which, in turn, is regulated by the epidermal growth factor receptor (EGFR). We found that this communication bridge is essential for glycogen phosphorylase (PYG) activation through the canonical pathway because this enzyme is inactive in the absence of adenylyl cyclase type 6 (ADCY6). PYG activation required stimulation of both exchange protein directly activated by cAMP 2 (EPAC2) and RAP1 via RAS and ADCY6 phosphorylation, with the latter being mediated by Raf-1 proto-oncogene, Ser/Thr kinase (RAF1). Consistent with this model, PYG activation was EGFR-dependent and may be initiated by the constitutively active form of RAS. Consequently, PYG activation in Kit 225 T cells could be blocked with specific inhibitors of RAS, EPAC, RAP1, RAF1, ADCY6, and cAMP-dependent protein kinase. Our results establish a new paradigm for the mechanism of PYG activation, which depends on the type of receptor involved.
Collapse
Affiliation(s)
- Francisco Llavero
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain,
| | - Miriam Luque Montoro
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - Alazne Arrazola Sastre
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain.,the Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| | - David Fernández-Moreno
- the Research Institute of the Hospital 12 de Octubre ("i+12"), 28041 Madrid, Spain.,the Faculty of Sports Science, Universidad Europea de Madrid, 28670 Madrid, Spain
| | | | - Luis A Parada
- the Instituto de Patología Experimental, Universidad Nacional de Salta, A4400 Salta, Argentina, and
| | - Alejandro Lucia
- the Research Institute of the Hospital 12 de Octubre ("i+12"), 28041 Madrid, Spain.,the Faculty of Sports Science, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - José L Zugaza
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain, .,the Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
5
|
Wang X, Xue Q, Wu L, Wang B, Liang H. Dasatinib promotes TRAIL-mediated apoptosis by upregulating CHOP-dependent death receptor 5 in gastric cancer. FEBS Open Bio 2018; 8:732-742. [PMID: 29744288 PMCID: PMC5929929 DOI: 10.1002/2211-5463.12404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/21/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
Dasatinib, a tyrosine kinase inhibitor, has been approved for first‐line treatment of leukemia and has also been evaluated for use in numerous other cancers. However, its role in gastric cancer (GC) remains unclear. Therefore, the aim of this study was to investigate how dasatinib suppresses the growth of GC cells and interacts with chemotherapeutic drugs. The results showed that, in the presence of dasatinib, proliferation of GC cells decreased and apoptosis increased, and that Fas‐associated death domain protein and caspase‐8 are essential to dasatinib‐induced cell apoptosis in GC. In addition, we found that dasatinib increased the expression of death receptor 5 (DR5) in GC cells. Dasatinib enhanced apoptosis induced by tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) in GC cells. Moreover, increased DR5 expression facilitated dasatinib‐induced apoptosis; the dasatinib‐induced increase in DR5 expression was mediated by CCAAT/enhancer‐binding protein homologous protein (CHOP). Furthermore, dasatinib also synergized with TRAIL to induce apoptosis via DR5 in GC cells. Our results show that dasatinib promoted TRAIL‐mediated apoptosis via upregulation of CHOP‐dependent DR5 expression in GC, suggesting that DR5 induction can be used as an indicator of dasatinib sensitivity.
Collapse
Affiliation(s)
- Xiaona Wang
- Department of Gastric Cancer Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin's Clinical Research Center for Cancer China
| | - Qiang Xue
- Department of Gastric Cancer Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin's Clinical Research Center for Cancer China
| | - Liangliang Wu
- Department of Gastric Cancer Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin's Clinical Research Center for Cancer China
| | - Baogui Wang
- Department of Gastric Cancer Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin's Clinical Research Center for Cancer China
| | - Han Liang
- Department of Gastric Cancer Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin's Clinical Research Center for Cancer China
| |
Collapse
|