1
|
Choi SH, Kim HC, Jang SG, Lee YJ, Heo JY, Kweon GR, Ryu MJ. Effects of a Combination of Polynucleotide and Hyaluronic Acid for Treating Osteoarthritis. Int J Mol Sci 2024; 25:1714. [PMID: 38338992 PMCID: PMC10855695 DOI: 10.3390/ijms25031714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Knee osteoarthritis (OA), an age-related degenerative disease characterized by severe pain and disability, is treated using polynucleotides (PNs) and hyaluronic acid (HA). The intra-articular (IA) injection of HA has been studied extensively in both animal models and in humans; however, the efficacy and mechanisms of action remain unclear. In addition, there has been a paucity of research regarding the use of PN alone or in combination with HA in OA. To investigate the effect of the combined injection of PN and HA in vivo, pathological and behavioral changes were assessed in an OA model. Anterior cruciate ligament transection and medial meniscectomy were performed in Sprague-Dawley rats to create the OA animal model. The locomotor activity improved following PNHA injection, while the OARSI grade improved in the medial tibia and femur. In mild OA, TNFα levels decreased histologically in the PN, HA, and PNHA groups but only the PNHA group showed behavioral improvement in terms of distance. In conclusion, PNHA exhibited anti-inflammatory effects during OA progression and improved locomotor activity regardless of the OARSI grade.
Collapse
Affiliation(s)
- Seung Hee Choi
- Joonghun Pharmaceutical Co., Ltd., 15 Gukhoe-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Republic of Korea; (S.H.C.); (H.C.K.); (S.G.J.); (Y.J.L.)
| | - Hyun Chul Kim
- Joonghun Pharmaceutical Co., Ltd., 15 Gukhoe-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Republic of Korea; (S.H.C.); (H.C.K.); (S.G.J.); (Y.J.L.)
| | - Seul Gi Jang
- Joonghun Pharmaceutical Co., Ltd., 15 Gukhoe-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Republic of Korea; (S.H.C.); (H.C.K.); (S.G.J.); (Y.J.L.)
| | - Yeon Jae Lee
- Joonghun Pharmaceutical Co., Ltd., 15 Gukhoe-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Republic of Korea; (S.H.C.); (H.C.K.); (S.G.J.); (Y.J.L.)
| | - Jun Young Heo
- Department of Biochemistry, College of Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; (J.Y.H.); (G.R.K.)
| | - Gi Ryang Kweon
- Department of Biochemistry, College of Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea; (J.Y.H.); (G.R.K.)
| | - Min Jeong Ryu
- Joonghun Pharmaceutical Co., Ltd., 15 Gukhoe-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Republic of Korea; (S.H.C.); (H.C.K.); (S.G.J.); (Y.J.L.)
| |
Collapse
|
2
|
Kim J, Chun S, Ohk SO, Kim S, Kim J, Lee S, Kim H, Kim S. Amelioration of alcohol‑induced gastric mucosa damage by oral administration of food‑polydeoxyribonucleotides. Mol Med Rep 2021; 24:790. [PMID: 34505634 PMCID: PMC8441963 DOI: 10.3892/mmr.2021.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Gastritis refers to inflammation caused by injury to the gastric epithelium, which is usually due to excessive alcohol consumption and prolonged use of nonsteroidal anti-inflammatory drugs. Millions of individuals worldwide suffer from this disease. However, the lack of safe and promising treatments makes it urgent to explore and develop leads from natural resources. Therefore, food as medicine may be the best approach for the treatment of these disorders. The present study described the protective effects of food-polydeoxyribonucleotides (f-PDRNs) in a rat model of gastric mucosal injury induced by HCl-EtOH. Administration of f-PDRN was performed with low-PRF002 (26 mg/kg/day), medium-PRF002 (52 mg/kg/day) and high-PRF002 (78 mg/kg/day) on the day of autopsy. The site of damage to the mucous membrane was also analysed. In addition, an increase in gastric juice pH, total acidity of gastric juice and decrease in gastric juice secretion were confirmed, and gastric juice secretion-related factors corresponding to the administration of f-PDRN were analysed. Administration of f-PDRN reduced the mRNA expression of histamine H2 receptor, muscarinic acetylcholine receptor M3, cholecystokinin 2 receptor and H+/K+ ATPase related to gastric acid secretion and downregulation of histamine, myeloperoxidase and cyclic adenosine monophosphate. In addition, it was histologically confirmed that the loss of epithelial cells and the distortion of the mucosa were recovered in the group in which f-PDRN was administered compared to the model group with gastric mucosa damage. In summary, the present study suggested that f-PDRN has therapeutic potential and may have beneficial effects if taken regularly as a food supplement.
Collapse
Affiliation(s)
- Jonghwan Kim
- Technology Innovation Team, C&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Soyoung Chun
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Seul-Ong Ohk
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Sanghoon Kim
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Juwan Kim
- Pharmaceutical Formulation Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Sungoh Lee
- Research Strategy Team, C&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Hangyu Kim
- DNA Team, R&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| | - Sujong Kim
- Research Strategy Team, C&D Center, Pharma Research, Seongnam, Gyeonggi‑do 13486, Republic of Korea
| |
Collapse
|
3
|
Fazal N, Khawaja H, Naseer N, Khan AJ, Latief N. Daphne mucronata enhances cell proliferation and protects human adipose stem cells against monosodium iodoacetate induced oxidative stress in vitro. Adipocyte 2020; 9:495-508. [PMID: 32867575 PMCID: PMC7714443 DOI: 10.1080/21623945.2020.1812242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are being used to treat many diseases as they exhibit great regenerative potential. However, MSC's transplantation sometimes does not yield the maximum regenerative outcome as they are unable to survive in inflammatory conditions. Several approaches including preconditioning are used to improve the survival rate of mesenchymal stem cells. One such recently reported approach is preconditioning MSCs with plant extracts. The present study was designed to evaluate the effect of Daphne mucronata extract on stressed human adipose-derived mesenchymal stem cells (hADMSCs). Isolated hADMSCs were preconditioned with different concentrations of Daphne muconata extract and the protective, proliferative, antioxidant and anti-inflammatory effect was assessed through various assays and expression analysis of inflammatory markers regulated through NF-κB pathway. Results suggest that preconditioning hADMSCs with Daphne mucronata increased the cell viability, proliferative and protective potential of hADMSCs with a concomitant reduction in LDH, ROS and elevation in SOD activity. Moreover, both the ELISA and gene expression analysis demonstrated down regulations of inflammatory markers (IL1-β, TNF-α, p65, p50, MMP13) in Daphne mucronata preconditioned hADMSCs as compared to stress. This is the first study to report the use of MIA induced oxidative stress against hADMSC's and effect of Daphne mucronata on stressed hADMSCs. Results of these studies provided evidence that Daphne mucronata protects the hADMSCs during stress conditions by down regulating the inflammatory markers and hence increase the viability and proliferative potential of hADMSCs that is crucial for transplantation purposes.
Collapse
Affiliation(s)
- Numan Fazal
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hamzah Khawaja
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadia Naseer
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Azim Jahangir Khan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Noreen Latief
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Ko IG, Jin JJ, Hwang L, Kim SH, Kim CJ, Han JH, Kwak MS, Yoon JY, Jeon JW. Evaluating the mucoprotective effect of polydeoxyribonucleotide against indomethacin-induced gastropathy via the MAPK/NF-κB signaling pathway in rats. Eur J Pharmacol 2020; 874:172952. [PMID: 31996319 DOI: 10.1016/j.ejphar.2020.172952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/23/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) cause gastric mucosal damage and gastric ulceration. Among the most commonly used NSAIDs, indomethacin upregulates mucosal tumor necrosis factor-α, which activates nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinases (MAPK) to induce various pro-inflammatory mediators. Polydeoxyribonucleotide (PDRN) is an adenosine A2A receptor agonist that exerts anti-inflammatory effects. In this study, we evaluated the efficacy of PDRN in the initial treatment of gastropathy against that of ecabet sodium and irsoglandin maleate, which are commonly used medications. The rats were administrated indomethacin once a day for 7 days after 24 h of fasting to induce gastropathy. Rats in the drug-treated groups were orally administrated 500 μl of distilled water containing the drug once daily for 7 days 1 h after indomethacin administration. Indomethacin administration caused mucosal damage and increased pro-inflammatory cytokine release. Both NF-κB and MAPK cascade factors were increased by indomethacin administration. PDRN therapy more potently suppressed the expressions of NF-κB and MAPK cascade factors compared to other drugs. The expression of cyclic adenosine-3',5'-monophosphate was also increased by PDRN treatment in the indomethacin-induced gastropathy rats. These changes led to a reduction in pro-inflammatory cytokines and apoptotic factors, which ultimately promote recovery of damaged gastric tissue. Therefore, PDRN may serve as a new therapeutic option in the initial treatment of NSAIDs-induced gastropathy.
Collapse
Affiliation(s)
- Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang-Hoon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jin Hee Han
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Min Seop Kwak
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea
| | - Jin Young Yoon
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea
| | - Jung Won Jeon
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| |
Collapse
|
5
|
Dexmedetomidine exerts dual effects on human annulus fibrosus chondrocytes depending on the oxidative stress status. Biosci Rep 2019; 39:BSR20190419. [PMID: 31383789 PMCID: PMC6706599 DOI: 10.1042/bsr20190419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Dexmedetomidine (Dex) is an anesthetic widely used in lumbar discectomy, but its effect on chondrocytes remains unclear. Dex is speculated to promote cartilage degeneration by activating α-2 adrenergic receptor. However, the antioxidative and anti-inflammatory effects of Dex implied the potential chondrocyte protective effect under stress conditions. The present study aimed to determine the effect of Dex on chondrocytes under non-stress and stress conditions. Chondrocytes were isolated from human annulus fibrosus (AF) tissues and oxidative stress was induced by treatment with 1 mM hydrogen peroxide (H2O2). Chondrocytes were treated with Dex alone or in combination with H2O2. Treatment with Dex alone decreased mRNA expression of COL2A1 and increased that of MMP-3 and MMP-13, thus contributing to cartilage degeneration. However, Dex prevented H2O2-induced death and degeneration of chondrocytes partly by enhancing antioxidant capacity. Mechanistically, Dex attenuated H2O2-mediated activation of NF-κB and NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), both of which play key roles in inflammation and inflammatory damage. Dex inactivated NLRP3 through the suppression of NF-κB and JNK signals. Co-treatment with Dex and H2O2 increased protein level of XIAP (X-linked inhibitor-of-apoptosis, an anti-apoptosis protein), compared with H2O2 treatment alone. H2O2 treatment increased the expression of neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) that is a ubiquitin ligase targeting XIAP. However, Dex decreased the amount of NEDD4 adhering to XIAP, thus protecting XIAP protein from NEDD4-mediated ubiquitination and degradation. Given that surgery inevitably causes oxidative stress and inflammation, the protective effect of Dex on chondrocytes during oxidative stress is noteworthy and warrants further study.
Collapse
|
6
|
Qiu X, Zhuang M, Lu Z, Liu Z, Cheng D, Zhu C, Liu J. RIPK1 suppresses apoptosis mediated by TNF and caspase-3 in intervertebral discs. J Transl Med 2019; 17:135. [PMID: 31029152 PMCID: PMC6487042 DOI: 10.1186/s12967-019-1886-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Low back pain has become a serious social and economic burden and the leading cause of disability worldwide. Among a variety of pathophysiological triggers, intervertebral disc (IVD) degeneration plays a primary underlying role in causing such pain. Specifically, multiple independent endplate changes have been implicated in the initiation and progression of IVD degeneration. METHODS In this study, we built a signaling network comprising both well-characterized IVD pathology-associated proteins as well as some potentially correlated proteins that have been associated with one or more of the currently known pathology-associated proteins. We then screened for the potential IVD degeneration-associated proteins using patients' normal and degenerative endplate specimens. Short hairpin RNAs for receptor interacting serine/threonine kinase 1 (RIPK1) were constructed to examine the effects of RIPK1 knockdown in primary chondrocyte cells and in animal models of caudal vertebra intervertebral disc degeneration in vivo. RESULTS RIPK1 was identified as a potential IVD degeneration-associated protein based on IVD pathology-associated signaling networks and the patients' degenerated endplate specimens. Construction of the short hairpin RNAs was successful, with short-term RIPK1 knockdown triggering inflammation in the primary chondrocytes, while long-term knockdown triggered apoptosis through cleavage of the caspase 3 pathway, down-regulated NF-κB and mitogen-activating protein kinase (MAPK)s cascades, and decreased cell survival and inflammation. Animal models of caudal vertebra intervertebral disc degeneration further demonstrated that apoptosis was induced by up-regulation of tumor necrosis factor (TNF) accompanied by down-regulation of NF-κB and MAPKs cascades that are dependent on caspase and RIPK1. CONCLUSIONS These results provide proof-of-concept for developing novel therapies to combat IVD degeneration through interfering with RIPK1-mediated apoptosis signaling pathways especially in patients with RIPK1 abnormality.
Collapse
Affiliation(s)
- Xubin Qiu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Ming Zhuang
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Zhiwei Liu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Dong Cheng
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Chenlei Zhu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Jinbo Liu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| |
Collapse
|