1
|
Liu Y, Niu Z, Wang X, Xiu C, Hu Y, Wang J, Lei Y, Yang J. Yiqihuoxue decoction (GSC) inhibits mitochondrial fission through the AMPK pathway to ameliorate EPCs senescence and optimize vascular aging transplantation regimens. Chin Med 2024; 19:143. [PMID: 39402613 PMCID: PMC11479513 DOI: 10.1186/s13020-024-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND During the aging process, the number and functional activity of endothelial progenitor cells (EPCs) are impaired, leading to the unsatisfactory efficacy of transplantation. Previous studies demonstrated that Yiqihuoxue decoction (Ginseng-Sanqi-Chuanxiong, GSC) exerts anti-vascular aging effects. The purpose of this study is to evaluated the effects of GSC on D-galactose (D-gal)induced senescence and the underlying mechanisms. METHODS The levels of cellular senescence-related markers P16, P21, P53, AMPK and p-AMPK were detected by Western blot analysis (WB). SA-β-gal staining was used to evaluate cell senescence. EPCs function was measured by CCK-8, Transwell cell migration and cell adhesion assay. The morphological changes of mitochondria were detected by confocal microscopy. The protein and mRNA expression of mitochondrial fusion fission Drp1, Mff, Fis1, Mfn1, Mfn2 and Opa1 in mitochondria were detect using WB and RT-qPCR. Mitochondrial membrane potential, mtROS and ATP of EPCs were measured using IF. H&E staining was used to observe the pathological changes and IMT of the aorta. The expressions of AGEs, MMP-2 and VEGF in aorta were measured using Immunohistochemical (IHC). The levels of SOD, MDA, NO and ET-1 in serum were detected by SOD, MDA and NO kits. RESULTS In vitro, GSC ameliorated the senescence of EPCs induced by D-gal and reduced the expression of P16, P21 and P53. The mitochondrial morphology of EPCs was restored, the expression of mitochondrial Drp1, Mff and Fis1 protein was decreased, the levels of mtROS and ATP were decreased, and mitochondrial function was improved. Meanwhile, the expression of AMPK and p-AMPK increased. The improvement effects of GSC on aging and mitochondrial morphology and function were were hindered after adding AMPK inhibitor. In vivo, GSC improved EPCs efficiency, ameliorated aortic structural disorder and decreased IMT in aging mice. The serum SOD level increased and MDA level decreased, indicating the improvement of antioxidant capacity. Increased NO content and ET-1 content suggested improvement of vascular endothelial function. The changes observed in SOD and MMP-2 suggested a reduction in vascular stiffness and the degree of vascular damage. The decreased expression of P21 and P53 indicates the delay of vascular senescence.
Collapse
Affiliation(s)
- Yinan Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zenghui Niu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chengkui Xiu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanhong Hu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiali Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Yan Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Sun F, Fang M, Zhang H, Song Q, Li S, Li Y, Jiang S, Yang L. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys 2024; 82:435-455. [PMID: 38438751 DOI: 10.1007/s12013-024-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.
Collapse
Affiliation(s)
- Fulin Sun
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Min Fang
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266021, Shandong, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. An integral role of mitochondrial function in the pathophysiology of preeclampsia. Mol Biol Rep 2024; 51:330. [PMID: 38393449 DOI: 10.1007/s11033-024-09285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Preeclampsia (PE) is associated with high maternal and perinatal morbidity and mortality. The development of effective treatment strategies remains a major challenge due to the limited understanding of the pathogenesis. In this review, we summarize the current understanding of PE research, focusing on the molecular basis of mitochondrial function in normal and PE placentas, and discuss perspectives on future research directions. Mitochondria integrate numerous physiological processes such as energy production, cellular redox homeostasis, mitochondrial dynamics, and mitophagy, a selective autophagic clearance of damaged or dysfunctional mitochondria. Normal placental mitochondria have evolved innovative survival strategies to cope with uncertain environments (e.g., hypoxia and nutrient starvation). Cytotrophoblasts, extravillous trophoblast cells, and syncytiotrophoblasts all have distinct mitochondrial morphology and function. Recent advances in molecular studies on the spatial and temporal changes in normal mitochondrial function are providing valuable insight into PE pathogenesis. In PE placentas, hypoxia-mediated mitochondrial fission may induce activation of mitophagy machinery, leading to increased mitochondrial fragmentation and placental tissue damage over time. Repair mechanisms in mitochondrial function restore placental function, but disruption of compensatory mechanisms can induce apoptotic death of trophoblast cells. Additionally, molecular markers associated with repair or compensatory mechanisms that may influence the development and progression of PE are beginning to be identified. However, contradictory results have been obtained regarding some of the molecules that control mitochondrial biogenesis, dynamics, and mitophagy in PE placentas. In conclusion, understanding how the mitochondrial morphology and function influence cell fate decisions of trophoblast cells is an important issue in normal as well as pathological placentation biology. Research focusing on mitochondrial function will become increasingly important for elucidating the pathogenesis and effective treatment strategies of PE.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara, 634-0813, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan.
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara, 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6, Naruo-cho, Nishinomiya, 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara, 634- 0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara, 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
| |
Collapse
|
4
|
Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z. Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. Front Physiol 2023; 14:1239643. [PMID: 37645564 PMCID: PMC10461481 DOI: 10.3389/fphys.2023.1239643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria are the centrol hub for cellular energy metabolisms. They regulate fuel metabolism by oxygen levels, participate in physiological signaling pathways, and act as oxygen sensors. Once oxygen deprived, the fuel utilizations can be switched from mitochondrial oxidative phosphorylation to glycolysis for ATP production. Notably, mitochondria can also adapt to hypoxia by making various functional and phenotypes changes to meet the demanding of oxygen levels. Hypoxic pulmonary hypertension is a life-threatening disease, but its exact pathgenesis mechanism is still unclear and there is no effective treatment available until now. Ample of evidence indicated that mitochondria play key factor in the development of hypoxic pulmonary hypertension. By hypoxia-inducible factors, multiple cells sense and transmit hypoxia signals, which then control the expression of various metabolic genes. This activation of hypoxia-inducible factors considered associations with crosstalk between hypoxia and altered mitochondrial metabolism, which plays an important role in the development of hypoxic pulmonary hypertension. Here, we review the molecular mechanisms of how hypoxia affects mitochondrial function, including mitochondrial biosynthesis, reactive oxygen homeostasis, and mitochondrial dynamics, to explore the potential of improving mitochondrial function as a strategy for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yumei Geng
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yu Hu
- Department of Pharmacy, Qinghai Provincial Traffic Hospital, Xining, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yajun Tuo
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Rili Ge
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhenzhong Bai
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
5
|
Liu Z, Wang N, Meng Z, Lu S, Peng G. Pseudolaric acid B triggers cell apoptosis by activating AMPK/JNK/DRP1/mitochondrial fission pathway in hepatocellular carcinoma. Toxicology 2023:153556. [PMID: 37244295 DOI: 10.1016/j.tox.2023.153556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Pseudolaric acid B (PAB), a natural product isolated from the root bark of Pseudolarix kaempferi, has been reported to exert inhibitory effects in various cancers. However, the underlying mechanisms remain largely unclear. In the present study, we investigated the mechanism through which PAB exert its anticancer effects in hepatocellular carcinoma (HCC). PAB inhibited the viability of and induced apoptosis in Hepa1-6 cells in a dose-dependent manner. It disrupted mitochondrial membrane potential (MMP) and impaired ATP production. Furthermore, PAB induced phosphorylation of DRP1 at Ser616 and mitochondrial fission. Blocking DRP1 phosphorylation by Mdivi-1 inhibited mitochondrial fission and PAB-induced apoptosis. Moreover, c-Jun N-terminal kinase (JNK) was activated by PAB, and blocking JNK activity using SP600125 inhibited PAB-induced mitochondrial fission and cell apoptosis. Furthermore, PAB activated AMP-activated protein kinase (AMPK), and inhibiting AMPK by compound C attenuated PAB-stimulated JNK activation and blocked DRP1-dependent mitochondrial fission and apoptosis. Our in vivo data confirmed that PAB inhibited tumor growth and induced apoptosis in an HCC syngeneic mouse model by inducing the AMPK/JNK/DRP1/mitochondrial fission signaling pathway. Furthermore, a combination of PAB and sorafenib showed a synergistic effect in inhibiting tumor growth in vivo. Taken together, our findings highlight a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Zhanxu Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Laboratory for Tumor Immunology, The First Hospital, Jilin University, Changchun, Jilin, China 130061
| | - Nanya Wang
- The Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China 130061
| | - Zhaoli Meng
- Laboratory for Tumor Immunology, The First Hospital, Jilin University, Changchun, Jilin, China 130061
| | - Shiying Lu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Gong Peng
- Laboratory for Tumor Immunology, The First Hospital, Jilin University, Changchun, Jilin, China 130061.
| |
Collapse
|
6
|
Kim H, Ahn Y, Moon CM, Kang JL, Woo M, Kim M. Lethal effects of mitochondria via microfluidics. Bioeng Transl Med 2023; 8:e10461. [PMID: 37206227 PMCID: PMC10189453 DOI: 10.1002/btm2.10461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/25/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor cells can respond to therapeutic agents by morphologic alternations including formation of tunneling nanotubes. Using tomographic microscope, which can detect the internal structure of cells, we found that mitochondria within breast tumor cells migrate to an adjacent tumor cell through a tunneling nanotube. To investigate the relationship between mitochondria and tunneling nanotubes, mitochondria were passed through a microfluidic device that mimick tunneling nanotubes. Mitochondria, through the microfluidic device, released endonuclease G (Endo G) into adjacent tumor cells, which we referred to herein as unsealed mitochondria. Although unsealed mitochondria did not induce cell death by themselves, they induced apoptosis of tumor cells in response to caspase-3. Importantly, Endo G-depleted mitochondria were ineffective as lethal agents. Moreover, unsealed mitochondria had synergistic apoptotic effects with doxorubicin in further increasing tumor cell death. Thus, we show that the mitochondria of microfluidics can provide novel strategies toward tumor cell death.
Collapse
Affiliation(s)
- Hyueyun Kim
- Department of PharmacologyCollege of Medicine, Ewha Womans UniversitySeoulRepublic of Korea
| | - Young‐Ho Ahn
- Department of Molecular MedicineCollege of Medicine, Ewha Womans UniversitySeoulRepublic of Korea
| | - Chang Mo Moon
- Department of Internal MedicineCollege of Medicine, Ewha Womans UniversitySeoulRepublic of Korea
| | - Jihee Lee Kang
- Department of Physiology and Inflammation‐Cancer Microenvironment Research CenterCollege of Medicine, Ewha Womans UniversitySeoulRepublic of Korea
| | - Minna Woo
- Division of Endocrinology and Metabolism, Department of MedicineToronto General Hospital, Research Institute, University Health Network, University of TorontoTorontoOntarioCanada
| | - Minsuk Kim
- Department of PharmacologyCollege of Medicine, Ewha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
7
|
Tabe Y, Konopleva M. Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:138-150. [PMID: 37065866 PMCID: PMC10099600 DOI: 10.20517/cdr.2022.133] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 04/18/2023]
Abstract
In response to the changing availability of nutrients and oxygen in the bone marrow microenvironment, acute myeloid leukemia (AML) cells continuously adjust their metabolic state. To meet the biochemical demands of their increased proliferation, AML cells strongly depend on mitochondrial oxidative phosphorylation (OXPHOS). Recent data indicate that a subset of AML cells remains quiescent and survives through metabolic activation of fatty acid oxidation (FAO), which causes uncoupling of mitochondrial OXPHOS and facilitates chemoresistance. For targeting these metabolic vulnerabilities of AML cells, inhibitors of OXPHOS and FAO have been developed and investigated for their therapeutic potential. Recent experimental and clinical evidence has revealed that drug-resistant AML cells and leukemic stem cells rewire metabolic pathways through interaction with BM stromal cells, enabling them to acquire resistance against OXPHOS and FAO inhibitors. These acquired resistance mechanisms compensate for the metabolic targeting by inhibitors. Several chemotherapy/targeted therapy regimens in combination with OXPHOS and FAO inhibitors are under development to target these compensatory pathways.
Collapse
Affiliation(s)
- Yoko Tabe
- Department of Laboratory Medicine, Juntendo University, Tokyo 112-8421, Japan
- Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marina Konopleva
- Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence to: Prof. Marina Konopleva, Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine and Montefiore Medical Center,1300 Morris Park Avenue, NY 10461, USA; Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
8
|
Kim H, Choi JH, Moon CM, Kang JL, Woo M, Kim M. Shrimp miR-965 transfers tumoricidal mitochondria. Biol Proced Online 2022; 24:16. [PMID: 36289539 PMCID: PMC9598032 DOI: 10.1186/s12575-022-00178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background Micro RNA of Marsupenaeus japonicas has been known to promote apoptosis of tumor cells. However, the detailed mechanisms are not well understood. Results Using tomographic microscope, which can detect the internal structure of cells, we observed breast tumor cells following treatment of the miRNA. Intriguingly, we found that mitochondria migrate to an adjacent tumor cells through a tunneling nanotube. To recapitulate this process, we engineered a microfluidic device through which mitochondria were transferred. We show that this mitochondrial transfer process released endonuclease G (Endo G) into tumor cells, which we referred to herein as unsealed mitochondria. Importantly, Endo G depleted mitochondria alone did not have tumoricidal effects. Moreover, unsealed mitochondria had synergistic apoptotic effects with subtoxic dose of doxorubicin thereby mitigating cardiotoxicity. Conclusions Together, we show that the mitochondrial transfer through microfluidics can provide potential novel strategies towards tumor cell death. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-022-00178-8.
Collapse
Affiliation(s)
- Hyueyun Kim
- grid.255649.90000 0001 2171 7754Department of Pharmacology, College of Medicine, Ewha Womans University, Magokdong-Ro 2-Gil, Gangseogu, Seoul, 07804 Republic of Korea
| | - Ji Ha Choi
- grid.255649.90000 0001 2171 7754Department of Pharmacology, College of Medicine, Ewha Womans University, Magokdong-Ro 2-Gil, Gangseogu, Seoul, 07804 Republic of Korea
| | - Chang Mo Moon
- grid.255649.90000 0001 2171 7754Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- grid.255649.90000 0001 2171 7754Department of Physiology and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minna Woo
- grid.17063.330000 0001 2157 2938Toronto General Hospital Research Institute and Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, ON Canada
| | - Minsuk Kim
- grid.255649.90000 0001 2171 7754Department of Pharmacology, College of Medicine, Ewha Womans University, Magokdong-Ro 2-Gil, Gangseogu, Seoul, 07804 Republic of Korea
| |
Collapse
|
9
|
Boulton DP, Caino MC. Mitochondrial Fission and Fusion in Tumor Progression to Metastasis. Front Cell Dev Biol 2022; 10:849962. [PMID: 35356277 PMCID: PMC8959575 DOI: 10.3389/fcell.2022.849962] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are highly dynamic organelles which can change their shape, via processes termed fission and fusion, in order to adapt to different environmental and developmental contexts. Due to the importance of these processes in maintaining a physiologically healthy pool of mitochondria, aberrant cycles of fission/fusion are often seen in pathological contexts. In this review we will discuss how dysregulated fission and fusion promote tumor progression. We focus on the molecular mechanisms involved in fission and fusion, discussing how altered mitochondrial fission and fusion change tumor cell growth, metabolism, motility, and invasion and, finally how changes to these tumor-cell intrinsic phenotypes directly and indirectly impact tumor progression to metastasis. Although this is an emerging field of investigation, the current consensus is that mitochondrial fission positively influences metastatic potential in a broad variety of tumor types. As mitochondria are now being investigated as vulnerable targets in a variety of cancer types, we underscore the importance of their dynamic nature in potentiating tumor progression.
Collapse
Affiliation(s)
- Dillon P Boulton
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States.,Pharmacology Graduate Program, University of Colorado, Aurora, CO, United States
| | - M Cecilia Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
10
|
Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Blood Adv 2021; 5:4233-4255. [PMID: 34507353 PMCID: PMC8945617 DOI: 10.1182/bloodadvances.2020003661] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/09/2021] [Indexed: 01/03/2023] Open
Abstract
Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation (OxPhos) for survival, and they continually adapt to fluctuations in nutrient and oxygen availability in the bone marrow (BM) microenvironment. We investigated how the BM microenvironment affects the response to OxPhos inhibition in AML by using a novel complex I OxPhos inhibitor, IACS-010759. Cellular adhesion, growth, and apoptosis assays, along with measurements of expression of mitochondrial DNA and generation of mitochondrial reactive oxygen species indicated that direct interactions with BM stromal cells triggered compensatory activation of mitochondrial respiration and resistance to OxPhos inhibition in AML cells. Mechanistically, inhibition of OxPhos induced transfer of mitochondria derived from mesenchymal stem cells (MSCs) to AML cells via tunneling nanotubes under direct-contact coculture conditions. Inhibition of OxPhos also induced mitochondrial fission and increased functional mitochondria and mitophagy in AML cells. Mitochondrial fission is known to enhance cell migration, so we used electron microscopy to observe mitochondrial transport to the leading edge of protrusions of AML cells migrating toward MSCs. We further demonstrated that cytarabine, a commonly used antileukemia agent, increased mitochondrial transfer of MSCs to AML cells triggered by OxPhos inhibition. Our findings indicate an important role of exogenous mitochondrial trafficking from BM stromal cells to AML cells as well as endogenous mitochondrial fission and mitophagy in the compensatory adaptation of leukemia cells to energetic stress in the BM microenvironment.
Collapse
|
11
|
Kumar S, Ashraf R, C K A. Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol 2021; 38:377-406. [PMID: 34661828 DOI: 10.1007/s10565-021-09662-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Regardless of the recent advances in therapeutic developments, cancer is still among the primary causes of death globally, indicating the need for alternative therapeutic strategies. Mitochondria, a dynamic organelle, continuously undergo the fusion and fission processes to meet cell requirements. The balanced fission and fusion processes, referred to as mitochondrial dynamics, coordinate mitochondrial shape, size, number, energy metabolism, cell cycle, mitophagy, and apoptosis. An imbalance between these opposing events alters mitochondWangrial dynamics, affects the overall mitochondrial shape, and deregulates mitochondrial function. Emerging evidence indicates that alteration of mitochondrial dynamics contributes to various aspects of tumorigenesis and cancer progression. Therefore, targeting the mitochondrial dynamics regulator could be a potential therapeutic approach for cancer treatment. This review will address the role of imbalanced mitochondrial dynamics in mitochondrial dysfunction during cancer progression. We will outline the clinical significance of mitochondrial dynamics regulators in various cancer types with recent updates in cancer stemness and chemoresistance and its therapeutic potential and clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna C K
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
12
|
Zhu Y, Han XQ, Sun XJ, Yang R, Ma WQ, Liu NF. Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy. Apoptosis 2021; 25:321-340. [PMID: 31993850 DOI: 10.1007/s10495-020-01592-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arterial media calcification is related to mitochondrial dysfunction. Protective mitophagy delays the progression of vascular calcification. We previously reported that lactate accelerates osteoblastic phenotype transition of VSMC through BNIP3-mediated mitophagy suppression. In this study, we investigated the specific links between lactate, mitochondrial homeostasis, and vascular calcification. Ex vivo, alizarin S red and von Kossa staining in addition to measurement of calcium content, RUNX2, and BMP-2 protein levels revealed that lactate accelerated arterial media calcification. We demonstrated that lactate induced mitochondrial fission and apoptosis in aortas, whereas mitophagy was suppressed. In VSMCs, lactate increased NR4A1 expression, leading to activation of DNA-PKcs and p53. Lactate induced Drp1 migration to the mitochondria and enhanced mitochondrial fission through NR4A1. Western blot analysis of LC3-II and p62 and mRFP-GFP-LC3 adenovirus detection showed that NR4A1 knockdown was involved in enhanced autophagy flux. Furthermore, NR4A1 inhibited BNIP3-related mitophagy, which was confirmed by TOMM20 and BNIP3 protein levels, and LC3-II co-localization with TOMM20. The excessive fission and deficient mitophagy damaged mitochondrial structure and impaired respiratory function, determined by mPTP opening rate, mitochondrial membrane potential, mitochondrial morphology under TEM, ATP production, and OCR, which was reversed by NR4A1 silencing. Mechanistically, lactate enhanced fission but halted mitophagy via activation of the NR4A1/DNA-PKcs/p53 pathway, evoking apoptosis, finally accelerating osteoblastic phenotype transition of VSMC and calcium deposition. This study suggests that the NR4A1/DNA-PKcs/p53 pathway is involved in the mechanism by which lactate accelerates vascular calcification, partly through excessive Drp-mediated mitochondrial fission and BNIP3-related mitophagy deficiency.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xi-Qiong Han
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Rui Yang
- Pharmaceutical Department, Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Wen-Qi Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
13
|
Bacigalupa ZA, Rathmell WK. Beyond glycolysis: Hypoxia signaling as a master regulator of alternative metabolic pathways and the implications in clear cell renal cell carcinoma. Cancer Lett 2020; 489:19-28. [PMID: 32512023 PMCID: PMC7429250 DOI: 10.1016/j.canlet.2020.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
The relationship between kidney cancer, specifically clear cell renal cell carcinoma (ccRCC), and the hypoxia signaling program has been extensively characterized. Its underlying role as the primary driver of the disease has led to the development of the most effective targeted therapies to date. Cellular responses to hypoxia or mutations affecting the von Hippel-Lindau (VHL) tumor suppressor gene stabilize the hypoxia inducible factor (HIF) transcription factors which then orchestrate elaborate downstream signaling events resulting in adaptations to key biological processes, such as reprogramming metabolism. The direct link of hypoxia signaling to glucose uptake and glycolysis has long been appreciated; however, the HIF family of proteins directly regulate many downstream targets, including other transcription factors with their own extensive networks. In this review, we will summarize our current understanding of how hypoxia signaling regulates other metabolic pathways and how this contributes to the development and progression of clear cell renal cell carcinomas.
Collapse
Affiliation(s)
- Zachary A Bacigalupa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
14
|
Fakih W, Mroueh A, Salah H, Eid AH, Obeid M, Kobeissy F, Darwish H, El-Yazbi AF. Dysfunctional cerebrovascular tone contributes to cognitive impairment in a non-obese rat model of prediabetic challenge: Role of suppression of autophagy and modulation by anti-diabetic drugs. Biochem Pharmacol 2020; 178:114041. [DOI: 10.1016/j.bcp.2020.114041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
|
15
|
LKB1/AMPK Pathway and Drug Response in Cancer: A Therapeutic Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8730816. [PMID: 31781355 PMCID: PMC6874879 DOI: 10.1155/2019/8730816] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022]
Abstract
Inactivating mutations of the tumor suppressor gene Liver Kinase B1 (LKB1) are frequently detected in non-small-cell lung cancer (NSCLC) and cervical carcinoma. Moreover, LKB1 expression is epigenetically regulated in several tumor types. LKB1 has an established function in the control of cell metabolism and oxidative stress. Clinical and preclinical studies support a role of LKB1 as a central modifier of cellular response to different stress-inducing drugs, suggesting LKB1 pathway as a highly promising therapeutic target. Loss of LKB1-AMPK signaling confers sensitivity to energy depletion and to redox homeostasis impairment and has been associated with an improved outcome in advanced NSCLC patients treated with chemotherapy. In this review, we provide an overview of the interplay between LKB1 and its downstream targets in cancer and focus on potential therapeutic strategies whose outcome could depend from LKB1.
Collapse
|
16
|
Ding S, Xu J, Zhang Q, Chen F, Zhang J, Gui K, Xiong M, Li B, Ruan Z, Zhao M. OGR1 mediates the inhibitory effects of acidic environment on proliferation and angiogenesis of endothelial progenitor cells. Cell Biol Int 2019; 43:1307-1316. [PMID: 31115941 DOI: 10.1002/cbin.11179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/19/2019] [Indexed: 01/09/2023]
Abstract
Ovarian cancer G-protein-coupled receptor 1 (OGR1), an acid-sensitive receptor, plays a key proton-sensing role through stimulation of inositol phosphate formation. Avascular necrosis of the femoral head is characterized by apoptosis of bone cells mainly resulting from deficient local blood perfusion, eventually leading to acidification with disruption of endothelial progenitor cells' (EPCs) function. However, whether EPCs express OGR1 has not been demonstrated. This study attempted to whether OGR1 mediates the effects of acid on proliferation, migration, and angiogenesis in EPCs. FITC-UEA-I and Dil-Ac-LDL double-staining methods were used to identify EPCs. Expression of OGR1 was analyzed by RT-PCR (reverse transcription PCR) and western blot after incubation in media ranging in pH, cell counting kit-8 and cell cycle analysis were used to analyze proliferation and cell cycle distribution. Scratch test, transwell migration assay, and tube formation experiments were performed to analyze migration and vascularization of EPCs after silencing OGR1 with small interfering RNA (siRNA). The result show EPCs were positive for FITC-UEA-I and Dil-Ac-LDL double-staining and expressed OGR1. The expression of OGR1 increased gradually with decreased pH and was highest in pH 6.4 medium. Incubation in pH 6.4 medium inhibited proliferation of EPCs and caused cell cycle arrest. Silencing of OGR1 using siRNA partially reversed the effect of acidic environment on EPCs. Migration and angiogenesis of EPCs were inhibited in pH 6.4 medium, and silencing of OGR1 partially reversed this effect. The results demonstrated expression of OGR1 in EPCs, and the OGR1 mediated the effects of acidic environment on proliferation, migration, and angiogenesis of EPCs.
Collapse
Affiliation(s)
- Shenglong Ding
- Department of Orthopaedics, Jinshan Hospital, Fudan University, 201508 Shanghai, China
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital, Fudan University, 201700 Shanghai, China
| | - Ji Xu
- Department of Orthopaedics, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| | - Qichen Zhang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Fangyi Chen
- Department of Orthopaedics, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| | - Jihong Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| | - Keke Gui
- Department of Orthopaedics, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| | - Min Xiong
- Department of Orthopaedics, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| | - Bing Li
- Center Laboratory, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| | - Zhiyong Ruan
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital, Fudan University, 201700 Shanghai, China
| | - Mingdong Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| |
Collapse
|
17
|
Si L, Liu W, Hayashi T, Ji Y, Fu J, Nie Y, Mizuno K, Hattori S, Onodera S, Ikejima T. Silibinin-induced apoptosis of breast cancer cells involves mitochondrial impairment. Arch Biochem Biophys 2019; 671:42-51. [PMID: 31085166 DOI: 10.1016/j.abb.2019.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 01/20/2023]
Abstract
Mitochondria are dynamically regulated by fission and fusion processes. Silibinin induces apoptosis of MCF-7 and MDA-MB-231 human breast cancer cells. However, whether or not mitochondria dysfunction is involved in the apoptosis induction with silibinin of both types of the cells remains unknown. We here report that silibinin decreases the mitochondrial mass in terms of MitoTracker Green staining in both breast cancer cells. Silibinin induces morphological changes of mitochondria from oval to truncated or fragmented shapes accordingly. Condensed crests are observed in mitochondria by transmission electron microscopy. Silibinin causes mitochondrial membrane potential reduced. The expression of mitochondrial fission-associated proteins including dynamin-related protein 1 (DRP1) is up-regulated, whereas expression of the mitochondrial fusion-associated proteins, optic atrophy 1 and mitofusin 1, is down-regulated. In addition, silibinin treatment down-regulates ATP content as well as the levels of mitochondrial biogenesis-regulators including mitochondrial transcription factor A, peroxisome proliferator-activated receptor gamma coactivator 1 and nuclear respiratory factor 2. Moreover, treatments with DRP1 inhibitor, mdivi-1, or with DRP1-targetted siRNA efficiently prevent silibinin-induced apoptosis in the breast cancer cells, whereas inhibition of DRP1 phosphorylation with staurosporine increases apoptosis furthermore. Taken together, we conclude that silibinin impairs mitochondrial dynamics and biogenesis, leading to apoptosis of MCF-7 and MDA-MB-123 cells.
Collapse
Affiliation(s)
- Lingling Si
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Yachao Ji
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jianing Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yuheng Nie
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Satoshi Onodera
- Medical Research Institute of Curing Mibyo, 1-6-28 Narusedai Mechida Tokyo, 194-0042, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
18
|
Mitochondrial Dynamics: Biogenesis, Fission, Fusion, and Mitophagy in the Regulation of Stem Cell Behaviors. Stem Cells Int 2019; 2019:9757201. [PMID: 31089338 PMCID: PMC6476046 DOI: 10.1155/2019/9757201] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Stem cells have the unique capacity to differentiate into many cell types during embryonic development and postnatal growth. Through coordinated cellular behaviors (self-renewal, proliferation, and differentiation), stem cells are also pivotal to the homeostasis, repair, and regeneration of many adult tissues/organs and thus of great importance in regenerative medicine. Emerging evidence indicates that mitochondria are actively involved in the regulation of stem cell behaviors. Mitochondria undergo specific dynamics (biogenesis, fission, fusion, and mitophagy) during stem cell self-renewal, proliferation, and differentiation. The alteration of mitochondrial dynamics, fine-tuned by stem cell niche factors and stress signaling, has considerable impacts on stem cell behaviors. Here, we summarize the recent research progress on (1) how mitochondrial dynamics controls stem cell behaviors, (2) intrinsic and extrinsic factors that regulate mitochondrial dynamics, and (3) pharmacological regulators of mitochondrial dynamics and their therapeutic potential. This review emphasizes the metabolic control of stemness and differentiation and may shed light on potential new applications in stem cell-based therapy.
Collapse
|
19
|
Zhao D, Yin CY, Ye XW, Wan ZF, Zhao DG, Zhang XY. Mitochondrial separation protein inhibitor inhibits cell apoptosis in rat lungs during intermittent hypoxia. Exp Ther Med 2019; 17:2349-2358. [PMID: 30867720 DOI: 10.3892/etm.2019.7201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/22/2018] [Indexed: 12/27/2022] Open
Abstract
Obstructive sleep apnoea (OSA) is a very common sleep and breathing disorder that occurs in worldwide. It is important to develop a more effective treatment for OSA to overcome lung cell apoptosis during intermittent hypoxia (IH). A mitochondrial separation protein inhibitor (Mdivi-1) has been demonstrated to be a powerful tool for inhibiting apoptosis. In the present study, the protective effect and possible mechanism of apoptosis in lung cells during IH was investigated using in vivo and in vitro experiments. Following IH exposure for 4 weeks, the lung tissues of Sprague Dawley rats exhibited interstitial lesions, while Mdivi-1 reduced these pulmonary interstitial lesions. B-cell lymphoma (Bcl)-2 mRNA and protein expression levels were decreased however caspase-3, caspase-9 and dynamin-related protein 1 (Drp-1) mRNA and protein expression levels were increased. Following Mdivi-1 intervention, Bcl-2 mRNA and protein expression levels were increased while caspase-3, caspase-9 and Drp-1 mRNA and protein expression levels were decreased (P<0.05). After exposure to IH for 12 h, the apoptosis rate of WTRL1 cells in rats increased gradually with the IH time (P<0.05). Bcl-2 mRNA and protein expression levels were decreased, whereas caspase-3, caspase-9, cytochrome C (Cyt-C) and Drp-1 mRNA levels were increased, and caspase-3, caspase-9 and Drp-1 protein expression levels were increased. After Mdivi-1 intervention, Bcl-2 mRNA and protein expression levels were increased but caspase-3, caspase-9, Cyt-C and Drp-1 mRNA levels were decreased along with caspase-9, Cyt-C and Drp-1 protein expression levels which were decreased (P<0.05). The results of the present study suggest that Mdivi-1 may be a potential agent for treating OSA because it inhibits the mitochondrial pathway and reduces apoptosis.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China.,Life Sciences College of Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Chen-Yi Yin
- Department of Graduate School, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xian-Wei Ye
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Zi-Fen Wan
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - De-Gang Zhao
- Life Sciences College of Guizhou University, Guiyang, Guizhou 550025, P.R. China.,The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Xiang-Yan Zhang
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
20
|
Nishimura A, Shimauchi T, Tanaka T, Shimoda K, Toyama T, Kitajima N, Ishikawa T, Shindo N, Numaga-Tomita T, Yasuda S, Sato Y, Kuwahara K, Kumagai Y, Akaike T, Ide T, Ojida A, Mori Y, Nishida M. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci Signal 2018; 11:11/556/eaat5185. [PMID: 30425165 DOI: 10.1126/scisignal.aat5185] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Defective mitochondrial dynamics through aberrant interactions between mitochondria and actin cytoskeleton is increasingly recognized as a key determinant of cardiac fragility after myocardial infarction (MI). Dynamin-related protein 1 (Drp1), a mitochondrial fission-accelerating factor, is activated locally at the fission site through interactions with actin. Here, we report that the actin-binding protein filamin A acted as a guanine nucleotide exchange factor for Drp1 and mediated mitochondrial fission-associated myocardial senescence in mice after MI. In peri-infarct regions characterized by mitochondrial hyperfission and associated with myocardial senescence, filamin A colocalized with Drp1 around mitochondria. Hypoxic stress induced the interaction of filamin A with the GTPase domain of Drp1 and increased Drp1 activity in an actin-binding-dependent manner in rat cardiomyocytes. Expression of the A1545T filamin mutant, which potentiates actin aggregation, promoted mitochondrial hyperfission under normoxia. Furthermore, pharmacological perturbation of the Drp1-filamin A interaction by cilnidipine suppressed mitochondrial hyperfission-associated myocardial senescence and heart failure after MI. Together, these data demonstrate that Drp1 association with filamin and the actin cytoskeleton contributes to cardiac fragility after MI and suggests a potential repurposing of cilnidipine, as well as provides a starting point for innovative Drp1 inhibitor development.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Kakeru Shimoda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan
| | - Takashi Toyama
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Naoyuki Kitajima
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuya Ishikawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,EA Pharma Co. Inc., Tokyo 104-0042, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan
| | - Satoshi Yasuda
- National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Yoji Sato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | | | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takaaki Akaike
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomomi Ide
- Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Lee H, Kang KT. Advanced tube formation assay using human endothelial colony forming cells for in vitro evaluation of angiogenesis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:705-712. [PMID: 30402031 PMCID: PMC6205943 DOI: 10.4196/kjpp.2018.22.6.705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/29/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022]
Abstract
The tube formation assay is a widely used in vitro experiment model to evaluate angiogenic properties by measuring the formation of tubular structures from vascular endothelial cells (ECs). in vitro experimental results are crucial when considered the advisability of moving forward to in vivo studies. Thus, the additional attentions to the in vitro assay is necessary to improve the quality of the pre-clinical data, leading to better decision-making for successful drug discovery. In this study, we improved the tube formation assay system in three aspects. First, we used human endothelial colony forming cells (ECFCs), which are endothelial precursors that have a robust proliferative capacity and more defined angiogenic characteristics compared to mature ECs. Second, we utilized a real-time cell recorder to track the progression of tube formation for 48 hours. Third, to minimize analysis error due to the limited observation area, we used image-stitching software to increase the microscope field of view to a 2×2 stitched area from the 4× object lens. Our advanced tube formation assay system successfully demonstrated the time-dependent dynamic progression of tube formation in the presence and absence of VEGF and FGF-2. Vatalanib, VEGF inhibitor, was tested by our assay system. Of note, IC50 values of vatalanib was different at each observation time point. Collectively, these results indicate that our advanced tube formation assay system replicates the dynamic progression of tube formation in response to angiogenic modulators. Therefore, this new system provides a sensitive and versatile assay model for evaluating pro- or anti-angiogenic drugs.
Collapse
Affiliation(s)
- Hyunsook Lee
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Korea
| | - Kyu-Tae Kang
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Korea
| |
Collapse
|
22
|
Possible Roles of Mitochondrial Dynamics and the Effects of Pharmacological Interventions in Chemoresistant Ovarian Cancer. EBioMedicine 2018; 34:256-266. [PMID: 30049609 PMCID: PMC6116427 DOI: 10.1016/j.ebiom.2018.07.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is the major cause of death out of all the gynecologic cancers. The prognosis of this cancer is quite poor since patients only seek treatment when it is at an advanced stage. Any early biomarkers for this cancer are still unknown. Dysregulation of mitochondrial dynamics with associated resistance to apoptosis plays a crucial role in several types of human carcinogenesis, including ovarian cancers. Previous studies showed that increased mitochondrial fission occurred in ovarian cancer cells. However, several pharmacological interventions and therapeutic strategies, which modify the mitochondrial dynamics through the promotion of mitochondrial fission and apoptosis of cancer cells, have been shown to potentially provide beneficial effects in ovarian cancer treatment. Therefore the aim of the present review is to summarize and discuss the current findings from in vitro, in vivo and clinical studies associated with the alteration of mitochondrial dynamics and ovarian cancers with and without interventions. Dysregulation of mitochondrial dynamics occurred in ovarian cancer. Increased mitochondrial dysregulation may correlate with the increasing degree of chemoresistance in ovarian cancers. Drugs-induced mitochondrial fission and apoptosis will be beneficial effect in ovarian cancer therapy.
Collapse
|