1
|
Li M, Zhu X, Zhang M, Yu J, Jin S, Hu X, Piao H. The analgesic effect of paeoniflorin: A focused review. Open Life Sci 2024; 19:20220905. [PMID: 39220595 PMCID: PMC11365469 DOI: 10.1515/biol-2022-0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 09/04/2024] Open
Abstract
Pain has been a prominent medical concern since ancient times. Despite significant advances in the diagnosis and treatment of pain in contemporary medicine, there is no a therapeutic cure for chronic pain. Chinese herbaceous peony, a traditional Chinese analgesic herb has been in clinical use for millennia, with widespread application and substantial efficacy. Paeoniflorin (PF), the main active ingredient of Chinese herbaceous peony, has antioxidant, anti-inflammatory, anticancer, analgesic, and antispasmodic properties, among others. The analgesic effect of PF, involving multiple critical targets and pain regulatory pathways, has been a hot spot for current research. This article reviews the literature related to the analgesic effect of PF in the past decade and discusses the molecular mechanism of the analgesic effect of PF, including the protective effects of nerve cells, inhibition of inflammatory reactions, antioxidant effects, reduction of excitability in nociceptor, inhibition of the nociceptive excitatory neuroreceptor system, activation of the nociceptive inhibitory neuroreceptor system and regulation of other receptors involved in nociceptive sensitization. Thus, providing a theoretical basis for pain prevention and treatment research. Furthermore, the prospect of PF-based drug development is presented to propose new ideas for clinical analgesic therapy.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| | - Mingxue Zhang
- First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, Shenyang, Liaoning, 110032, China
| | - Jun Yu
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning, 110847, P.R. China
| | - Shengbo Jin
- College of Acupuncture and Massage of Liaoning Chinese Traditional Medicine, Shenyang, Liaoning, 110847, P.R. China
| | - Xiaoli Hu
- First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 33 Beiling Street, Shenyang, Liaoning, 110032, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, P.R. China
| |
Collapse
|
2
|
Hwang JH, Jung C. Toxicity Evaluation of a Non-Pain Pharmacopuncture Extract Using a Bacterial Reverse Mutation Test. J Pharmacopuncture 2024; 27:154-161. [PMID: 38948307 PMCID: PMC11194521 DOI: 10.3831/kpi.2024.27.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives The objective of this study was to assess the genotoxicity of a no-pain pharmacopuncture (NPP) extract developed in 2022 using a bacterial reverse mutation assay, aiming to further substantiate the safety profile of NPP. Methods The genotoxicity evaluation involved a bacterial reverse mutation assay to assess the mutagenic potential of NPP extracts with and without metabolic activation. Histidine-requiring Salmonella typhimurium strains (TA98, TA100, TA1535, and TA1537) and tryptophan-requiring Escherichia coli strains (WP2uvrA) were used in the assay. Results The NPP extract did not induce a revertant colony count exceeding two times that of the negative control at any dose level in any of the tested strains, both with and without metabolic activation. Additionally, no growth inhibition or precipitation was observed in the presence of NPP. Conclusion Based on the findings, it can be concluded that the NPP extract exhibited no mutagenic potential in the in vitro genotoxicity tests conducted.
Collapse
Affiliation(s)
- Ji Hye Hwang
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Chul Jung
- Namsangcheon Korean Medicine Clinic, Seoul, Republic of Korea
| |
Collapse
|
3
|
Xu SY, Cao HY, Yang RH, Xu RX, Zhu XY, Ma W, Liu XB, Yan XY, Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155483. [PMID: 38432036 DOI: 10.1016/j.phymed.2024.155483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.
Collapse
Affiliation(s)
- Shi-Yi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui-Yan Cao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rui-Hong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rong-Xue Xu
- The Health Center of Longjiang Airlines, Harbin 150000, China; Qiqihar Medical University, Qiqihar 161003, China
| | - Xing-Yu Zhu
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiu-Bo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Xue-Ying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Peng Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
4
|
Luo C, Yang D, Hou C, Tan T, Chao C. Paeoniflorin protects NOD mice from T1D through regulating gut microbiota and TLR4 mediated myD88/TRIF pathway. Exp Cell Res 2023; 422:113429. [PMID: 36402426 DOI: 10.1016/j.yexcr.2022.113429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the effect of PF in regulating the progression of T1D through regulating gut microbiota and inhibiting TLR4-myD88/TRIF pathway. T1D mouse models were established and received PF treatment through intraperitoneal injection. The glucose, sugar tolerance, the incidence of T1D and H&E staining were detected to verify the effect of PF on T1D. Meanwhile, the changes of gut microbiota and the permeability of intestines in mice were also measured. On parallel, the number and function of immune cells were detected by Flow Cytometry. The expressions of ZO-1, ZO-2 and TLR4-myD88/TRIF pathway related proteins were detected by western blotting. Mice received PF treatment had decreased incidence of T1D and inflammatory infiltration in islet tissues compared with those received PBS treatment. In addition to that, PF treated mice had increased Sutterella species and decreased intestinal permeability, in which the decreased ratio of Th1/Th17 and increased Treg cells were also identified. The expression of TLR4-myD88/TRIF pathway was also suppressed in response to PF treatment. Moreover, further treatment with TLR4 agonist, LPS, could reverse the effect of PF on T1D mice. PF can suppress the TLR4 mediated myD88/TRIF pathway to change the distribution of gut microbiota, so as to protect NOD mice from T1D.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| | - Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Can Hou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| | - Tingting Tan
- Department of Immunology, School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan Province, PR China
| | - Chen Chao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
5
|
Lv S, Zhao Y, Wang L, Yu Y, Li J, Huang Y, Xu W, Sun G, Dai W, Zhao T, Bi D, Ma Y, Sun P. Antidepressant Active Components of Bupleurum chinense DC-Paeonia lactiflora Pall Herb Pair: Pharmacological Mechanisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1024693. [PMID: 36408279 PMCID: PMC9668458 DOI: 10.1155/2022/1024693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2024]
Abstract
Depression is a serious psychological disorder with a rapidly increasing incidence in recent years. Clinically, selective serotonin reuptake inhibitors are the main therapy. These drugs, have serious adverse reactions, however. Traditional Chinese medicine has the characteristics of multiple components, targets, and pathways, which has huge potential advantages for the treatment of depression. The antidepressant potential of the herbal combination of Bupleurum chinense DC (Chaihu) and Paeonia lactiflora Pall (Baishao) has been extensively studied previously. In this review, we summarized the antidepressant active components and mechanism of Chaihu-Baishao herb pair. We found that it works mainly through relieving oxidative stress, regulating HPA axis, and protecting neurons. Nevertheless, current research of this combined preparation still faces many challenges. On one hand, most of the current studies only stay at the level of animal models, lacking of sufficient clinical double-blind controlled trials for further verification. In addition, studies on the synergistic effect between different targets and signaling pathways are scarce. On the other hand, this preparation has numerous defects such as poor stability, low solubility, and difficulty in crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Shimeng Lv
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yifan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Le Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yihong Yu
- School of Management, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiaxin Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yufei Huang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Wenhua Xu
- Preventive Treatment Center, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen 518027, China
| | - Geqin Sun
- Zhongshan Torch Development Zone People's Hospital, Zhongshan 528400, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan 528400, China
| | - Tingting Zhao
- School of Foreign Language, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dezhong Bi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Sun
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
6
|
From dried bear bile to molecular investigation: A systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain, across pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Brain Behav Immun 2022; 99:132-146. [PMID: 34601012 DOI: 10.1016/j.bbi.2021.09.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Bile acids, mainly ursodeoxycholic acid (UDCA) and its conjugated species glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) have long been known to have anti-apoptotic, anti-oxidant and anti-inflammatory properties. Due to their beneficial actions, recent studies have started to investigate the effect of UDCA, GUDCA, TUDCA on the same mechanisms in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders, where increased cell apoptosis, oxidative stress and inflammation in the brain are often observed. A total of thirty-five pre-clinical studies were identified through PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the UDCA, GUDCA and TUDCA in the regulation of brain apoptosis, oxidative stress and inflammation, in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Findings show that UDCA reduces apoptosis, reactive oxygen species (ROS) and tumour necrosis factor (TNF)-α production in neurodegenerative models, and reduces nitric oxide (NO) and interleukin (IL)-1β production in neuropsychiatric models; GUDCA decreases lactate dehydrogenase, TNF-α and IL-1β production in neurological models, and also reduces cytochrome c peroxidase production in neurodegenerative models; TUDCA decreases apoptosis in neurological models, reduces ROS and IL-1β production in neurodegenerative models, and decreases apoptosis and TNF-α production, and increases glutathione production in neuropsychiatric models. In addition, findings suggest that all the three bile acids would be equally beneficial in models of Huntington's disease, whereas UDCA and TUDCA would be more beneficial in models of Parkinson's disease and Alzheimer's disease, while GUDCA in models of bilirubin encephalopathy and TUDCA in models of depression. Overall, this review confirms the therapeutic potential of UDCA, GUDCA and TUDCA in neurological, neurodegenerative and neuropsychiatric disorders, proposing bile acids as potential alternative therapeutic approaches for patients suffering from these disorders.
Collapse
|
7
|
Tang M, Chen M, Li Q. Paeoniflorin ameliorates chronic stress-induced depression-like behavior in mice model by affecting ERK1/2 pathway. Bioengineered 2021; 12:11329-11341. [PMID: 34872456 PMCID: PMC8810059 DOI: 10.1080/21655979.2021.2003676] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/19/2023] Open
Abstract
Depression is a mental and emotional disorder that has made an opening great burden to the society. Paeoniflorin showed remarkable antidepressant-like effects in multiple animal models with depressive disorders. However, the molecule of paeoniflorin on depression is less studied. This study aims to explore the effect and the molecular mechanism of paeoniflorin on depression in a chronic restraint stress (CRS) mice model. CRS model of C57BL/6 J mice was set up. Sucrose preference test (SPT), tail suspension test (TST), open field test (OFT) and forced swimming test (FST) were used to assess depression symptoms. Immunofluorescence staining, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting were implemented to detect the expression changes of the proteins involved in extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Results showed that paeoniflorin treatment decreased the degree of depression in the CRS mice. Further analysis showed that the expression of ERK1/2 proteins was significantly downregulated, while paeoniflorin could elevate the expression of ERK1/2 proteins in CRS mice. Finally, it showed that inhibiting signaling ERK1/2 pathway could aggravate the depressive behavior when treatment with ERK-specific inhibitor U0126, while the condition could be partially relieved when treated with paeoniflorin. In conclusion, the present study demonstrated that paeoniflorin attenuated chronic stress-induced depression-like behavior in mice by affecting the ERK1/2 pathway. These findings provided the basis for the molecular mechanism of paeoniflorin on the effect of depression, which support paeoniflorin might act as an important drug in the treatment of depression.
Collapse
Affiliation(s)
- Meiling Tang
- Department of Nursing, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Min Chen
- Department of Enrolment and Employment, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Qiang Li
- Department of Nursing, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
8
|
Differential Proteomic Analysis of the Hippocampus in Rats with Neuropathic Pain to Investigate the Use of Electroacupuncture in Relieving Mechanical Allodynia and Cognitive Decline. Neural Plast 2021; 2021:5597163. [PMID: 34394341 PMCID: PMC8360723 DOI: 10.1155/2021/5597163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/22/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022] Open
Abstract
Abnormal changes in hippocampal function and neuroplasticity are involved in neuropathic pain, which induces hyperalgesia and learning and memory deficits. Previous studies from our group have shown that electroacupuncture at Huantiao (GB30) and Yanglingquan (GB34) has an obvious analgesic effect on neuropathic pain. However, the central regulatory mechanism occurring in the hippocampus remains to be investigated. In this study, behavioral and proteomic analyses were performed to identify differentially expressed hippocampal proteins involved in electroacupuncture-induced analgesia. Our results showed both upregulated (TMEM126A, RDH13, and Luc7L) and downregulated proteins (Mettl7A, GGA1 RTKN, RSBN1, and CDKN1B). Further protein verification revealed for the first time that hippocampal TMEM126A plays an important anti-inflammatory role in the treatment of neuralgia by electroacupuncture.
Collapse
|