1
|
Sun G, Xu Y, Liang X, Wang L, Liu Y. Curcumin inhibits the progression of hyperlipidemia via OGT mediated O-GlcNAcylation modulation of APOC3. Int Immunopharmacol 2025; 144:113647. [PMID: 39579540 DOI: 10.1016/j.intimp.2024.113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
The etiology of hyperlipidemia is complex, and our understanding of its underlying mechanisms is limited. Effective therapeutic strategies for hyperlipidemia remain elusive. This study aimed to confirm the effect of curcumin on hyperlipidemia treatment and elucidate the precise mechanism. A high-fat diet-induced hyperlipidemia model using C57BL/6J mice and HaCaT cells was established. Co-immunoprecipitation and immunofluorescence were performed to detect protein interactions, and immunoprecipitation coupled with Western blotting was used to assess protein succinylation. 40 μM of curcumin administration promoted cell viability, increased the levels of glutathione peroxidase, glutathione, catalase, and superoxide dismutase, while reducing reactive oxygen species activity and the levels of triglycerides and malondialdehyde. Additionally, curcumin attenuated the development of hyperlipidemia in vivo. Mechanistically, 100 mg/kg of curcumin promoted O-GlcNAcylation and increased the expression of O-linked N-acetylglucosamine transferase in HaCaT cells. Furthermore, apolipoprotein C3 was identified as a substrate of O-linked N-acetylglucosamine transferase, and O-GlcNAcylation of apolipoprotein C3 enhanced its stability. Rescue experiments further verified that curcumin exerts its effects by regulating apolipoprotein C3 expression. In conclusion, these findings provide novel insights into the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Guotong Sun
- Department of Cardiology, Hulunbuir Zhong Meng Hospital, Hulunbuir 021000, China; Department of Cardiology, Shouguang Hospital of T.C.M, Weifang 262700, China
| | - Yaowen Xu
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266011, China
| | - Xiuwen Liang
- Department of Cardiology, Hulunbuir Zhong Meng Hospital, Hulunbuir 021000, China
| | - Lei Wang
- Department of Science and Education, Hulunbuir Zhong Meng Hospital, Hulunbuir 021000, China
| | - Yu Liu
- Department of Cardiology, Hulunbuir Zhong Meng Hospital, Hulunbuir 021000, China.
| |
Collapse
|
2
|
Jin J, Yang YR, Gong Q, Wang JN, Ni WJ, Wen JG, Meng XM. Role of epigenetically regulated inflammation in renal diseases. Semin Cell Dev Biol 2024; 154:295-304. [PMID: 36328897 DOI: 10.1016/j.semcdb.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, renal disease research has witnessed remarkable advances. Experimental evidence in this field has highlighted the role of inflammation in kidney disease. Epigenetic dynamics and immunometabolic reprogramming underlie the alterations in cellular responses to intrinsic and extrinsic stimuli; these factors determine cell identity and cell fate decisions and represent current research hotspots. This review focuses on recent findings and emerging concepts in epigenetics and inflammatory regulation and their effect on renal diseases. This review aims to summarize the role and mechanisms of different epigenetic modifications in renal inflammation and injury and provide new avenues for future research on inflammation-related renal disease and drug development.
Collapse
Affiliation(s)
- Juan Jin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
3
|
Khan H, Bangar A, Grewal AK, Singh TG. Mechanistic Implications of GSK and CREB Crosstalk in Ischemia Injury. Neurotox Res 2023; 42:1. [PMID: 38091155 DOI: 10.1007/s12640-023-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
Ischemia-reperfusion (IR) injury is a damage to an organ when the blood supply is less than the demand required for normal functioning, leading to exacerbation of cellular dysfunction and death. IR injury occurs in different organs like the kidney, liver, heart, brain, etc., and may not only involve the ischemic organ but also cause systemic damage to distant organs. Oxygen-glucose deprivation in cells causes oxidative stress, calcium overloading, inflammation, and apoptosis. CREB is an essential integrator of the body's various physiological systems, and it is widely accepted that dysfunction of CREB signaling is involved in many diseases, including ischemia-reperfusion injury. The activation of CREB can provide life to a cell and increase the cell's survival after ischemia. Hence, GSK/CREB signaling pathway can provide significant protection to cells of different organs after ischemia and emerges as a futuristic strategy for managing ischemia-reperfusion injury. Different signaling pathways such as MAPK/ERK, TLR4/MyD88, RISK, Nrf2, and NF-κB, get altered during IR injury by the modulation of GSK-3 and CREB (cyclic AMP response element (CRE)-binding protein). GSK-3 (protein kinase B) and CREB are the downstream targets for fulfilling the roles of various signaling pathways. Calcium overloading during ischemia increases the expression of calcium-calmodulin-dependent protein kinase (CaMK), which subsequently activates CREB-mediated transcription, thus promoting the survival of cells. Furthermore, this review highlights the crosstalk between GSK-3 and CREB, promoting survival and rendering the cells resistant to subsequent severe ischemia.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | | |
Collapse
|
4
|
Wang X, Huang Y, Zhang K, Chen F, Nie T, Zhao Y, He F, Ni J. Changes of energy metabolism in failing heart and its regulation by SIRT3. Heart Fail Rev 2023:10.1007/s10741-023-10295-5. [PMID: 36708431 DOI: 10.1007/s10741-023-10295-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Heart failure (HF) is the leading cause of hospitalization in elderly patients and a disease with extremely high morbidity and mortality rate worldwide. Although there are some existing treatment methods for heart failure, due to its complex pathogenesis and often accompanied by various comorbidities, there is still a lack of specific drugs to treat HF. The mortality rate of patients with HF is still high, highlighting an urgent need to elucidate the pathophysiological mechanisms of HF and seek new therapeutic approaches. The heart is an organ with a very high metabolic intensity, mainly using fatty acids, glucose, ketone bodies, and branched-chain amino acids as energy substrates to supply energy for the heart. Loss of metabolic flexibility and metabolic remodeling occurs with HF. Sirtuin3 (SIRT3) is a member of the NAD+-dependent Sirtuin family located in mitochondria, and can participate in mitochondrial physiological functions through the deacetylation of metabolic and respiratory enzymes in mitochondria. As the center of energy metabolism, mitochondria are involved in many physiological processes. Maintaining stable metabolic and physiological functions of the heart depends on normal mitochondrial function. The damage or loss of SIRT3 can lead to various cardiovascular diseases. Therefore, we summarize the recent progress of SIRT3 in cardiac mitochondrial protection and metabolic remodeling.
Collapse
Affiliation(s)
- Xiao Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuting Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Kai Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Feng Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Tong Nie
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yun Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, 438000, China.
| | - Jingyu Ni
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
5
|
Dubois-Deruy E, El Masri Y, Turkieh A, Amouyel P, Pinet F, Annicotte JS. Cardiac Acetylation in Metabolic Diseases. Biomedicines 2022; 10:biomedicines10081834. [PMID: 36009379 PMCID: PMC9405459 DOI: 10.3390/biomedicines10081834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Lysine acetylation is a highly conserved mechanism that affects several biological processes such as cell growth, metabolism, enzymatic activity, subcellular localization of proteins, gene transcription or chromatin structure. This post-translational modification, mainly regulated by lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) enzymes, can occur on histone or non-histone proteins. Several studies have demonstrated that dysregulated acetylation is involved in cardiac dysfunction, associated with metabolic disorder or heart failure. Since the prevalence of obesity, type 2 diabetes or heart failure rises and represents a major cause of cardiovascular morbidity and mortality worldwide, cardiac acetylation may constitute a crucial pathway that could contribute to disease development. In this review, we summarize the mechanisms involved in the regulation of cardiac acetylation and its roles in physiological conditions. In addition, we highlight the effects of cardiac acetylation in physiopathology, with a focus on obesity, type 2 diabetes and heart failure. This review sheds light on the major role of acetylation in cardiovascular diseases and emphasizes KATs and KDACs as potential therapeutic targets for heart failure.
Collapse
|