1
|
Pereiro X, Ruzafa N, Azkargorta M, Elortza F, Acera A, Ambrósio AF, Santiago AR, Vecino E. Müller glial cells located in the peripheral retina are more susceptible to high pressure: implications for glaucoma. Cell Biosci 2024; 14:5. [PMID: 38183095 PMCID: PMC10770903 DOI: 10.1186/s13578-023-01186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Glaucoma, a progressive neurodegenerative disease, is a leading cause of irreversible vision loss worldwide. This study aims to elucidate the critical role of Müller glia (MG) in the context of retinal ganglion cell (RGC) death, particularly focusing on the influence of peripheral MG sensitivity to high pressure (HP). METHODS Co-cultures of porcine RGCs with MG were isolated from both the central and peripheral regions of pig retinas and subjected to both normal and HP conditions. Mass spectrometry analysis of the MG-conditioned medium was conducted to identify the proteins released by MG under all conditions. RESULTS Peripheral MG were found to secrete a higher quantity of neuroprotective factors, effectively promoting RGC survival under normal physiological conditions. However, under HP conditions, co-cultures with peripheral MG exhibited impaired RGC survival. Moreover, under HP conditions, peripheral MG significantly upregulated the secretion of proteins associated with apoptosis, oxidative stress, and inflammation. CONCLUSIONS This study provides robust evidence suggesting the involvement of MG in RGC death in glaucoma, thus paving the way for future therapeutic investigations.
Collapse
Affiliation(s)
- Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.
| | - Noelia Ruzafa
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehdProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehdProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.
| |
Collapse
|
2
|
Reichenbach A, Bringmann A. Glia of the human retina. Glia 2019; 68:768-796. [PMID: 31793693 DOI: 10.1002/glia.23727] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
The human retina contains three types of glial cells: microglia and two types of macroglia, astrocytes and Müller cells. Macroglia provide homeostatic and metabolic support to photoreceptors and neurons required for neuronal activity. The fovea, the site of the sharpest vision which is astrocyte- and microglia-free, contains two populations of Müller glia: cells which form the Müller cell cone in the foveola and z-shaped Müller cells of the foveal walls. Both populations are characterized by morphological and functional differences. Müller cells of the foveola do not support the activity of photoreceptors and neurons, but provide the structural stability of the foveal tissue and improve the light transmission through the tissue to the photoreceptors. This article gives overviews of the glia of the human retina and the structure and function of both Müller cell types in the fovea, and describes the contributions of astrocytes and Müller cells to the ontogenetic development of the fovea.
Collapse
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Toft-Kehler AK, Skytt DM, Kolko M. A Perspective on the Müller Cell-Neuron Metabolic Partnership in the Inner Retina. Mol Neurobiol 2017; 55:5353-5361. [PMID: 28929338 DOI: 10.1007/s12035-017-0760-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
The Müller cells represent the predominant macroglial cell in the retina. In recent decades, Müller cells have been acknowledged to be far more influential on neuronal homeostasis in the retina than previously assumed. With its unique localization, spanning the entire retina being interposed between the vessels and neurons, Müller cells are responsible for the functional and metabolic support of the surrounding neurons. As a consequence of major energy demands in the retina, high levels of glucose are consumed and processed by Müller cells. The present review provides a perspective on the symbiotic relationship between Müller cells and inner retinal neurons on a cellular level by emphasizing the essential role of energy metabolism within Müller cells in relation to retinal neuron survival.
Collapse
Affiliation(s)
- A K Toft-Kehler
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - D M Skytt
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark. .,Department of Ophthalmology, Zealand University Hospital, Vestermarksvej 23, 4000, Roskilde, Denmark. .,Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Nordre Ringvej 57, 2600, Glostrup, Denmark.
| |
Collapse
|