1
|
Desroches-Castan A, Tillet E, Ricard N, Ouarné M, Mallet C, Belmudes L, Couté Y, Boillot O, Scoazec JY, Bailly S, Feige JJ. Bone Morphogenetic Protein 9 Is a Paracrine Factor Controlling Liver Sinusoidal Endothelial Cell Fenestration and Protecting Against Hepatic Fibrosis. Hepatology 2019; 70:1392-1408. [PMID: 30964206 DOI: 10.1002/hep.30655] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic protein 9 (BMP9) is a circulating factor produced by hepatic stellate cells that plays a critical role in vascular quiescence through its endothelial receptor activin receptor-like kinase 1 (ALK1). Mutations in the gene encoding ALK1 cause hereditary hemorrhagic telangiectasia type 2, a rare genetic disease presenting hepatic vessel malformations. Variations of both the circulating levels and the hepatic mRNA levels of BMP9 have been recently associated with various forms of hepatic fibrosis. However, the molecular mechanism that links BMP9 with liver diseases is still unknown. Here, we report that Bmp9 gene deletion in 129/Ola mice triggers hepatic perisinusoidal fibrosis that was detectable from 15 weeks of age. An inflammatory response appeared within the same time frame as fibrosis, whereas sinusoidal vessel dilation developed later on. Proteomic and mRNA analyses of primary liver sinusoidal endothelial cells (LSECs) both revealed that the expression of the LSEC-specifying transcription factor GATA-binding protein 4 was strongly reduced in Bmp9 gene knockout (Bmp9-KO) mice as compared with wild-type mice. LSECs from Bmp9-KO mice also lost the expression of several terminal differentiation markers (Lyve1, Stab1, Stab2, Ehd3, Cd209b, eNos, Maf, Plvap). They gained CD34 expression and deposited a basal lamina, indicating that they were capillarized. Another main characteristic of differentiated LSECs is the presence of permeable fenestrae. LSECs from Bmp9-KO mice had a significantly reduced number of fenestrae. This was already observable in 2-week-old pups. Moreover, we could show that addition of BMP9 to primary cultures of LSECs prevented the loss of their fenestrae and maintained the expression levels of Gata4 and Plvap. Conclusion: Taken together, our observations show that BMP9 is a key paracrine regulator of liver homeostasis, controlling LSEC fenestration and protecting against perivascular hepatic fibrosis.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Nicolas Ricard
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Marie Ouarné
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christine Mallet
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Lucid Belmudes
- BGE Laboratory, Université Grenoble Alpes, CEA, Inserm, Grenoble, France
| | - Yohann Couté
- BGE Laboratory, Université Grenoble Alpes, CEA, Inserm, Grenoble, France
| | - Olivier Boillot
- Liver Transplant Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sabine Bailly
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Jean-Jacques Feige
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| |
Collapse
|
2
|
Differential Consequences of Bmp9 Deletion on Sinusoidal Endothelial Cell Differentiation and Liver Fibrosis in 129/Ola and C57BL/6 Mice. Cells 2019; 8:cells8091079. [PMID: 31540222 PMCID: PMC6770219 DOI: 10.3390/cells8091079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present work was to address the role of BMP9 in different genetic backgrounds (C57BL/6, BALB/c, and 129/Ola) of mice deleted for Bmp9. We found that Bmp9 deletion led to premature mortality only in the 129/Ola strain. We have previously shown that Bmp9 deletion led to liver sinusoidal endothelial cells (LSEC) capillarization and liver fibrosis in the 129/Ola background. Here, we showed that this is not the case in the C57BL/6 background. Analysis of LSEC from Wild-type (WT) versus Bmp9-KO mice in the C57BL/6 background showed no difference in LSEC fenestration and in the expression of differentiation markers. Comparison of the mRNA expression of LSEC differentiation markers between WT C57BL/6 and 129/Ola mice showed a significant decrease in Stabilin2, Plvap, and CD209b, suggesting a more capillary-like phenotype in WT C57BL/6 LSECs. C57BL/6 mice also had lower BMP9 circulating concentrations and hepatic Vegfr2 mRNA levels, compared to the 129/Ola mice. Taken together, our observations support a role for BMP9 in liver endothelial cell fenestration and prevention of fibrosis that is dependent on genetic background. It also suggests that 129/Ola mice are a more suitable model than C57BL/6 for the study of liver fibrosis subsequent to LSEC capillarization.
Collapse
|
3
|
Gaihre B, Unagolla JM, Liu J, Ebraheim NA, Jayasuriya AC. Thermoresponsive Injectable Microparticle-Gel Composites with Recombinant BMP-9 and VEGF Enhance Bone Formation in Rats. ACS Biomater Sci Eng 2019; 5:4587-4600. [PMID: 33448832 PMCID: PMC10742348 DOI: 10.1021/acsbiomaterials.9b00082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone morphogenetic protein-9 (BMP-9) has been shown to be the most osteogenic BMP. Most of these experiments, however, involve an adenovirus-transfection strategy. Here, we used the scaffold-based strategy to study the bone forming ability of recombinant BMP-9 combined with vascular endothelial growth factor (VEGF). A robust, injectable, multicomponent-releasing scaffold in the form of a composite gel was developed by combining chitosan microparticles (MPs) with thermosensitive gel (MPs-gel). The MPs acted as the carriers for BMP-9 and the gel was loaded with VEGF. The developed gel consisted of hydrophobic chains of methyl cellulose (MC) and the cross-linked structures of alginate (Alg) and calcium. Gelation was achieved at physiological temperature and thus facilitated the injection and localization of MPs enabling an increased efficacy of incorporated growth factors at the target site. A release profile of incorporated growth factors over a two-week period showed higher release of VEGF at each time point compared to that of BMP-9. Human mesenchymal stem cells (hMSCs) encapsulated within the MPs-gel maintained their viability. BMP-9 enhanced the proliferation of hMSCs along the surface of MPs. Furthermore, BMP-9 potently induced the osteogenic differentiation of encapsulated hMSCs elucidated by the increased alkaline phosphatase (ALP) activity and the higher expression of ALP, collagen 1, and osteocalcin genes. In addition, in vivo experiments demonstrated that MPs-gel with the combination of BMP-9-VEGF could significantly enhance both subcutaneous and cranial bone formation (p < 0.05). Taken together, the results here strongly suggest that BMP-9-VEGF incorporated MPs-gel holds promise as an injectable bone tissue engineering platform.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Bioengineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Janitha M. Unagolla
- Department of Bioengineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jiayong Liu
- Department of Orthopaedic Surgery, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Nabil A. Ebraheim
- Department of Orthopaedic Surgery, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Ambalangodage C. Jayasuriya
- Department of Bioengineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
- Department of Orthopaedic Surgery, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| |
Collapse
|
4
|
Marei HES, El-Gamal A, Althani A, Afifi N, Abd-Elmaksoud A, Farag A, Cenciarelli C, Thomas C, Anwarul H. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells. J Cell Physiol 2017; 233:936-945. [PMID: 28369825 DOI: 10.1002/jcp.25937] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types such as cartilage, bone, and fat cells. Recent studies have shown that induction of MSCs in vitro by growth factors including epidermal growth factor (EGF) and fibroblast growth factor (FGF2) causes them to differentiate into neural like cells. These cultures also express ChAT, a cholinergic marker; and TH, a dopaminergic marker for neural cells. To establish a protocol with maximum differentiation potential, we examined MSCs under three experimental culture conditions using neural induction media containing FGF2, EGF, BMP-9, retinoic acid, and heparin. Adipose-derived MSCs were extracted and expanded in vitro for 3 passages after reaching >80% confluency, for a total duration of 9 days. Cells were then characterized by flow cytometry for CD markers as CD44 positive and CD45 negative. MSCs were then treated with neural induction media and were characterized by morphological changes and Q-PCR. Differentiated MSCs expressed markers for immature and mature neurons; β Tubulin III (TUBB3) and MAP2, respectively, showing the neural potential of these cells to differentiate into functional neurons. Improved protocols for MSCs induction will facilitate and ensure the reproducibility and standard production of MSCs for therapeutic applications in neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Aya El-Gamal
- Faculty of Veterinary Medicine, Department of Cytology and Histology, Mansoura University, Mansoura, Egypt
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Ahmed Abd-Elmaksoud
- Faculty of Veterinary Medicine, Department of Cytology and Histology, Mansoura University, Mansoura, Egypt
| | - Amany Farag
- Faculty of Veterinary Medicine, Department of Cytology and Histology, Mansoura University, Mansoura, Egypt
| | | | - Caceci Thomas
- Department of Biomedical Sciences, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Hasan Anwarul
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| |
Collapse
|